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ABSTRACT. The authors study the 2n-th order nonlinear boundary value problems with two

point separated nonhomogeneous boundary conditions

u(2n) = g(t)f(t, u), t ∈ (0, 1),







αu(2i)(0) − βu(2i+1)(0) = (−1)iλ2i,

γu(2i)(1) + δu(2i+1)(1) = (−1)iλ2i+1.
i = 0, . . . , n − 1,

Criteria are established for the existence of nontrivial solutions, positive solutions, and negative

solutions of the above problem. Conditions are determined by the relationship between the behavior

of the quotient f(t, x)/x for x near 0 and ∞, and the smallest positive characteristic values of some

associated linear integral operator. This work improves and extends a number of recent results in

the literature on this topic. The results are illustrated with examples.
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1. INTRODUCTION

In this paper, we are concerned with the existence of nontrivial solutions of the

2n-th order boundary value problem (BVP) consisting of the equation

u(2n) = g(t)f(t, u), t ∈ (0, 1), (1.1)

and the two point separated nonhomogeneous boundary condition (BC)






αu(2i)(0) − βu(2i+1)(0) = (−1)iλ2i,

γu(2i)(1) + δu(2i+1)(1) = (−1)iλ2i+1,
i = 0, . . . , n− 1, (1.2)

where n ≥ 1 is an integer, f : [0, 1] × R → R and g : (0, 1) → R+ := [0,∞) are

continuous, g 6≡ 0 on any subinterval of (0, 1), λi ∈ R+ for i = 0, . . . , 2n− 1, and α,

β, γ, δ ∈ R+ with

ρ := βγ + αγ + αδ > 0. (1.3)

By a nontrivial solution of BVP (1.1), (1.2), we mean a function u ∈ C2n−1[0, 1] ∩

C2n(0, 1) such that u(t) 6≡ 0 on (0, 1), and u(t) satisfies Eq. (1.1) and BC (1.2). If

u(t) > 0 on (0, 1), then u(t) is a positive solution, and if u(t) < 0 on (0, 1), then u(t)

is a negative solution.

In case λ2i = λ2i+1 = 0 for i = 0, . . . , n− 1, BC (1.2) becomes the homogeneous

BC






αu(2i)(0) − βu(2i+1)(0) = 0,

γu(2i)(1) + δu(2i+1)(1) = 0,
i = 0, . . . , n− 1. (1.4)

When f is positone (i.e., f ≥ 0), BVP (1.1), (1.4) and its special forms have been

extensively studied in the literature by means of various tools and techniques such

as the shooting method, fixed point theory in cones, fixed point index theory, the

bifurcation approach, etc. For instance, papers [2, 4, 5, 13, 14] considered the problem

with n = 1, papers [1, 9, 20, 32, 33] studied the problem with n = 2, and papers

[3, 7, 8, 13, 19] studied the problem with a general positive integer n. All these

papers investigated the existence of positive solutions of the problems. When f is

sign-changing and bounded from below by a constant, the existence of nontrivial

solutions of BVP (1.1), (1.4) with n = 1 has been studied in [22, 23] using Leray-

Schauder degree theory. Results in [22] were subsequently improved in [12] to the

case when f is sign-changing and not necessarily unbounded from below.

In recent years, the existence of positive solutions of various positone BVPs with

nonhomogeneous BCs have also been studied in the literature; see, for example, [10,

15, 16, 18, 21, 35] and the references therein. Motivated partially by the recent papers

[6, 12, 15, 16, 22, 23], here we will study the general nonhomogeneous BVP (1.1),

(1.2), and derive several new criteria for the existence of nontrivial solutions, positive

solutions, and negative solutions. Our analysis mainly relies on the Krein–Rutman
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theorem and topological degree theory. In our results, the nonlinear term f in (1.1)

may be sign-changing and unbounded from below. Some of our existence conditions

are optimal and determined by the relationship between the behavior of the quotient

f(t, x)/x for x near 0 and ±∞ and the smallest positive characteristic values (given

by (3.1) below) of some related linear operator L (defined by (2.13) in Section ). The

results obtained in this paper extend many results in the literature, for example, those

in [1, 3, 4, 5, 8, 12, 14, 20, 22, 23, 32, 33]. For papers on boundary value problems

involving differential equations of the form (1.1) with nonlocal boundary conditions,

we refer the reader to [24, 25, 26, 27, 28, 29, 30, 31].

We assume the following condition holds throughout without further mention:

(H)
∫ 1

0
µ(s)g(s)ds <∞, where

µ(t) = (αt+ β)(γ + δ − γt) for t ∈ [0, 1]. (1.5)

The rest of this paper is organized as follows. Section 2 contains some preliminary

lemmas, Sections 3 contains the main results of this paper and several examples, and

the proofs of the main results are presented in Section 4.

2. PRELIMINARY RESULTS

In this section, we present some preliminary results that will be used in the

statements and the proofs of our main results. In the rest of this paper, the bold 0

stands for the zero element in any given Banach space. We refer the reader to [11,

Lemma 2.5.1] for the proof of the following well known lemma.

Lemma 2.1. Let Ω be a bounded open set in a real Banach space X with 0 ∈ Ω and

let T : Ω → X be compact. If

Tu 6= τu for all u ∈ ∂Ω and τ ≥ 1,

then the Leray-Schauder degree

deg(I − T,Ω, 0) = 1.

Now assume that X is a real Banach space with the norm || · ||, X∗ is the dual

space of X, P is a total cone in X, i.e., X = P − P , and P ∗ is the dual cone of P ,

i.e.,

P ∗ = {g ∈ X∗ : g(u) ≥ 0 for all u ∈ P}.

We recall that λ is an eigenvalue of an operator L : X → X with a corresponding

eigenfunction ϕ if ϕ is nontrivial and Lϕ = λϕ. The reciprocals of eigenvalues are

called the characteristic values of L. The operator L is said to be positive if L(P ) ⊂ P .

The following Krein-Rutman theorem can be found in [34, Proposition 7.26].
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Lemma 2.2. Let L : X → X be a positive compact linear operator, L∗ be the dual

operator of L, and rL be the spectral radius of L. If rL > 0, then rL is an eigenvalue

of L and L∗ with eigenfunctions in P \ {0} and P ∗ \ {0}, respectively.

Let L, L∗, and rL be given as in Lemma 2.2 with rL > 0. Then, from Lemma

2.2, there exist ϕL ∈ P \ {0} and h ∈ P ∗ \ {0} such that

LϕL = rLϕL and L∗h = rLh. (2.1)

Choose δ > 0 and define

P (h, δ) = {u ∈ P : h(u) ≥ δ||u||}. (2.2)

Then P (h, δ) is a cone in X.

The following two lemmas are taken from [12, Theorem 2.1] and [6, Lemma 3.5],

respectively. ¿From here on, for any R > 0, let B(0, R) = {u ∈ X : ||u|| < R} be

the open ball of X centered at 0 with radius R.

Lemma 2.3. Assume that the following conditions hold:

(C1) there exist ϕ ∈ P\{0} and h ∈ P ∗\{0} such that (2.1) holds and L(P ) ⊆ P (h, δ);

(C2) A : X → P is a continuous operator and there exist 0 < ν < 1 and K > 0 such

that ||Au|| ≤ K||u||ν for all u ∈ X;

(C3) F : X → X is a bounded continuous operator and there exists u0 ∈ X such that

Fu+ Au+ u0 ∈ P for all u ∈ X;

(C4) there exists ǫ > 0 and v0 ∈ X such that LFu ≥ r−1
L (1 + ǫ)Lu− LAu− v0 for all

u ∈ X.

Let T = LF . Then there exists R > 0 such that the Leray-Schauder degree

deg(I − T,B(0, R), 0) = 0.

Lemma 2.4. Assume that (C1) and the following conditions hold:

(C2)∗ A : X → P is a continuous operator and there exist ν > 1 and K > 0 such that

||Au|| ≤ K||u||ν for all u ∈ X;

(C3)∗ F : X → X is a bounded continuous operator and there exists r1 > 0 such that

Fu+ Au ∈ P for all u ∈ X with ||u|| < r1;

(C4)∗ there exist ǫ > 0 and r2 > 0 such that

LFu ≥ r−1
L (1 + ǫ)Lu for all u ∈ X with ||u|| < r2.

Let T = LF . Then there exists 0 < R < min{r1, r2} such that the Leray-Schauder

degree

deg(I − T,B(0, R), 0) = 0.
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Let

H(t, s) =
1

ρ







(αt+ β)(γs− γ − δ), 0 ≤ t ≤ s ≤ 1,

(αs+ β)(γt− γ − δ), 0 ≤ s ≤ t ≤ 1,
(2.3)

where ρ is defined by (1.3). Then, H(t, s) is the Green’s function for the BVP

u′′ = 0, t ∈ (0, 1),

αu(0) − βu′(0) = 0, γu(1) + δu′(1) = 0.

Let H1(t, s) = H(t, s), and for j = 2, . . . , n, recursively define

Hj(t, s) =

∫ 1

0

H(t, τ)Hj−1(τ, s)dτ, (2.4)

which is the Green’s function for the BVP

u(2j) = 0, t ∈ (0, 1)






αu(2i)(0) − βu(2i+1)(0) = 0,

γu(2i)(1) + δu(2i+1)(1) = 0,
i = 0, . . . , j − 1.

For j = 1, . . . , n, let

cj =

(

1

ρ(α + β)(γ + δ)

)j (∫ 1

0

µ2(τ)dτ

)j−1

, (2.5)

dj =
1

ρj

(
∫ 1

0

µ(τ)dτ

)j−1

. (2.6)

Lemma 2.5 below obtains some useful estimates for Hj(t, s).

Lemma 2.5. For j = 1, . . . , n, the function Hj(t, s) satisfies

cjµ(t)µ(s) ≤ (−1)jHj(t, s) ≤ djµ(s) for t, s ∈ [0, 1], (2.7)

where µ(t) is defined by (1.5).

Note from (2.3) that

1

ρ(α + β)(γ + δ)
µ(t)µ(s) ≤ −H(t, s) ≤

1

ρ
µ(s) for t, s ∈ [0, 1].

Then, using (2.4) and induction, (2.7) can be proved. We omit the details here.

Let φ(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

αu(0) − βu′(0) = 1, γu(1) + δu′(1) = 0,

and let ψ(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

αu(0) − βu′(0) = 0, γu(1) + δu′(1) = 1.
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Then,

φ(t) =
1

ρ
(−γt+ γ + δ) and ψ(t) =

1

ρ
(αt+ β). (2.8)

Clearly,

φ(t) > 0 and ψ(t) > 0 for t ∈ (0, 1). (2.9)

The next lemma yields information about solutions of some special BVPs.

Lemma 2.6. For l = 0, . . . , n− 1, let y2l(t) be the unique solution of the BVP

u(2n) = 0, t ∈ (0, 1),


















αu(2l)(0) − βu(2l+1)(0) = 1,

αu(2i)(0) − βu(2i+1)(0) = 0, i = 0, . . . , n− 1, i 6= l,

γu(2i)(1) + δu(2i+1)(1) = 0, i = 0, . . . , n− 1,

and let y2l+1(t) be the unique solution of the BVP

u(2n) = 0, t ∈ (0, 1),


















αu(2i)(0) − βu(2i+1)(0) = 0, i = 0, . . . , n− 1,

γu(2i)(1) + δu(2i+1)(1) = 0, i = 0, . . . , n− 1, i 6= l,

γu(2l)(1) + δu(2l+1)(1) = 1.

Then, we have

(a) y
(2i)
2l (t) = y

(2i)
2l+1(t) = 0 for t ∈ [0, 1] and i = l + 1, . . . , n;

(b) (−1)l−iy
(2i)
2l (t) > 0 and (−1)l−iy

(2i)
2l+1(t) > 0 for t ∈ (0, 1) and i = 0, . . . , l.

Proof. We first show part (a). If l = n − 1, then part (a) trivially holds. In the

following, we assume l < n− 1. For i = 0, . . . , n, let wi(t) = y
(2i)
2l (t). Note that

w′′
n−1(t) = wn(t) = y

(2n)
2l (t) = 0, t ∈ (0, 1), (2.10)







αwi(0) − βw′
i(0) = 0,

γwi(1) + δw′
i(1) = 0,

i = l + 1, . . . , n− 1. (2.11)

Then, from (2.10) and (2.11) with i = n− 1, we have wn−1(t) = 0 on [0, 1]. Thus,

w′′
n−2(t) = wn−1(t) = 0, t ∈ [0, 1].

This, together with (2.11) with i = n− 2, yields wn−2(t) = 0 on [0, 1]. By induction,

we obtain that

wi(t) = y
(2i)
2l (t) = 0 for t ∈ [0, 1] and i = l + 1, . . . , n.

Similarly, we can show that

y
(2i)
2l+1(t) = 0 for t ∈ [0, 1] and i = l + 1, . . . , n.

Hence, part (a) holds.



HIGHER ORDER BVPS 441

We now show part (b). Note that wl(t) = y
(2l)
2l satisfies

w′′
l = y

(2l+2)
2l (t) = 0,







αwl(0) − βw′
l(0) = 1,

γwl(1) + δw′
l(1) = 0.

Then, in view of (2.9), we have wl(t) = φ(t) > 0, where φ(t) is defined in (2.8), i.e.,

y
(2l)
2l (t) > 0 on (0, 1). For i = 0, . . . , l − 1, since wi(t) satisfies

w
(2l−2i)
i (t) = y

(2l)
2l (t) = φ(t) > 0, t ∈ (0, 1),







αw
(2k)
i (0) − βw

(2k+1)
i (0) = 0,

γw
(2k)
i (1) + δw

(2k+1)
i (1) = 0,

k = 0, . . . , l − i− 1,

it follows that

wi(t) =

∫ 1

0

Hl−i(t, s)φ(s)ds on [0, 1],

where Hl−i(t, s) is defined by (2.4) with j = l − i. Hence, by Lemma 2.5,

(−1)l−iwi(t) = (−1)l−i

∫ 1

0

Hl−i(t, s)φ(s)ds ≥ cl−iµ(t)

∫ 1

0

µ(s)φ(s) > 0

for t ∈ (0, 1), i.e., (−1)l−iy
(2i)
2l (t) > 0 on (0, 1). Using the function ψ(t) defined in

(2.8) and by a similar argument, we can show that

(−1)l−iy
(2i)
2l+1(t) > 0 for t ∈ (0, 1) and i = 0, . . . , l.

Thus, part (b) holds and this completes the proof of the lemma.

Remark 2.7. For the case when n = 1, y0(t) = φ(t) and y1(t) = ψ(t).

Let C[0, 1] be the Banach space of continuous functions on [0, 1] equipped with

the norm ||u|| = maxt∈[0,1] |u(t)|. Define a cone P in C[0, 1] by

P = {u ∈ C[0, 1] : u(t) ≥ 0 for t ∈ [0, 1]}. (2.12)

Let the linear operator L : C[0, 1] → C[0, 1] be defined by

Lu(t) = (−1)n

∫ 1

0

Hn(t, s)g(s)u(s)ds, (2.13)

where Hn(t, s) is given by (2.4) with j = n.

¿From here on, let rL be the spectral radius of L, L∗ be the dual operator of L,

and P ∗ be the dual cone of P . The following lemma provides some information about

the operators L and L∗.

Lemma 2.8. The operator L is compact and maps P into P . Moreover, rL > 0 and

rL is an eigenvalue of L and L∗ with eigenfunctions ϕL ∈ P \ {0} and h ∈ P ∗ \ {0},

respectively.
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Proof. The proof that L is compact and maps P into P is standard and will be omit-

ted. By Lemma 2.5, we see that there exist t1, t2 ∈ (0, 1) such that (−1)nHn(t, s) > 0

for t, s ∈ [t1, t2]. Choose u ∈ C[0, 1] such that u(t) ≥ 0 on [0, 1], u(t∗) > 0 for some

t∗ ∈ [t1, t2], and u(t) = 0 for t ∈ [0, 1] \ [t1, t2]. Then, for t ∈ [t1, t2], we have

Lu(t) ≥ (−1)n

∫ t2

t1

Hn(t, s)g(s)u(s)ds > 0.

Thus, there exists c > 0 such that cLu(t) ≥ u(t) for t ∈ [0, 1]. Now, from [17, Chapter

5, Theorem 2.1], it follows that rL > 0. Finally, in view of rL > 0 and the fact that

the cone P defined by (2.13) is a total cone, the remaining part of the lemma readily

follows from Lemma 2.2 and the first statement of this lemma. This completes the

proof.

3. MAIN RESULTS

For convenience, we introduce the following notations:

f0 = lim inf
x→0+

min
t∈[0,1]

(−1)nf(t, x)

x
, f ∗

0 = lim inf
x→0

min
t∈[0,1]

(−1)nf(t, x)

x
,

f∞ = lim inf
x→∞

min
t∈[0,1]

(−1)nf(t, x)

x
, f ∗

∞ = lim inf
|x|→∞

min
t∈[0,1]

(−1)nf(t, x)

x
,

F0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

, F∞ = lim sup
|x|→∞

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

.

Let rL and ϕL be given as in Lemma 2.8 and define

µL =
1

rL
. (3.1)

Clearly, µL is the smallest positive characteristic value of L and satisfies ϕL = µLLϕL.

We need the following assumptions.

(H1) There exist a, b > 0 and 0 < ξ < 1 such that

(−1)nf(t, x) ≥ −a|x|ξ − b for all (t, x) ∈ [0, 1] × R. (3.2)

(H2) There exist c > 0, η > 1, and 0 < r < 1 such that

(−1)nf(t, x) ≥ −c|x|η for (t, x) ∈ [0, 1] × [−r, 0]. (3.3)

(H3) (−1)nxf(t, x) ≥ 0 for (t, x) ∈ [0, 1] × R.

Remark 3.1. We wish to emphasize that, in (H1), we assume that (−1)nf(t, x) is

bounded from below by −a|x|ξ − b for all (t, x) ∈ [0, 1]×R; however in (H2), we only

require that (−1)nf(t, x) is bounded from below by −c|x|η for t ∈ [0, 1] and x in a

small left-neighborhood of 0.

Next, we state our existence results.
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Theorem 3.2. Assume that (H1) holds and F0 < µL < f∞. Then, for (λ0, . . . , λ2n−1)

∈ R
2n
+ with

∑2n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one nontrivial

solution.

Theorem 3.3. Assume that (H2) holds and F∞ < µL < f0. Then, for (λ0, . . . , λ2n−1)

∈ R
2n
+ with

∑2n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one nontrivial

solution.

Theorem 3.4. Assume that (H3) holds, F0 < µL < f ∗
∞, and λi = 0 for i = 0, . . . , 2n−

1. Then BVP (1.1), (1.2) has at least one positive solution and one negative solution.

Theorem 3.5. Assume that (H3) holds, F∞ < µL < f ∗
0 , and λi = 0 for i =

0, . . . , 2n − 1. Then BVP (1.1), (1.2) has at least one positive solution and one

negative solution.

Remark 3.6. If the nonlinear term f(t, x) is separable, say f(t, x) = f1(t)f2(x), then

conditions like µL < f∞ and µL < f0 imply that f1(t) > 0 on [0, 1]. However, the

function g(t) in Eq. (1.1) may have zeros on (0, 1).

We now present some applications of the above theorems. To this end, let

A =
1

dn

∫ 1

0
µ(s)g(s)ds

and B =
dn

c2nµ
∫ 1

0
µ2(s)g(s)ds

, (3.4)

where µ(t) is defined by (1.5), cn and dn are defined by (2.5) and (2.6) with j = n,

respectively, and µ = mint∈[θ1,θ2] µ(t) with 0 < θ1 < θ2 < 1 being fixed constants.

The following lemma will allow us to formulate versions of Theorems 3.2–3.5 that

are fairly easy to apply.

Lemma 3.7. Let µL be defined in (3.1), and A and B be given in (3.4). Then, we

have A ≤ µL ≤ B.

In view of Lemma 3.7, the following corollaries become immediate consequences

of Theorems 3.2–3.5.

Corollary 3.8. Assume that (H1) holds and F0/A < 1 < f∞/B. Then the conclusion

of Theorem 3.2 holds.

Corollary 3.9. Assume that (H2) holds and F∞/A < 1 < f0/B. Then the conclusion

of Theorem 3.3 holds.

Corollary 3.10. Assume that (H3) holds, F0/A < 1 < f ∗
∞/B, and λi = 0 for

i = 0, . . . , 2n− 1. Then the conclusion of Theorem 3.4 holds.

Corollary 3.11. Assume that (H3) holds, F∞/A < 1 < f ∗
0 /B, and λi = 0 for

i = 0, . . . , 2n− 1. Then the conclusion of Theorem 3.5 holds.
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In the remainder of this section, we present several examples to illustrate our

results. For each of these examples we assume that for BVP (1.1), (1.2), n ≥ 1 is an

integer, α, β, γ, δ ∈ R
+ are such that (1.3) holds, g : (0, 1) → R+ is a continuous

function, g 6≡ 0 on any subinterval of (0, 1), and
∫ 1

0
µ(s)g(s)ds < ∞, where µ(t) is

defined by (1.5).

Example 3.12. Let

(−1)nf(t, x) =







∑m
i=1 āi(t)x

i, x ∈ [−1,∞),
∑m

i=1(−1)iāi(t) − b̄(t)|x|κ + b̄(t), x ∈ (−∞,−1),
(3.5)

where m > 1 is an integer, 0 ≤ κ < 1, āi, b̄ ∈ C[0, 1] with 0 ≤ ||ā1|| < A and

ām(t) > 0 on [0, 1], where A is defined in (3.4). Then, for (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑2n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one nontrivial solution.

To see this, we first note that f ∈ C([0, 1] × R) and assumption (H) is satisfied.

Let

a = ||b̄||, b =

n
∑

i=1

||āi|| + ||b̄||, and ξ = κ.

Then, f satisfies (3.2), i.e., (H1) holds. For A and B defined in (3.4), from (3.5), we

have

F0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

= ||ā1|| < A and f∞ = lim inf
x→∞

min
t∈[0,1]

f(t, x)

x
= ∞ > B.

Hence, F0/A < 1 < f∞/B. The conclusion then follows from Corollary 3.8.

In particular, let us take n = 2, g(t) = t, and in the boundary conditions set

α = β = γ = δ = 1; then ρ = 3 and µ(t) = 2 + t − t2. With θ1 = 1/4 and

θ2 = 3/4, we see that µ = 35/16, dn = 13/54, cn = 47/1440, A = 648/169, and

B = [13/54]/(47/1440)2(35/16)(47/20) = 862617600/19622547. Thus, we need 0 ≤

||ā1|| < 648/169 ≈ 3.834.

Example 3.13. Let

(−1)nf(t, x) =



















−t2 + 3 + (|x|1/3 − 1)|x|1/2, x < −1,

−t2x2 + 2|x| + 1, −1 ≤ x ≤ 0,

1 − tx1/3, x > 0.

(3.6)

Then, for (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has

at least one nontrivial solution.

To see this, we first note that f ∈ C([0, 1] × R) and assumption (H) is satisfied.

Now with c = 1 and η = 2, we see that f satisfies (3.3) for any r ∈ (0, 1), i.e., (H2)

holds. Moreover, from (3.6), we have f0 = ∞ and F∞ = 0. Thus, F∞ < µL < f0,

where µL is defined by (3.1). The conclusion then follows from Theorems 3.3.
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Example 3.14. Let λi = 0 for i = 0, . . . , 2n− 1, α = γ = 1, β = δ = 0, and

(−1)nf(t, x) =































−k1|x|
l1 + k1 − k2, x ∈ (−∞,−1),

−k2|x|
l2 , x ∈ [−1, 0),

k3x
l3 , x ∈ (0, 1],

k4x
l4 − k4 + k3, x ∈ (1,∞),

(3.7)

where ki, li ∈ R+ be such that either






l1 ≥ 1, l4 ≥ 1, and k1 > π2n, k4 > π2n if l1 = l4 = 1,

l2 ≤ 1, l3 ≤ 1, and k2 < π2n, k3 < π2n if l2 = l3 = 1,
(3.8)

or






l1 ≤ 1, l4 ≤ 1, and k1 < π2n, k4 < π2n if l1 = l4 = 1,

l2 ≥ 1, l3 ≥ 1, and k2 > π2n, k3 > π2n if l2 = l3 = 1.
(3.9)

Then, BVP (1.1), (1.2) has at least one positive solution and one negative solution.

To see this, we first note that assumptions (H) and (H3) are satisfied. Moreover,

from (3.7), we see that

F0 < π2n < f ∗
∞ if (3.8) holds and F∞ < π2n < f ∗

0 if (3.9) holds.

It is known that µL = π2n when g(t) ≡ 1, α = γ = 1 and β = δ = 0. The conclusion

then follows from Theorems 3.4 and 3.5.

4. PROOFS OF THE MAIN RESULTS

Let yi(t), i = 0, . . . , 2n−1, be given as in Lemma 2.6. For any λ = (λ0, . . . , λ2n−1)

∈ R
2n
+ and u ∈ C2n−1[0, 1] ∩ C2n(0, 1), let

v(t) = u(t) −

n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t)), t ∈ [0, 1]. (4.1)

Then BVP (1.1), (1.2) is equivalent to the BVP consisting of the equation

v(2n) = g(t)f

(

t, v +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

)

, (4.2)

and the homogeneous BC






αv(2i)(0) − βv(2i+1)(0) = 0,

γv(2i)(1) + δv(2i+1)(1) = 0,
i = 0, . . . , n− 1. (4.3)

Moreover, if v(t) is a solution of BVP (4.2), (4.3), then u(t) given by (4.1) is a

solution of BVP (1.1), (1.2).



446 J. R. GRAEF, L. KONG, Q. KONG, AND B. YANG

Let P and L be defined by (2.12) and (2.13), respectively. By Lemma 2.8, L

maps P into P and is compact. Define operators Fλ, T : C[0, 1] → C[0, 1] by

Fλv(t) = (−1)nf

(

t, v +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

)

(4.4)

and

Tv(t) = LFλv(t) = (−1)n

∫ 1

0

Hn(t, s)g(s)Fλv(s)ds, (4.5)

where Hn is defined by (2.4) with j = n. Then, Fλ is bounded, and a standard

argument shows that T is compact. Moreover, a solution of BVP (4.2), (4.3) is

equivalent to a fixed point of T in C[0, 1].

Proof of Theorem 3.2. We first verify that conditions (C1)–(C4) of Lemma 2.3 are

satisfied. By Lemma 2.8, there exist ϕL ∈ P \ {0} and h ∈ P ∗ \ {0} such that (2.1)

holds. We now show that h can be explicitly given by

h(v) =

∫ 1

0

ϕL(t)g(t)v(t)dt, v ∈ C[0, 1]. (4.6)

Clearly, h ∈ P ∗ \ {0}. Note from (2.3) that H(t, s) = H(s, t) for t, s ∈ [0, 1]. Then,

from (2.4) and by induction, it is easy to see that

Hn(t, s) = Hn(s, t) for t, s ∈ [0, 1].

Thus, from the first equation in (2.1), (2.13), and (4.6), we have

(L∗h)(v) = h(Lv) =

∫ 1

0

ϕL(t)g(t)Lv(t)dt

=

∫ 1

0

ϕL(t)g(t)

(

(−1)n

∫ 1

0

Hn(t, s)g(s)v(s)ds

)

dt

=

∫ 1

0

g(s)v(s)

(

(−1)n

∫ 1

0

Hn(t, s)g(t)ϕL(t)dt

)

ds

=

∫ 1

0

g(s)v(s)

(

(−1)n

∫ 1

0

Hn(s, t)g(t)ϕL(t)dt

)

ds

=

∫ 1

0

g(s)v(s)LϕL(s)ds

= rL

∫ 1

0

g(s)v(s)ϕL(s)ds = rLh(v),
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i.e., h satisfies the second equation in (2.2). Hence, h can be explicitly given by (4.6).

Note that ϕL = µLLϕL, so from (2.7), (2.13), and (3.1), we have

rLϕL(s) = (−1)n

∫ 1

0

Hn(s, t)g(t)ϕL(t)dt

≥ cnµ(s)

∫ 1

0

µ(t)g(t)ϕL(t)dt

≥
cn
dn

(−1)nHn(t, s)

∫ 1

0

µ(t)g(t)ϕL(t)dt

= δ(−1)nHn(t, s) for t, s ∈ [0, 1],

where

δ =
cn
dn

∫ 1

0

µ(t)g(t)ϕL(t)dt.

Thus,

h(Lv) = rLh(v) = rL

∫ 1

0

ϕL(s)g(s)v(s)ds

≥ δ(−1)n

∫ 1

0

Hn(t, s)g(s)v(s)ds

= δLv(t) for t ∈ [0, 1].

Hence, h(Lv) ≥ δ||Lv||, i.e., L(P ) ⊆ P (h, δ). Therefore, condition (C1) of Lemma

2.3 holds.

Let Av(t) = a|v(t)|ξ for v ∈ C[0, 1], where a and ξ are given in (H1). Then, with

K = a and ν = ξ, condition (C2) of Lemma 2.3 holds.

Let λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ , Fλ be defined by (4.4), and u0(t) ≡ b, where b is

given in (H1). Then (3.2) implies Fλu+Au+u0 ∈ P for all u ∈ C[0, 1], i.e., condition

(C3) of Lemma 2.3 holds.

Since f∞ > µL, there exist ǫ1 > 0 and N1 > 0 such that

(−1)nf(t, x) ≥ µL(1 + ǫ1)x

= r−1
L (1 + ǫ1)x for (t, x) ∈ [0, 1] × (N1,∞). (4.7)

For a and ξ given in (H1), and noting that 0 < ξ < 1, we have

lim
x→−∞

−a|x|ξ

r−1
L (1 + ǫ1)x

= 0.

Thus, there exists N2 > 0 such that

0 <
−a|x|ξ

r−1
L (1 + ǫ1)x

≤ 1 for x < −N2,

or equivalently,

−a|x|ξ ≥ r−1
L (1 + ǫ1)x for x < −N2.
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Then, from (3.2),

(−1)nf(t, x) ≥ −a|x|ξ − b

≥ r−1
L (1 + ǫ1)x− b for (t, x) ∈ [0, 1] × (−∞,−N2). (4.8)

Let m > 0 be large enough so that

−m ≤ min
(t,x)∈[0,1]×[−N2,N1]

{

(−1)nf(t, x) − r−1
L (1 + ǫ1)x

}

.

Then,

(−1)nf(t, x) ≥ r−1
L (1 + ǫ1)x−m for (t, x) ∈ [0, 1] × [−N2, N1]. (4.9)

Let b1 = max{b,m}. Then, from (4.7), (4.8), and (4.9), it follows that

(−1)nf(t, x) ≥ r−1
L (1 + ǫ1)x− b1 for all (t, x) ∈ [0, 1] × R. (4.10)

¿From Lemma 2.6 (b), (4.4), and (4.10), we see that

Fλv(t) ≥ r−1
L (1 + ǫ1)

(

v(t) +

n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

)

− b1

≥ r−1
L (1 + ǫ1)v(t) − b1 for v ∈ C[0, 1].

Note that Av(t) ≥ 0 for any v ∈ C[0, 1]. Then,

Fλv(t) ≥ r−1
L (1 + ǫ1)v(t) − Av(t) − b1 for v ∈ C[0, 1].

Thus,

LFλv(t) ≥ r−1
L (1 + ǫ1)Lv(t) − LAv(t) − Lb1.

Hence, (C4) of Lemma 2.3 holds with F = Fλ and v0 = L(b1).

Since the hypotheses of Lemma 2.3 are satisfied, there exists R1 > 0 such that

deg(I − T,B(0, R1), 0) = 0. (4.11)

Next, since F0 < µL, there exist 0 < ǫ2 < 1 and 0 < R2 < R1 such that

|f(t, x)| ≤ µL(1 − ǫ2)|x|

= r−1
L (1 − ǫ2)|x| for (t, x) ∈ [0, 1] × [−2R2, 2R2]. (4.12)

In what follows, let λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑2n−1
i=0 λi small enough so that

n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||) < R2 and C1 < ǫ2R2, (4.13)

where

C1 = r−1
L (1 − ǫ2)

n−1
∑

j=0

(λ2j||y2j|| + λ2j+1||y2j+1||) max
t∈[0,1]

∫ 1

0

|Hn(t, s)|g(s)ds. (4.14)

We claim that

Tv 6= τv for all v ∈ ∂B(0, R2) and τ ≥ 1. (4.15)
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If this is not the case, then there exist v̄ ∈ ∂B(0, R2) and τ̄ ≥ 1 such that T v̄ = τ̄ v̄.

Thus, v̄ = s̄T v̄, where s̄ = 1/τ̄ . Clearly, s̄ ∈ (0, 1]. ¿From (4.4) and (4.12), we have

|Fλv̄(t)| ≤ r−1
L (1 − ǫ2)

∣

∣

∣

∣

∣

v̄(t) +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

∣

∣

∣

∣

∣

≤ r−1
L (1 − ǫ2)

(

|v̄(t)| +
n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||)

)

. (4.16)

Assume R2 = ||v̄|| = |v̄(t̄)| for some t̄ ∈ [0, 1]. Then, from (2.13), (4.5), and (4.16),

we obtain

R2 = |v̄(t̄)| = s̄|T v̄(t̄)| ≤ (−1)n

∫ 1

0

Hn(t̄, s)g(s)|Fλv̄(s)|ds

≤ r−1
L (1 − ǫ2)(−1)n

∫ 1

0

Hn(t̄, s)g(s)|v̄(s)|ds

+r−1
L (1 − ǫ2)

n−1
∑

j=0

(λ2j||y2j|| + λ2j+1||y2j+1||)

∫ 1

0

|Hn(t̄, s)|g(s)ds

≤ r−1
L (1 − ǫ2)L|v̄(t̄)| + C1 = r−1

L (1 − ǫ2)LR2 + C1.

Consequently,

h(R2) ≤ r−1
L (1 − ǫ2)h(LR2) + h(C1)

= r−1
L (1 − ǫ2)(L

∗h)(R2) + h(C1)

= r−1
L (1 − ǫ2)rLh(R2) + h(C1)

= (1 − ǫ2)h(R2) + h(C1).

Thus,

(C1 − ǫ2R2)h(1) ≥ 0.

Since h(1) > 0, we have C1 ≥ ǫ2R2. But this contradicts the second inequality in

(4.13). Thus, (4.15) holds. Now, Lemma 2.1 implies

deg(I − T,B(0, R2), 0) = 1. (4.17)

By the additivity property of the Leray-Schauder degree, (4.11), and (4.17), we have

deg(I − T,B(0, R1) \B(0, R2)) = −1.

Then, from the solution property of the Leray-Schauder degree, T has at least one

fixed point v in B(0, R1) \ B(0, R2), which is a solution of BVP (4.2), (4.3). There-

fore, we have shown that, for λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ satisfying (4.13), BVP

(4.2), (4.3) has at least one solution v(t) satisfying ||v|| ≥ R2. Thus, for each

λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑2n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has
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at least one solution u(t), which is given by (4.1) with the above solution v(t) and

satisfies

||u|| ≥ ||v|| −
n−1
∑

j=0

(λ2j||y2j|| + λ2j+1||y2j+1||)

≥ R2 −
n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||) > 0.

This complete the proof of the theorem. �

Proof of Theorem 3.3. We first verify that conditions (C1) and (C2)∗–(C4)∗ of Lemma

2.4 are satisfied. As in the proof of Theorem 3.2, there exist ϕL ∈ P \ {0} and

h ∈ P ∗ \ {0} defined by (4.6) such that (C1) holds.

Let Av(t) = c|v(t)|η for v ∈ C[0, 1], where c and η are given in (H2). Then, with

K = c and ν = η, (C2)∗ of Lemma 2.4 holds.

Since f0 > µL, there exist ǫ3 > 0 and 0 < ζ1 < 1 such that

(−1)nf(t, x) ≥ µL(1 + ǫ3)x

= r−1
L (1 + ǫ3)x ≥ 0 for (t, x) ∈ [0, 1] × [0, 2ζ1]. (4.18)

Let λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑2n−1
i=0 λi small enough so that

n−1
∑

j=0

(λ2j||y2j|| + λ2j+1||y2j+1||) ≤ ζ1 (4.19)

and Fλ be defined by (4.4). Then, (4.18) implies

Fλv(t) ≥ r−1
L (1 + ǫ3)

(

v(t) +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

)

≥ r−1
L (1 + ǫ3)v(t) for all v ∈ P with ||v|| ≤ ζ1. (4.20)

Let r be given in (H2). Now, in view of (3.3) and (4.20), we see that condition (C3)∗

of Lemma 2.4 holds with F = Fλ and r1 = min{r, ζ1}.

Choose 0 < ζ2 < min{r, ζ1} small enough so that −c|x|η ≥ r−1
L (1 + ǫ3)x for

x ∈ [−ζ2, 0]. Then, from (3.3),

(−1)nf(t, x) ≥ r−1
L (1 + ǫ3)x for (t, x) ∈ [0, 1] × [−ζ2, 0]. (4.21)

¿From (4.18) and (4.21), we have

Fλv(t) ≥ r−1
L (1 + ǫ3)

(

v(t) +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

)

≥ r−1
L (1 + ǫ3)v(t) for all v ∈ C[0, 1] with ||v|| ≤ ζ2.

which clearly implies that

LFλv ≥ r−1
L (1 + ǫ3)Lv for all v ∈ C[0, 1] with ||v|| < ζ2.
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Hence, (C4)∗ of Lemma 2.4 holds with F = Fλ and r2 = ζ2.

We have verified that all the conditions of Lemma 2.4 hold, so there exists R3 > 0

such that

deg(I − T,B(0, R3), 0) = 0. (4.22)

Next, since F∞ < µL, there exist 0 < ǫ4 < 1 and R4 > R3 such that

|f(t, x)| ≤ µL(1 − ǫ4)|x| = r−1
L (1 − ǫ4)|x| for (t, |x|) ∈ [0, 1] × (R4,∞). (4.23)

Let

C2 = r−1
L (1 − ǫ4)

n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||) max
t∈[0,1]

∫ 1

0

|Hn(t, s)|g(s)ds

+ max
t∈[0,1],|x|≤R4

|f(t, x)| max
t∈[0,1]

∫ 1

0

|Hn(t, s)|g(s)ds. (4.24)

Then 0 < C2 <∞. Choose R5 large enough so that

R5 > max{R4, C2/ǫ4}. (4.25)

We claim that

Tv 6= τv for all v ∈ ∂B(0, R5) and τ ≥ 1. (4.26)

If this is not the case, then there exist v̄ ∈ ∂B(0, R5) and τ̄ ≥ 1 such that T v̄ = τ̄ v̄. It

follows that v̄ = s̄T v̄, where s̄ = 1/τ̄ . Clearly, s̄ ∈ (0, 1]. Assume R5 = ||v̄|| = |v̄(t̄)|

for some t̄ ∈ [0, 1]. Let

J1(v̄) =

{

t ∈ [0, 1] :

∣

∣

∣

∣

v̄(t) +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

∣

∣

∣

∣

> R4

}

,

J2(v̄) = [0, 1] \ J1(v̄),

and

p(v̄(t)) = min

{

∣

∣

∣

∣

v̄(t) +
n−1
∑

j=0

(−1)j(λ2jy2j(t) + λ2j+1y2j+1(t))

∣

∣

∣

∣

, R4

}

for t ∈ [0, 1].
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Then, from (2.13), (4.5), (4.23), and (4.24), it follows that

R5 = |v̄(t̄)| = s̄|T v̄(t̄)|

≤ (−1)n

∫ 1

0

Hn(t̄, s)g(s)|Fλv̄(s)|ds

= (−1)n

∫

J1(v̄)

Hn(t̄, s)g(s)|Fλv̄(s)|ds+ (−1)n

∫

J2(v̄)

Hn(t̄, s)g(s)|Fλv̄(s)|ds

≤ r−1
L (1 − ǫ4)(−1)n

∫

J1(v̄)

Hn(t̄, s)g(s)

∣

∣

∣

∣

v̄(s) +
n−1
∑

j=0

(−1)j(λ2jy2j(s) + λ2j+1y2j+1(s))

∣

∣

∣

∣

ds

+

∫

J2(v̄)

Hn−1(t̄, s)g(s)|Fλp(v̄(s))|ds

≤ r−1
L (1 − ǫ4)(−1)n

∫ 1

0

Hn(t̄, s)g(s)|v̄(s)|ds

+ r−1
L (1 − ǫ4)

n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||)

∫ 1

0

|Hn(t̄, s)|g(s)ds

+

∫ 1

0

|Hn(t̄, s)|g(s)|Fλp(v̄(s))|ds

≤ r−1
L (1 − ǫ4)L|v(t̄)| + C2 = r−1

L (1 − ǫ4)LR5 + C2.

Hence, for h defined by (4.6), we have

h(R5) ≤ r−1
L (1 − ǫ4)h(R5) + h(C2)

= r−1
L (1 − ǫ4)(L

∗h)(R5) + h(C2)

= r−1
L (1 − ǫ4)rLh(R5) + h(C2)

= (1 − ǫ4)h(R5) + h(C2),

which implies

(ǫ4R5 − C2)h(1) ≤ 0.

In view of the fact that h(1) > 0, it follows that R5 ≤ C2/ǫ4. This contradicts (4.25)

and so (4.26) holds. Then, by Lemma 2.1, we have

deg(I − T,B(0, R5), 0) = 1. (4.27)

By the additivity property of the Leray-Schauder degree, (4.22), and (4.27), we obtain

deg(I − T,B(0, R5) \B(0, R3)) = 1.

Thus, from the solution property of the Leray-Schauder degree, T has at least one

fixed point v in B(0, R5) \ B(0, R3), which is a solution of BVP (4.2), (4.3). There-

fore, we have shown that, for λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ satisfying (4.19), BVP

(4.2), (4.3) has at least one solution v(t) satisfying ||v|| ≥ R3. Thus, for each

λ = (λ0, . . . , λ2n−1) ∈ R
2n
+ with

∑2n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has
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at least one solution u(t), which is given by (4.1) with the above solution v(t) and

satisfies

||u|| ≥ ||v|| −

n−1
∑

j=0

(λ2j||y2j|| + λ2j+1||y2j+1||)

≥ R3 −
n−1
∑

j=0

(λ2j ||y2j|| + λ2j+1||y2j+1||) > 0.

This complete the proof of the theorem. �

Proof of Theorem 3.4. For (t, x) ∈ [0, 1] × R, let

f1(t, x) =







f(t, x), x ≥ 0,

−f(t, x), x < 0.
(4.28)

By virtue of (H3), we see that f1 : [0, 1]×R → R is continuous and (−1)nf1(t, x) ≥ 0

for (t, x) ∈ [0, 1] × R. So (H1) with f = f1 is trivially satisfied. Moreover, from

F0 < µL < f ∗
∞, it follows that F1,0 < µL < f1,∞, where

F1,0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f1(t, x)

x

∣

∣

∣

∣

and f1,∞ = lim inf
x→∞

min
t∈[0,1]

(−1)nf1(t, x)

x
.

Thus, by Theorem 3.2, we know that the BVP consisting of the equation

u(2n) + g(t)f1(t, u) = 0, t ∈ (0, 1),

and BC (1.2) has at least one nontrivial solution u1(t) satisfying

u1(t) =

∫ 1

0

Hn(t, s)g(s)f1(s, u1(s))ds

=

∫ 1

0

(−1)nHn(t, s)g(s)(−1)nf1(s, u1(s))ds.

Then, by Lemma 2.5, u1(t) > 0 on (0, 1). Therefore, from (4.28), f1(t, u(t)) =

f(t, u(t)), and so u1(t) is a positive solution of BVP (1.1), (1.2).

For (t, x) ∈ [0, 1] × R, let

f2(t, x) =







−f(t,−x), x ≥ 0,

f(t,−x), x < 0.
(4.29)

In virtue of (H3), we see that f2 : [0, 1]× R → R is continuous and (−1)nf2(t, x) ≥ 0

for (t, x) ∈ [0, 1] × R. Then, (H1) with f = f2 is trivially satisfied. Moreover, from

F0 < µL < f ∗
∞, it follows that F2,0 < µL < f2,∞, where

F2,0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f2(t, x)

x

∣

∣

∣

∣

and f2,∞ = lim inf
x→∞

min
t∈[0,1]

(−1)nf2(t, x)

x
.

Thus, as above, we know that the BVP consisting of the equation

u(2n) + g(t)f2(t, u) = 0, t ∈ (0, 1),
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and BC (1.2) has at least one solution v(t) satisfying v(t) > 0 on (0, 1) and

v(t) =

∫ 1

0

Hn(t, s)g(s)f2(s, v(s))ds.

Then, from (4.29),

−v(t) =

∫ 1

0

Hn(t, s)g(s)f(s,−v(s))ds.

Therefore, u2(t) := −v(t) is a negative solution of BVP (1.1), (1.2), and the theorem

is proved. �

Using Theorem 3.3, Theorem 3.5 can be proved by similar ideas as those given

in the proof of Theorem 3.4. We omit the details here.

Proof of Lemma 3.7. Let ϕL be given as in Lemma 2.8. Then,

ϕL(t) = µL(−1)n

∫ 1

0

Hn(t, s)g(s)ϕL(s)ds for t ∈ [0, 1].

By Lemma 2.5, we have

ϕL(t) ≤ µLdn

∫ 1

0

µ(s)g(s)ϕL(s)ds on [0, 1] (4.30)

and

ϕL(t) ≥ µLcnµ(t)

∫ 1

0

µ(s)g(s)ϕL(s)ds on [0, 1]. (4.31)

Thus,

ϕL(t) ≥
cn
dn
µ(t)||ϕL|| on [0, 1]. (4.32)

¿From (4.30), we have

ϕL(t) ≤ µLdn||ϕL||

∫ 1

0

µ(s)g(s)ds on [0, 1].

Hence,

µL ≥
1

dn

∫ 1

0
µ(s)g(s)ds

= A.

¿From (4.31) and (4.32), we see that

ϕL(t) ≥
c2n
dn
µLµ(t)||ϕL||

∫ 1

0

µ2(s)g(s)ds

≥
c2n
dn
µLµ ||ϕL||

∫ 1

0

µ2(s)g(s)ds for t ∈ [θ1, θ2].

Hence,

µL ≤
dn

c2nµ
∫ 1

0
µ2(s)g(s)ds

= B.

This proves the lemma. �

Finally, in view of Lemma 3.7, Corollaries 3.8–3.11 follow immediately from The-

orems 3.2–3.5, respectively.
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