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ABSTRACT. In this paper we will give an overview on some recent results and work in progress

on self-similar solutions of the Localized Induction Approximation (LIA) leading to a phenomenon

of singularity formation in finite time. A special emphasis will be drawn to the connection of this

geometrical flow with certain nonlinear cubic Schrödinger equations in one space dimension through

the so-called Hasimoto transformation.
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1. INTRODUCTION

We begin by introducing the physical context where the localized induction appro-

ximation appears in relation with the dynamics of a vortex filament.

The localized induction approximation, often abbreviated LIA, is a geometric

flow in R3 described by the following system of nonlinear equations:

Xt = Xs × Xss, (1.1)

where X = X(s, t) represents a curve in R3 with t and s denoting time and arclength,

respectively.

Equation (1.1) was first proposed by Da Rios in 1906, and rediscovered indepen-

dently by Arms-Hamma and Betchov in the early 1960s (see [9], [2] and [3]), as an

approximation model for the evolution of a vortex filament in a 3D-incompressible

inviscid fluid. The term localized induction approximation is used to highlight the

fact that this approximation only retains the local effects of the Biot-Savart integral.

We refer the reader to [7], [19], [1] and [14] for a detailed analysis of the model and

its limitations.

Notice that, if one considers a curve X in R3 parametrized by arclength, then the

associated tangent T = Xs, normal n and binormal b vectors satisfy the Serret-Frenet
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system of equations














Ts = cn

ns = −cT + τb

bs = −τn,

(1.2)

where c and τ are the curvature and torsion associated to the curve X. Thus, equation

(1.1) can be rewritten as

Xt = cb. (1.3)

This is the reason why LIA equation is also referred to as binormal flow.

The localized induction approximation has also been used to model the motion

of a quantum vortex in superfluid 4He. The use of LIA in this setting started with

the work by Schwarz in 1985 ([20]). The reader is referred to the two papers by

T. Lipniacki in [15] and [16] for further background and references about the use of

LIA in the setting of superfluid helium.

In both the classical (ideal fluid) and the superfluid setting, the main advantage

of LIA is that it describes the vortex motion in a much simpler way than the Biot-

Savart law. However, it is not clear how robust are the solutions if LIA is replaced by

the exact Biot-Savart law. Leaving to one side the limitations of the model equation

versus the exact Biot-Savart integral, in the present work we will be restricted to LIA.

In this expository article we shall describe some particular solutions of (1.1) which

develop a singularity in finite time, and present some recent work and work in progress

on the study of the stability of these solutions.

Notice that, since (1.1) is a time-reversible flow (that is, if X(s, t) is a solution

of (1.1), then X(−s, t0 − t) for any t0 ∈ R, is also a solution), we can look at (1.1)

backwards in time, thus the problem of singularity formation is equivalent to consid-

ering the problem of existence of solutions of the initial value problem for (1.1) with

a singular initial datum X(s, 0).

Our analytical study of self-similar solutions of LIA started in [12], and carried

on in the subsequent papers [10], [4], [5], [6] and [11] (see also [8], [15], and [16]).

In [12], we looked at self-similar solutions of LIA with respect to the unique

scaling that preserves the arclength. These solutions are of the form

Xc0(s, t) =
√

tG(s/
√

t), t > 0, c0 > 0, (1.4)

with G the curve determined by c(s) = c0 and τ(s) = s/2, and are found to solve the

IVP for (1.1) with an initial curve X(s, 0) in the shape of a corner.

There is already quite a rich understanding of the dynamical behaviour of these

particular solutions. A summary of the results related to these solutions will be

described in Section 2.

In [10], solutions of LIA of the form

X(s, t) = e
A

2
log(t)

√
tG(s/

√
t), (1.5)
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with A a real antisymmetric 3 × 3 matrix of the form (w.l.o.g)

A =





0 −a 0

a 0 0

0 0 0



 , a ∈ R (1.6)

are found to converge to an initial data X(s, 0) which include a wide variety of 3d-

spirals, whose rotation axis is the OZ-axis under the condition that the matrix A
is of the form (1.6). In the case when the parameter a 6= 0, the singularity of the

initial curve X(s, 0) comes from the non-existence of the limit as s → 0 of its tangent

vector T(s, 0). In Section 3, we shall focus on describing the results related to these

solutions.

As we will see in the next sections, the understanding of the dynamical behaviour

of the solutions (1.4) and (1.5), and in particular of their stability, is based on the

remarkable connection of LIA with certain nonlinear Schrödinger equations in one

dimension established by H. Hasimoto [13]. This connection is made by the so-

called Hasimoto transformation and is as follows: Assume that X = X(s, t) is a

regular solution of (1.1) with a strictly positive curvature at all points1, and define

the filament function

u(s, t) = c(s, t)exp

(

i

∫ s

0

τ(s′, t) ds′
)

with c and τ the curvature and torsion of the curve X(s, t), respectively. Then u

solves the nonlinear Schrödinger equation

iut + uss +
u

2
(|u|2 − A(t)) = 0, (1.7)

where A(t) is a time-dependent function which depends on the values of c(s, t) and

τ(s, t) at s = 0.2 The filament function u(s, t) is defined through the curvature and

torsion, and thus reflects the geometric properties of the filament curve X.

Note that equation (1.7) can be reduced to the cubic nonlinear Schrödinger equa-

tion by using an integrating factor. Precisely, the substitution

ũ(s, t) = u(s, t)exp

(

i

2

∫ t

1

A(t′) dt′
)

1The restriction that the curvature associated to X should not vanish can be avoided by using a

different parallel frame. Precisely, one can consider the parallel frame of vectors {T, e1, e2} given

by the system of equations:

Ts = αe1 + βe2, e1s = −αT e2s = −βT,

in terms of the quantities α and β. Using the above frame, it can be proved that if X(s, t) is a regular

solution of LIA, and define the function ψ by ψ = α+ iβ, then ψ solves the nonlinear equation (1.7),

with A(t) = −|ψ|2(0, t)/2 − 〈e1t, e2〉(0, t).
2Precisely,

A(t) =

(

2
css − cτ2

c
+ c2

)

(0, t).
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transforms equation (1.7) into the cubic NLS

iũt + ũss +
1

2
|ũ|2ũ = 0.

This equivalence to NLS implies that there exists a countable number of conserved

quantities. It is precisely this connection which endows LIA with a strong structure.

The common ground of solutions of LIA of the form (1.4) and (1.5) is that their

associated curvature and torsion functions are of the following self-similar form3

c(s, t) =
1√
t
c

(

s√
t

)

, τ(s, t) =
1√
t
τ

(

s√
t

)

(1.8)

(this is why we refer to these solutions as self-similar). Thus, their associated filament

function u(s, t) is a self-similar solution of the form

u(t, s) =
1√
t
u

(

s√
t

)

(

with u(s) = c(s)ei
R

s

0
τ(s′) ds′

)

(1.9)

of the nonlinear Schrödinger equation

iut + uss +
u

2
(|u|2 − A

t
) = 0 (1.10)

for some constant A.

Unlike the case of the self-similar solutions X(s, t) in (1.4), where we have explicit

expressions for the curvature and torsion (see Section 2 below)

c(s, t) =
c0√
t
, τ(s, t) =

s

2t
,

in the study of the self-similar solutions (1.5) with a 6= 0 the only information we have

is that their curvature and torsion are of the self-similiar form (1.8). This is one of

the reasons why the study of the solutions (1.5) is more delicate and less understood.

In Section 3, we will see how the study of the properties and dynamical behaviour

of solutions of LIA of the form (1.5) relies on a deep understanding of the asymptotic

properties of the self-similar solutions of equation (1.10).

The outline of this paper is the following. In Section 2, we shall focus on giving

an outline of the known results related to solutions of LIA of the form (1.4) which

develop a singularity in the shape of a corner. In Section 3 we shall turn our attention

to solutions of LIA of the form (1.5), which develop a spiral singularity. We conclude

this paper by describing some recent results and work in progress related to the

stability properties of the solutions of LIA described in Sections 2 and 3.

3With some abuse of notation, in what follows we denote a function of the two variables s and

t evaluated at time t = 1 simply by f(s), that is f(s, 1) = f(s). With this notation, c(s) and τ(s)

will denote hereafter the curvature and torsion associated to the curve X(s, 1) = G(s).



SINGULAR VORTEX DYNAMICS 461

2. SINGULARITIES IN THE SHAPE OF A CORNER

Assume that X(s, t) is a (regular) self-similar solution of

Xt = Xs ×Xss (2.1)

of the form (1.4); that is

X(s, t) =
√

tG

(

s√
t

)

, t > 0 (2.2)

for some curve G(s).

Then, after differentiation, we get that G(s) = X(s, 1) has to be a solution of

1

2
G − s

2
G′ = G′ × G′′. (2.3)

A further differentiation yields the equation

−s

2
G′′ = G′ × G′′′ (2.4)

which, by using the Serret-Frenet equations (1.2), rewrites as

−s

2
cn = c′b− cτn.

As a consequence, we obtain that the curvature and torsion associated to the curve

G are given by

c(s) = c0 and τ(s) =
s

2
, with c0 > 0

(see also [8]).

For fixed c0 > 0, define

Xc0(s, t) =
√

tG

(

s√
t

)

, (2.5)

where G is the solution of the Serret-Frenet system of equations (1.2) with

c(s) = c0 and τ(s) =
s

2
, (2.6)

and the initial conditions

G(0) = 2c0(0, 0, 1), T(0) = (1, 0, 0), n(0) = (0, 1, 0), and b(0) = (0, 0, 1).

(2.7)

A detailed analysis of the curves defined by (2.5)-(2.7) can be found in [12]. There,

among other results, it is proved the following

Theorem 2.1. For any fixed c0 > 0, Xc0(s, t) defined by (2.5), (2.6) and (2.7) is a

solution of LIA which is C∞ for t > 0. Moreover, there exist vectors unitary vectors

A±
c0, and vectors B±

c0 such that

i) |Xc0(s, t) −A+
c0sχ[0,+∞)(s) −A−

c0sχ(−∞,0](s)| ≤ c0

√
t;
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ii) Let |s| > max(2c0, 4), then the following asymptotics hold as s → ±∞:

G(s) = A±
c0

(s + 2
c2
0

s
) − 4c0

n

s2
+ O(1/s3)

T(s) = A±
c0 − 2c0

b

s
+ O(1/s2)

(n − ib)(s) = B±
c0e

is2/4eic20 log s + O(1/s)

iii) A±
c0

= (A±
1,c0

, A±
2,c0

, A±
3,c0

) are unitary vectors and

A+
1,c0

= A−
1,c0

= e−
c
2
0
2

π, A+
2,c0

= −A−
2,c0

and A+
3,c0

= −A−
3,c0

iv)

sin(θ/2) = A±
1,c0

= e−
c
2
0
2

π (2.8)

where θ is the angle between the vectors A+
c0 and −A−

c0.

Figure 1. Vortex evolution. X(s, t) wraps asymptotically around two

half-lines with angle θ such that sin(θ/2) = e−
c
2
0
2

π.

Figure 2. The curve Gc0(s) = Xc0(s, 1) for different values of the

parameter c0 > 0.

In Figure 1, the time evolution of Xc0(s, t), for some c0 > 0 is plotted. Figure 2

illustrates the curve Xc0(s, 1) = G(s) for different values of the parameter c0.

Some remarks are in order. First, part i) in Theorem 2.1 asserts the convergence

of Xc0(s, t) to a curve which is the union of the two half-lines determined by the
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vectors A+
c0

and A−
c0

. Second, from the formulae for G and n − ib in part ii) in

Theorem 2.1, we observe that the wave-like behaviour of the solutions (see Figure 2)

are due to the oscillating behaviour of the normal vector through the term (4c0n)/s2 in

the asymptotic formula for G; therefore the oscillations are of very small amplitude

as s → ±∞. Finally, formula (2.8) has two important consequences. On the one

hand, notice that formula (2.8) implies that A+(c0) + A−(c0) 6= 0 for all c0 > 0, and

thus the two lines defining the initial data are different (in other words, for any c0 > 0

the initial curve is a curve in the shape of a corner). As a by-product, Theorem 2.1

asserts the existence of regular solutions of LIA which develop a corner singularity in

finite time. On the other hand, formula (2.8) allows to prove the following converse:

For any given pair of unit vectors A+ and A− different and non-opposite, there exists

a regular solution X(s, t) of LIA for t > 0 such that

X(s, 0) = A+sχ[0,+∞)(s) + A−sχ(−∞,0](s).

The quantification of the wave-like behaviour of the solutions given in ii) in Theo-

rem 2.1, and formula (2.8) rely on precise formulae for the components of the Frenet

frame of the regular curve G(s) in terms of the solutions of the linear ODE

θ′′ + i
s

2
θ′ +

c2
0

4
θ = 0,

which can be integrated using Fourier transform methods (see details in [12]).

Since we have a priori knowledge of explicit expressions for the curvature and tor-

sion associated to the curve Xc0(s, 1) = G(s), there is no need to use the Hasimoto

transform to study their properties, and, in this sense, one could say that Theorem 2.1

is not about nonlinear Schrödinger equations. As we will see in Section 4, the Hasi-

moto transform, and hence the study of the nonlinear Schrödinger equation (1.10),

plays an essential role in studying the stability of this family of solutions.

We conclude this section by motivating the solutions that we will continue to

consider in Secton 3.

Observe that the filament function associated to the solutions of LIA Xc0(s, t) is

given by

uc0(s, t) =
c0√
t
ei s

2

4t ,

which solves

iut + uss +
u

2
(|u|2 − A

t
) = 0, with A = c0 (2.9)

and

uc0(s, t) −→ cδ0, as t → 0+,

for some constant c ∈ C. Notice that the filament function uc0 is of self-similar form

uc0(s, t) =
1√
t
u(s/

√
t) with u(s) = c0e

i s2

4

and, as a consequence, the filament function uc0(s, t) satisfies the following scaling

property

u(s, t) = λu(λs, λ2t), ∀λ > 0. (2.10)
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Due to the invariance of (2.9) under the above scaling, if we look for initial data that

can develop into self-similar solutions with respect to this scaling, from (2.10) we see

that the initial data has to be homogeneous of degree −1.

The family of solutions {Xc0(s, t)}c0>0 in Theorem 2.1 are associated to a filament

function which converges to the delta distribution as t → 0+, which is homogeneous

of degree −1. In order to look for solutions of LIA whose associated filament function

may converge as t → 0+ to a principal value distribution (homogeneous of degree

−1), we need to modify the ansantz considered in (2.2).

3. SINGULARITIES IN THE SHAPE OF A 3d-SPIRAL

Given A ∈ M3×3 real and antisymmetric, we look for solutions of LIA of the

form

X(s, t) = e
A

2
log t

√
tG(s/

√
t). (3.1)

Notice that, due to the invariance of LIA under rotations, we may assume without

loss of generality that the matrix A is of the form

A =





0 −a 0

a 0 0

0 0 0



 , a ∈ R.

It is important to mention that, solutions of the form (3.1) have been also considered

by T. Lipniacki (see [15] and [16]) in the setting of the flow defined by

Xt = βXs × Xss + αXss,

modeling the motion of quantum vortices in superfluid 4He.

Assuming that X(s, t) defined as (3.1) is a solution of LIA (1.1), we obtain that

G(s) has to be a solution of the following vector ODE:

(I + A)G− sG′ = 2G′ × G′′, |G′(s)|2 = 1. (3.2)

Straightforward calculations show that equation (3.2) can be written equivalently as

G′′ =
1

2
(I + A)G ×G′, (3.3)

whenever the initial data (G(0),G′(0)) satisfies

|G′(0)| = 1 and (I + A)G(0) · G′(0) = 0. (3.4)

As a consequence, the problem of finding solutions of LIA of the form (3.1) reduces

to the problem of proving the existence of solutions of the IVP (3.3)-(3.4).

The global existence of C∞(R, R3)-solution of the above IVP follows from the

classical theory of systems of ODEs and the fact that |G′(s)| = 1 for all s ∈ R.

As we will see, the evolution of each of the curves G(s) under the relation (3.1)

leads to a solution of LIA which converges as t → 0+ to different curves in the shape

of 3d-spirals. Notice that, since the solutions X(s, t) are of the form (3.1), the shape

of the curve X(s, 0) is related to the asymptotic behaviour of the curve G(s) as
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s → ±∞. Hence, it suffices to study the behaviour of G(s) for large values of |s|. To

this end, we consider the quantity

e−A log |s|G(s)

s
, s 6= 0.

Then, by using the equation (3.2), we obtain that
(

e−A log |s|G

s

)

s

= −e−A log |s| (I + A)G

s2
+ e−A log |s|G

′

s
= −2 e−A log |s| cb

s2
, (3.5)

where, as before, b and c denote respectively the binormal vector and curvature

associated to G.

Assuming, momentarily that the curvature c(s) is bounded, since |b| = 1, from

the above formula it is straightforward to prove the existence of

lim
s→±∞

e−A log |s|(G(s)/s) =: A±.

Thus integrating (3.5) in the interval [s, +∞) with s > 0 (or (−∞, s] if s < 0) we

obtain the following expressions for G(s)

G(s) = seA log |s|A+ + 2seA log |s|
∫ +∞

s

e−A log |s′| cb

(s′)2
ds′, s > 0,

and

G(s) = seA log |s|A− − 2seA log |s|
∫ s

−∞
e−A log |s′| cb

(s′)2
ds′, s < 0.

The convergence of X(s, t) = e
A

2
log t

√
tG(s/

√
t) as t → 0+ to a curve of a shape of

a 3d-spiral is a direct consequence of these formulae. In [10] the following result is

proved:

Proposition 3.1. For any given a ∈ R and G(s) solution of (3.3) associated to a

given initial data (G(0),G′(0)) satisfying (3.4), define

Xa(s, t) = e
A

2
log t

√
tG

(

s√
t

)

, with A =





0 −a 0

a 0 0

0 0 0



 .

Then, Xa(s, t) is an analytic solution of LIA for all t > 0, and there exists vectors

A+ and A− ∈ R3 such that

lim
t→0+

Xa(s, t) = seA log |s| (A+χ[0,+∞)(s) + A−χ(−∞,0](s)
)

with

|Xa(s, t) − seA log |s|A±| ≤ 2
√

t

(

sup
s∈R

|c(s)|
)

.

Here, c(s) is the curvature of the curve G(s).Figures 3-7 represent different solutions G(s) of (3.3)-(3.4). The vortex filament

wraps asymptotically around different cones, depending on the initial conditions G(0)

and G′(0), and on the parameter a ∈ R.

A more exhaustive analysis of the asymptotic behaviour of both G(s) and G′(s),

where their wave-like behaviour is quantified, was made in [10]. In particular, in [10]

the following result is proved:
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Figure 3. Non-Symmetric solutions. G(0) = (0, 0, β), G′(0) =

(1, 0, 0), l.h.s a = 10 and β = 1 and r.h.s a = 20, β = 6.

Theorem 3.2 (see [10, Theorem 1]). Let G(s) the solution of (3.3) associated to a

given initial data (G(0),G′(0)) satisfying (3.4). Then, there exist unique vectors B±,

with |B±| = 1 and A± = (I + A)−1B± such that the following asymptotics hold as

s → ±∞

i) G(s) = seA log |s|A± +
eA log |s|

s
{2c2

±∞B± −AB± ×B±} − 4
c±∞n

s2
+ O

(

1

s3

)

,

ii) T(s) = eA log |s|B± − 2
c±∞b

s
+ O

(

1

s2

)

.

iii) Moreover, if a 6= 0, B±
3 6= 1, and c±∞ 6= 0, then

c±∞(n− ib)(s) =
b±eia±

|AB±|2 ei( s
2

4
−γ± log |s|)eA log |s|{AB± ×B± − iAB±} + O

(

1

|s|

)

.

Here,4 a± ∈ [0, 2π), and c±∞, γ± and b± are constants which depend on B±
3 and A,

with A = aT3(0) + 1
4
|(I + A)G(0)|2.

4{T,n,b} is the Frenet frame associated to G, c(s) the curvature function, and c±∞ =

lims→∞ c(s).
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The proof of Proposition 3.1, that is the analysis of X(s, t) as t → 0+, depends

on the apriori knowledge that the curvature associated to the curve G(s) is bounded.

In the same way, the proof of Theorem 3.2 relies on a very careful analysis of the

curvature and torsion related to the curve G(s). The analysis of the properties of

these two quantities is based, through the Hasimoto transformation, on an analysis

of self-similar solutions of certain cubic Schrödinger equations. An outline is the

following.

Assuming that X(s, t) is of the form (3.1), then it is straightforward to verify

that the curvature and torsion associated to X(s, t) are of the self-similar form

c(s, t) =
1√
t
c(s/

√
t), τ(s, t) =

1√
t
τ(s/

√
t).

As a consequence the associated filament function is given by

u(s, t) =
1√
t
u(s/

√
t), with 5u(s) = c(s)ei

R

s

0
τ(s′) ds′ (3.6)

and

A(t) =
A

t
with A = A(1).

Since X(s, t) is a solution of LIA, through the Hasimoto transformation, we know

that its filament function u(s, t) = 1√
t
u(s/

√
t) solves

iut + uss +
u

2

(

|u|2 − A

t

)

= 0. (3.7)

Then, the function u(s) is a solution of the complex complex ODE

u′′ − i

2
(u + su′) +

u

2
(|u|2 − A) = 0. (3.8)

In order to study the solutions of this equation, it turns out that it is more convenient

to introduce a new variable f through the definition

u(s) = f(s)eis2/4
(

i.e f(s) = e−i s
2

4 u(s)
)

. (3.9)

Then, u is a solution of (3.8) if and only if f is a solution of

f ′′ + i
s

2
f ′ +

f

2
(|f |2 − A) = 0 (3.10)

Notice that from (3.10) easily follows that

d

ds

(

|f |2 +
1

4
(|f |2 − A)2

)

= 0

so, in particular we conclude that |f |2 = c2 is bounded. A detailed study of the

solutions of (3.9) (on which the results in Theorem 3.2 rely) can be found in [10,

Theorem 3].

As we have previously mentioned, unlike the solutions considered in Section 2

where we had an a-priori knowledge of an explicit formula for their associated filament

function (recall that their filament function was uc0(s, t) = c0√
t
ei s

2

4t ), in the case of

5Notice that u(s) is nothing but the filament function associated to the curve G(s) = X(s, 1).
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solutions of the form (3.1) the only information we have is that their filament function

of the self-similar form (3.6). Hence, here we are working in a more general setting. It

is precisely due to this generality, and lack of more precise information of the filament

function, that the results stated in Theorem 3.2 are weaker than the ones given in

Theorem 2.1. In particular, in this general setting, we are not able to find closed

formulae for the parameters which characterize these solutions, and the constants

and vectors describing the asymptotic behaviour, in terms of the initial conditions of

the problem (unlike iii) and iv) of Theorem 2.1 for the family of curves developing

a corner singularity). In some particular situations though, where the solutions have

a bit “more” structure, we are able to obtain more specific properties than the ones

stated in Theorem 3.2.

More precisely, the following two distinct types of solutions of LIA of the form

(3.1) come from the symmetries of the equation symmetries of the equation

G′′ =
1

2
(A + I)G ×G′, (3.11)

and deserve a special mention. In what follows we will continue to define what we

will refer to as odd solutions and mixed-symmetry solutions of the equation (3.11).

We refer the reader to [10] for further properties of these odd and mixed-symmetry

solutions.

Odd solutions. For fixed a ∈ R, let G a solution of (3.11) with the initial conditions

G(0) = (0, 0, 0) and G′(0) = (0,
√

1 − δ2, δ), −1 ≤ δ ≤ 1. (3.12)

Then

G(s) = −G(−s).

In particular, it can be shown (see [11]) that if G(s) is an odd solution, then the asso-

ciated function f , through the Hasimoto transformation and the change of variables

in (3.9), is an odd solution of (3.10) with A = aδ.

In Figure 4 and Figure 5, we display the graphics of different solutions of (3.11)

associated to an initial data of the form (3.12). The right-handside pictures represent

the solution near the point s = 0.
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Figure 4. Odd solutions. G(0) = 0, G′(0) = (0,
√

1 − δ2, δ), a = 10

and δ = 0.956.Mixed-symmetry solutions. Given any a ∈ R, assume G(s) is a solution of (3.11)

with the initial conditions

G(0) =

(

2c0√
1 + a2

, 0, 0

)

and G′(0) = (0, 0, 1) ( or G′(0) = (0, 0,−1)).

(3.13)
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Figure 5. Odd solutions. G(0) = 0, G′(0) = (0,
√

1 − δ2, δ), a = 10

and δ = −0.1.

with c0 > 0. Then






G1(s) = G1(−s)

G2(s) = G2(−s)

G3(s) = −G3(−s).

In particular, it can be shown (see [11]) that if G(s) is a mixed-symmetry solution

of LIA, then the associated function f , through the Hasimoto transformation and

the change of variables in (3.9), is an even solution of (3.10) with A = a + c2
0 (or

A = −a + c2
0).

Two examples of solutions of (3.11) with initial data of the form (3.13) are plotted

in Figures 6 and Figure 7.
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Figure 6. Mixed-symmetry solutions. G(0) = (2c0/
√

1 + a2, 0, 0),

G′(0) = (0, 0, 1), a = 3, c0 = 1.8.

The “extra” symmetry properties of the above two types of solutions allow us to

obtain more specific properties for these solutions. We refer the reader to [10]. In

addition, as we will see in the next section, one could expect to say something about

the stability of these particular symmetry-solutions.
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Figure 7. Mixed-symmetry solutions. G(0) = (2c0/
√

1 + a2, 0, 0),

G′(0) = (0, 0, 1), a = 3, c0 = 0.4.

4. STABILITY OF THE SINGULAR VORTEX DYNAMICS

A both natural and interesting question about the solutions of LIA described in

the previous sections is: are these solutions stable under small perturbations? The

aim of this section is to provide a summary of what is known in this context.

The study of the stability properties of the solutions to LIA of the form

Xc0(s, t) =
√

tG

(

s√
t

)

, c0 > 0

found in Theorem 2.1 started in [4], and continued in the subsequent papers [5] and

[6]. In particular in [5], the authors proved that under a smallness assumption on c0,

there exist regular perturbations of Xc0(s, t) that converge as t → 0+ to an initial

data X0(s) which is close to a curve in the shape of a corner. We refer the reader

to [5, Theorem 1.5] for a precise statement of the result.

The construction of the appropriate perturbations of Xc0(s, t) relies on the con-

struction of appropriate perturbations for the associated filament function. In the

case of the self-similar solutions Xc0(s, t) the filament function is

uc0(s, t) =
c0√
t
ei s

2

4t ,

which solves the Schrödinger equation

iut + uss +
u

2
(|u|2 − c2

0

t
) = 0, (4.1)

and

uc0(s, t) −→ cδ, as t → 0+,

for some constant c ∈ C. Hence, we need to study the initial value problem for the

above cubic Schrödinger equation with a “rough” initial data. In order to avoid this

obstruction, in [5] the authors use the so-called pseudo-conformal transformation of

(4.1). Briefly, given any solution u of (4.1), we define a new unknown v as follows

u(s, t) = T v(s, t) =
ei s

2

4t

√
t
v̄

(

1

t
,
x

t

)

, (4.2)

where hereafter the bar denotes complex conjugation. Then, v becomes a solution of

ivt + vss +
v

2t
(|v|2 − c2

0) = 0, (4.3)
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and the filament function uc0(s, t) corresponds to the solution of (4.3) given by

vc0(s, t) = c0, t > 0. (4.4)

The study of the stability of the solutions Xc0(s, t) reduces, through the Hasimoto

and pseudo-conformal transformations, to the study of the stability properties of the

solution vc0(s, t) = c0 of the equation (4.3). In this setting, we have the following

Theorem 4.1 (see [5, Theorem 1.2]). Let t0 > 0, and given any u+ define

v1(s, t) = c0 + ei
c
2
0
2

log teit∂2
s u+(x).

Then, there exists a constant C0 > 0 such that for all c0 < C0, and for all u+ small

in L1 ∩ L2 with respect to C0 and t0, the equation

ivt + vss +
v

2t
(|v|2 − c2

0) = 0

has a unique solution v such that

v − v1 ∈ C
(

[t0,∞), L2(R)
)

∩ L4 ([t0,∞), L∞(R))

satisfying, as t → +∞
‖v(t) − v1(t)‖L2 + ‖v(t) − v1(t)‖L4((t,∞),L∞) = O(t−

1

4 ). (4.5)

Here, eit∂2
s u+ denotes the solution of the free Schrödinger equation with initial data

u+.

It turns out that the decay rate t−
1

4 in Theorem 4.1 needs to be improved in order

to prove that the corner is preserved. This was achieved in [5, Theorem 1.4] imposing

more restrictions of the asymptotic data u+. Precisely, by assuming that u+ belongs

to the Sobolev spaces H−2 ∩Hs ∩W s,1 with s ∈ N
∗, a decay rate of the order O(t−

1

2 )

was obtained.

The construction of adequate perturbations of the solution vc0 = c0 in the interval

[t0,∞) with t0 ≥ 1 leads to the construction of desired perturbations of Xc0 developing

a corner at the initial time t = 0 (see [5] for the precise statement and proof of the

results).

We conclude this section by briefly mentioning some work in progress in relation

with the study of the stability properties of the solutions of LIA of the form

Xa(s, t) = e
A

2
log t

√
tG

(

s√
t

)

(4.6)

established in Proposition 3.1 (see notation in Section 3).

As we have learned from the results in [5], a first step in understanding the

stability of the above solutions is to prove an analogue of Theorem 4.1 in the setting

of these solutions.

Following the arguments in [5], the stability of the solutions of LIA of the form

(4.6) is related through the Hasimoto and pseudoconformal transformations to the

stability properties of the solution of the equation

ivt + vss +
v

2t
(|v|2 − A) = 0
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given by

vf(s, t) = f̄

(

s√
t

)

, (4.7)

with f a solution of the equation (3.10), that is

f ′′ + i
s

2
f ′ +

f

2
(|f |2 − A) = 0. (4.8)

Here, as before, the constant A is a constant which depends on the initial conditions

(G(0),G′(0)). This follows from the fact that Xa(s, t) has an associated filament

function u(s, t) given by

u(s, t) =
1√
t
u(s/

√
t) =

ei s
2

4t

√
t

f

(

s√
t

)

(recall the identities (3.6) and (3.9)), which leads to (4.7) by using the pseudoconfor-

mal transformation (4.2).

In order to give a precise statement of our result, we introduce some notation.

We denote by L2(〈x〉γ) the L2-spaces with Lebesgue measure replaced by 〈x〉γ dx =

(1 + |x|2) γ

2 dx, that is

L2(〈x〉γ) = {φ : R −→ C : ‖φ‖L2(〈x〉γ ) =

(
∫

R

|φ(x)|2(1 + |x|2)γ/2 dx

)1/2

< ∞}.

Given u+, and f solution of (4.8) such that |f |+∞ = |f |−∞, we define ṽf by

ṽf(s, t) = vf (s, t) + eiα log t
(

eit∂2
xu+

)

(x),

with

vf(s, t) = f̄

(

s√
t

)

and α =
1

2
(2|f |2∞ − A).6

Our next result can be seen as an extension of Theorem 4.1.

Theorem 4.2. Let t0 > 0, and 0 < γ < 1. There exist (small) positive constants A0
7

and B0, such that for all |A| < A0, f a solution of

f ′′ + i
x

2
f ′ +

f

2
(|f |2 − A) = 0

such that |f |−∞ = |f |+∞ with ‖f‖L∞ ≤ B0, and u+ small in L1∩L2(〈x〉γ) with respect

to A0, B0, t0, and f , the equation

ivt + vxx +
v

2t
(|v|2 − A) = 0 (4.9)

has a unique solution v(t, x) in the time interval [t0,∞) such that

v − ṽf ∈ C
(

[t0,∞), L2(R)
)

∩ L4 ([t0,∞), L∞(R)) .

Moreover, the solution v satisfies

‖v − ṽf‖L2(R) + ‖v − ṽf‖L4((t,∞),L∞(R)) = O
(

1

t
γ

4

)

, (4.10)

6If |f |+∞ = |f |−∞, then we will denote |f |±∞ simply by |f |∞.
7Since the submission of this paper, some work in progress seems to indicate that the smallness

condition on the coefficient A in Theorem 4.2 can be removed (see [11]).



SINGULAR VORTEX DYNAMICS 473

as t goes to infinity.

The previous theorem asserts the existence of the modified wave operator in the

time interval [t0,∞) with t0 > 0, for any given final data u+ in L1 ∩ L2(〈x〉γ) with

0 < γ < 1, and any solution of (4.8) such that |f |+∞ = |f |−∞, under the smallness

conditions on the parameter |A|, ‖f‖L∞, and the data u+.

To complete this program and obtain the required stability result in the setting of

LIA, we will need, by “undoing” the pseudoconformal and Hasimoto transformation,

to construct the associated perturbations of the solutions Xa of LIA and study the

behaviour of the perturbations as t goes to 0. This will be done elsewhere.

One of the key ingredients in the proof of Theorem 4.1 and Theorem 4.2 is the

study of the linearized equation (4.9) around the constant solution vc0(s, t) = c0

(A = c0) in Theorem 4.1, and around the solution vf (s, t) = f̄(s/
√

t) in Theorem 4.2.

Precisely, the associated linearized equations are given by

izt + zxx +
c2
0

2t
(z + z̄) = 0, (4.11)

and

izt + zxx +
1

2t
[(2|vf |2 − A)z + v2

f z̄] = 0, (4.12)

respectively. Unlike the equation (4.11), where the coefficients only depend on t allow-

ing the analysis of this equation using the Fourier transform in space, the coefficients

in equation (4.12) are both time and space dependent making the study of the linear

equation (4.12) more delicate. This is the reason why we have put ourselves in a more

simple situation, and reduced our analysis to consider only those self-similar solutions

vf (s, t) = f̄(s/
√

t) associated to a profile f satisfying the property that

|f |+∞ = |f |−∞,

and in particular those that f is an even or odd function. Even under the above

assumption on the profile f , the equation (4.12) is not easy to analyse. In fact,

as establised in Theorem 4.2, we need to consider the asymptotic data u+ to be in

L1 ∩L2(〈x〉γ) with 0 < γ < 1, rather than in L1 ∩L2 as in Theorem 4.1, and there is

a loss in the decay rate (compare the inequalities (4.5) and (4.10)).

The main obstruction for proving the statement of Theorem 4.2 for an arbitrary

profile f comes from the Duhamel term associated to the coefficient v2
f/2t in (4.12).

Finally, notice that here (see Theorem 4.2) we have only considered the prob-

lem of the existence of (modified) wave operators for the Schrödinger equation (4.9)

for perturbations of the particular solutions vf , leaving on a side the more difficult

question of the asymptotic completeness of the scattering operators. The asymp-

totic completeness of the scattering operators for the equation (4.9) (A = c2
0) for

perturbations of the solutions vc0(s, t) = c0 was studied in [6].
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