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ABSTRACT. We show that Z
3 × R

4 Toda Lattice Equations can be obtained from the Laplace-

Darboux transformations of invariants for a four-dimensional hyperbolic system. We also present

the relationship between the invariants of L and the invariants of M when [L, M] = 0, where L and

M are n × n operator matrices.
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1. INTRODUCTION

Toda lattice equations are a class of important integrable systems. The hyper-

bolic two dimensional Toda equations first appeared in the work of Darboux [2].

The original Toda equations, established by Toda [7, 8], are a system of ordinary

differential equations in the form

d2w

dt2
= ewi−1 − 2ewi + ewi+1 (i = 1, 2, ..., n). (1.1)

The purpose of this paper is to show that the Laplace maps produce Z
3 × R

4 Toda

lattice equations. It should be emphasized that differential invariants are the main

tool for Laplace Transformations. For this reason we first discuss the gauge invariants.

Let us consider the second order-linear hyperbolic equation

u,xy + au,x + bu,y + cu = 0, (1.2)

where a, b and c are real functions of x and y. The above equation can be written in

the form

Lu ≡ (∂x∂y + a∂x + b∂y + c)u = 0. (1.3)

The gauge transformation Lg = g−1Lg, where g is a function of x and y, gives us the

Laplace invariants

h = a,x + ab − c, (1.4)
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k = b,y + ab − c. (1.5)

These invariants have been used by many researchers in integrability theory (see e.g.

[3], [4], [6]).

We now concentrate on the Laplace Transformations of system (1.2) which we

write in the form:

(∂x∂y + a∂x + b∂y + c)u = 0.

This system can also be expressed in the form

(∂x + b)(∂y + a)u − hu = 0, (1.6)

where h = a,x + ab − c.

The Laplace map σ1 is defined by setting

uσ1 = (∂y + a)u, (1.7)

so that the Laplace invariants of equation (1.3) transform as

hσ1 = 2h − k − (ln h),xy , (1.8)

kσ1 = h. (1.9)

Similarly, the system (1.3) can be written in the form

(∂y + a)(∂x + b)u − ku = 0.

Another Laplace map, σ2, is defined by setting

uσ2 = (∂x + b)u.

Thus, we obtain the following transformations of Laplace invariants for system (1.3)

hσ2 = k,

kσ2 = 2k − h − (ln k),xy .

Definition 1.1. Let L be an n × n differential operator such that

L =













∂1 + h11 h12 . . . h1n

h21 ∂2 + h22 . . . h2n

...
...

. . .
...

hn1 hn2 . . . ∂n + hnn













,

where ∂i stands for ∂/∂xi, the hij are functions of x1, x2,...,xn, and g a diagonal n×n

matrix such that g−1 exists. Then H is invariant under the gauge transformation

L
g = g−1

Lg,

so long as Hg = H .
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Definition 1.2. The Laplace transformations σi (i = 1, . . . , n) are found by solving

factorization problems of the form

LDi = Di
σiL

σi ,

where Di and Di
σi denote n × n operator matrices of the form

Di =













∂i + d11 d12 . . . d1n

d21 ∂i + d22 . . . d2n

...
...

. . .
...

dn1 dn2 . . . ∂i + dnn













,

where the dij are functions of x1, x2,...,xn.

We aim to reformulate the second order hyperbolic equation as a system. For

this purpose let us consider the following 2 × 2 matrix

L =

(

∂1 + h11 h12

h21 ∂2 + h22

)

,

where the hij are functions of x1 and x2.

The gauge transformation on L is g−1
Lg = L

g where g is a diagonal 2×2 matrix.

Therefore, we obtain the following invariants [1]:

(12) = h12h21, (1.10)

[12] = h11,2 − h22,1 +
1

2

(

ln
h12

h21

)

,12

. (1.11)

These invariants were also obtained by Tsarev for a strictly hyperbolic 2×2 first-order

system [9].

We choose the above notations in order to show that those invariants are either

symmetric or antisymmetric. The round and square brackets denote symmetric and

antisymmetric objects under the permutation 1↔2 respectively. In other words, one

may show easily that (ij) = (ji) and [ij] = −[ji], where i, j ∈ {1, 2}.

The Laplace transformations σ1, σ2 are found by solving a factorization problem

of the form

LD1 = D1
σ1L

σ1 , (1.12)

LD2 = D2
σ2L

σ2 , (1.13)

where D
σ1 and D

σ2 denote 2 × 2 differential operator matrices depending only upon

the functions hij and hij
σi , their derivatives and differential operators I∂1, I∂2 respec-

tively. The pair of systems (1.12 - 1.13) give us Laplace maps of the gauge invariants

(12) and [12] in the following form:

(12)σ1 − (12) = −[12] −
1

2
(ln(12)) ,12 , (1.14)
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[12]σ1 − [12] =
1

2
(ln(12)(12)σ1) ,12 , (1.15)

(12)σ2 − (12) = [12] −
1

2
(ln(12)) ,12 , (1.16)

[12]σ2 − [12] = −
1

2
(ln(12)(12)σ2) ,12 . (1.17)

Equations (1.14) and (1.16) produce the Z × R
2 Toda lattice equations

(12)n+1 − 2(12)n + (12)n−1 = − (ln(12)n),12 ,

[12]n =
1

2

(

(12)n−1 − (12)n+1

)

,

where n ∈ Z and x1, x2 ∈ R
2.

In the following section we will examine the 4 × 4 matrix case for the gauge

invariants and their Laplace transformations (the case n = 3 was studied by Athorne

[1]).

2. DIFFERENTIAL INVARIANTS

Let us consider the following 4 × 4 differential matrix L

L =











∂1 + h11 h12 h13 h14

h21 ∂2 + h22 h23 h24

h31 h32 ∂3 + h33 h34

h41 h42 h43 ∂4 + h44











,

where the hij are functions of x1, x2, x3 and x4.

The gauge transformation on L is g−1
Lg = L

g where g is a diagonal 4×4 matrix

such that its diagonal entries are g1, g2, g3 and g4 respectively. So L
g = g−1

Lg gives

us the following invariants:

(12) = h12h21, (23) = h23h32, (31) = h31h13,

(34) = h34h43, (41) = h41h14, (42) = h42h24,

[12] = h11,2 − h22,1 +
1

2

(

ln
h12

h21

)

,12

,

[23] = h22,3 − h33,2 +
1

2

(

ln
h23

h32

)

,23

,

[31] = h33,1 − h11,3 +
1

2

(

ln
h31

h13

)

,31

,

[34] = h33,4 − h44,3 +
1

2

(

ln
h34

h43

)

,34

,

[41] = h44,1 − h11,4 +
1

2

(

ln
h41

h14

)

,41

,
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[42] = h44,2 − h22,4 +
1

2

(

ln
h42

h24

)

,42

,

(123) = h12h23h31, (132) = h13h32h21, (234) = h23h34h42,

(432) = h43h32h24, (341) = h34h41h13, (143) = h14h43h31,

(412) = h41h12h24, (142) = h14h42h21,

(1234) = h12h23h34h41, (1243) = h12h24h43h31, (1324) = h13h32h24h41,

(1342) = h13h34h42h21, (1423) = h14h42h23h31, (1432) = h14h43h32h21.

The round and square brackets, as before, denote symmetric and antisymmetric ob-

jects under permutations of the set {1, 2, 3, 4}. The invariants satisfy algebraic rela-

tions:

(123)(132) = (12)(23)(31), (2.1)

(234)(432) = (23)(34)(42), (2.2)

(341)(143) = (31)(34)(41), (2.3)

(412)(142) = (12)(41)(42), (2.4)

(1234)(1432) = (12)(23)(34)(41), (2.5)

(1423)(1324) = (23)(31)(41)(42), (2.6)

(1243)(1342) = (12)(31)(34)(42), (2.7)

and differential algebraic relations:

[12],3 + [23],1 + [31],2 =
1

2

(

ln
(123)

(132)

)

,123

, (2.8)

[23],4 + [34],2 + [42],3 =
1

2

(

ln
(234)

(432)

)

,234

, (2.9)

[12],4 + [41],2 + [24],1 =
1

2

(

ln
(412)

(142)

)

,124

, (2.10)

[34],1 + [41],3 + [13],4 =
1

2

(

ln
(341)

(143)

)

,134

, (2.11)

[12],34 + [23],41 + [34],12 + [41],23 =
1

2

(

ln
(1234)

(1432)

)

,1234

. (2.12)

3. LAPLACE MAPS

Let us now focus on the Laplace maps σi (i = 1, . . . , 4) in the case n = 4.

LDi = Di
σiL

σi ,
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where Di
σi are 4 × 4 differential operator matrices. Taking the case i = 1 we have

(

(123)

(12)

)σ1

=
(123)

(31)
,

(

(132)

(31)

)σ1

=
(132)

(12)
,

(

(412)

(12)

)σ1

=
(412)

(41)
,

(

(142)

(41)

)σ1

=
(142)

(12)
,

(

(341)

(31)

)σ1

=
(341)

(41)
,

(

(143)

(41)

)σ1

=
(143)

(31)
,

(12)σ1 − (31) =

(

(132)

(12)

)

,1

,

(31)σ1 − (12) =

(

(123)

(31)

)

,1

,

(12)σ1 − (41) =

(

(142)

(12)

)

,1

,

(41)σ1 − (12) =

(

(412)

(41)

)

,1

,

(31)σ1 − (41) =

(

(143)

(31)

)

,1

,

(41)σ1 − (31) =

(

(341)

(41)

)

,1

,

(12)σ1 − (12) = − [12] −
1

2
(ln(12)),12 ,

= − [12]σ1 +
1

2
(ln(12)σ1),12 ,

(23)σ1 − (23) = [23]σ1 − [23] = 0,

(34)σ1 − (34) = [34]σ1 − [34] = 0,

(41)σ1 − (41) = [41] −
1

2
(ln(41))

,41
,

= [41]σ1 +
1

2
(ln(41)σ1),41 .

We also have

(31)σ1 − (31) = [31] −
1

2
(ln(31)),31

= [31]σ1 +
1

2
(ln(31)σ1),31 ,

(42)σ1 − (42) = [42]σ1 − [42] = 0.

Transformations for σ2, σ3 and σ4 follow by cyclic permutations of all indices 1, 2, 3, 4

in the expressions for σ1. Let I be one of the invariants (12), (23), .., [12], [23] etc.
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Figure 1. Laplace tetrahedron

One can verify that

Iσiσj = Iσjσi ,

where i, j = 1, 2, 3, 4 and i 6= j. This relation must be verified for all choices of

invariant I. We also have

Iσ1σ2σ3σ4 = I.

Hence the maps σ1, σ2, σ3 and σ4 obey the following group relations:

σ1σ2 = σ2σ1, σ2σ3 = σ3σ2, σ3σ1 = σ1σ3,

σ1σ4 = σ4σ1, σ2σ4 = σ4σ2, σ3σ4 = σ4σ3, σ1σ2σ3σ4 = id,

where id denotes the identity. The relations of the Laplace maps are shown in figure

1. We now wish to obtain Toda lattice equations for the case n = 4. By doing some

simple algebraic calculations we have the following equations:

(12)σ1 − 2(12) + (12)σ2 = − (ln(12)),12 ,

(23)σ2 − 2(23) + (23)σ3 = − (ln(23)),23 ,

(31)σ1 − 2(31) + (31)σ3 = − (ln(31)),31 ,

(34)σ3 − 2(34) + (34)σ4 = − (ln(34)),34 ,

(41)σ1 − 2(41) + (41)σ4 = − (ln(41)),41 ,

(42)σ2 − 2(42) + (42)σ4 = − (ln(42)),42 .

Since σ1σ2σ3σ4 = id, we may write σ4 as σ4 = σ−1

1 σ−1

2 σ−1

3 . So by substituting

(12)n,m,p = (12)σn
1 σm

2 σ
p
3 and [12]n,m,p = [12]σ

n
1 σm

2 σ
p
3 in the above expressions, we obtain

the Z
3 × R

4 Toda lattice equations:

(12)n+1,m,p − 2(12)n,m,p + (12)n,m+1,p = − (ln(12)n,m,p),12
,

(23)n,m+1,p − 2(23)n,m,p + (23)n,m,p+1 = − (ln(23)n,m,p),23
,

(31)n+1,m,p − 2(31)n,m,p + (31)n,m,p+1 = − (ln(31)n,m,p),31
,

(34)n,m,p+1 − 2(34)n,m,p + (34)n−1,m−1,p−1 = − (ln(34)n,m,p),34
,

(41)n+1,m,p − 2(41)n,m,p + (41)n−1,m−1,p−1 = − (ln(41)n,m,p),41
,

(42)n,m+1,p − 2(42)n,m,p + (42)n−1,m−1,p−1 = − (ln(42)n,m,p),42
,
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where (n, m, p) ∈ Z
3 label the vertices of a regular tetrahedral lattice and (x1, x2, x3, x4) ∈

R
4.

4. RELATIONS FOR COMMUTING OPERATORS

As an example of the use of invariants let us answer the natural question: What is

the relationship between the invariants of L and the invariants of M when [L, M] = 0,

where L and M are n×n operator matrices? We start with 2× 2 case before moving

on to the 3 × 3 case.

The case n = 2 × 2 : Let us choose L and M as

L =

(

∂x + h11 h12

h21 ∂y + h22

)

, M =

(

∂s + k11 k12

k21 ∂t + k22

)

.

The gauge transformations on L and M are

L
g = g−1

Lg and M
g = g−1

Mg,

where g is a diagonal 2×2 matrix. So the above transformations give us the following

gauge invariants for L and M respectively:

(12)L = h12h21,

[12]L = h11,y − h22,x +
1

2

(

ln
h12

h21

)

,xy

,

(12)M = k12k21,

[12]M = k11,t − k22,s +
1

2

(

ln
k12

k21

)

,st

.

If [L, M] = 0 then we have the following invariants relations:

(12)L
{

(12)M
,x + (12)M

,y

}2
= (12)M

{

(12)L
,s + (12)L

,t

}2
,

[12]M,xy = [12]L,st .

These relations, which are attractively symmetric under the interchange of {L, x, y}

with {M, s, t}, reflect the invariant geometry of the commutation condition [L, M] =

0.

The case n = 3 × 3 : In this case L and M are 3 × 3 matrices

L =







∂x + h11 h12 h13

h21 ∂y + h22 h23

h31 h32 ∂z + h33






, M =







∂s + k11 k12 k13

k21 ∂t + k22 k23

k31 k32 ∂u + k33






.

So the gauge transformation on L is g−1
Lg = L

g which gives the following invariants

for L, where g is a diagonal 3 × 3 matrix:

(12)L = h12h21, (23)L = h23h32, (31)L = h31h13,

(123)L = h12h23h31, (132)L = h13h32h21,
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[12]L = h11,y − h22,x +
1

2

(

ln
h12

h21

)

,xy

,

[23]L = h22,z − h33,y +
1

2

(

ln
h23

h32

)

,yz

,

[31]L = h33,x − h11,z +
1

2

(

ln
h31

h13

)

,xz

.

Similarly if we apply the gauge transformation on M, g−1
Mg = M

g, we get the

following invariants for M, where g is a diagonal 3 × 3 matrix:

(12)M = k12k21, (23)M = k23k32, (31)M = k31k13,

(123)M = k12k23k31, (132)M = k13k32k21,

[12]M = k11,t − k22,s +
1

2

(

ln
k12

k21

)

,st

,

[23]M = k22,u − k33,t +
1

2

(

ln
k23

k32

)

,tu

,

[31]M = k33,s − k11,u +
1

2

(

ln
k31

k13

)

,su

.

Let us now focus on the condition [L, M] = 0, which gives the following invariant

relations:

[12]M,xy = [12]L,st,

[23]M,yz = [23]L,tu ,

[31]M,xz = [31]L,su ,

(12)L
{

(12)M
,x + (12)M

,y

}2
= (12)M

{

(12)L
,s + (12)L

,t

}2
,

(23)L
{

(23)M
,y + (23)M

,z

}2
= (23)M

{

(23)L
,t + (23)L

,u

}2
,

(31)L
{

(31)M
,x + (31)M

,z

}2
= (31)M

{

(31)L
,s + (31)L

,u

}2
,

(123)M

(132)M
=

(123)L

(132)L
.

5. CONCLUSIONS

In this paper we have discussed the differential invariants and their Laplace maps

for both scalar and matrix cases. We have presented the relationship between the

invariants of L and the invariants of M for 2 × 2 and 3 × 3 cases when [L, M] = 0.

In section 2, we have obtained the complete system of invariants for a 4 × 4

hyperbolic system. It should be known that the cyclic quantities (ij) = hijhji and

(ijk) = hijhjkhki were obtained by Tsarev [9] for any n × n strictly hyperbolic first-

order linear system.
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We also have shown that the laplace maps produce Z
3 × R

4 Toda Lattice Equa-

tions. It should be noted that the Laplace maps are an important tool for constructing

exact solutions of both linear [5, 9, 10, 13] and nonlinear [11, 12] partial differential

equations.
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