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1. INTRODUCTION

In a Hilbert space H we study the existence of unique solutions of a system of
monotone difference inclusions of the form

i — (1 + 0] + (o + Zsfxi eI x! +ul, 1=1,2,...,N, (1.1)
i#n
satisfying the two-point boundary condition

Ty =:a", Ty, = 0" (1.2)

Variational inclusion problems are among the most interesting classes of mathe-
matical problems and have a variety of applications in control theory, optimization,
economics, transportation equilibrium, engineering science. Many existence results
for various variational inclusion (initial and boundary) problems have been studied
in the literature. First we refer to the work due to Morosanu [30], which is our main
motivation of this paper. Morosanu considered in a Hilbert space a two-point Dirich-
let type boundary value problem associated with a second order difference equation

of the form
Ujp] — 2u; + w1 € ¢iTu;, 1=1,2,.. .,N,
(1.3)
Up =T, UN+1 =Y,
In that work it is assumed that T is a set-valued monotone operator and the main
result states as follows:
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Theorem 1.1 ([30],Theorem 1.1). Let z,y be some given elements of the Hilbert space
H and consider a positive integer N. Then there exists a unique N-vector (u;)i=12,. N
in HN such that u; belongs to the domain of the operator T and it satisfies system
(1.3).

Actually Morosanu applies a method consisted of the following steps:

Step 1. Find maximal monotone operators F and 7 defined on a suitable Hilbert
space H such that problem (1.3) is equivalent to a contingent equation of the form

0 € Flw) + T (w). (1.4)

Step 2. Show that the sum F + T is a coercive (or m-accretive) operator.

The conclusion is that the range of the operator F + 7 is the whole space H,
thus a (unique) point w exists satisfying (1.4). This fact would imply the result.
We should notice that inclusions of the form (1.4) are discussed in the literature by
many authors. More general forms of this inclusion is investigated elsewhere, see,
e.g., Chidume, Zegeye and Kazmi [15], M. Noor, K. Noor and Rassias [33], Peng and
Zhu [34] and the references therein.

In case the operator T is m-accretive, an analogous result is given by Poffald and
Reich [35] and [36].

Monotonicity of the operator 7' is sufficient for the existence of solutions of prob-
lems of this kind, provided that the coefficients satisfy some specific conditions. How-
ever, in some cases, these problems might not have solutions. Consider, for instance,
the problem

Tig1 — Ti1 =sgnz; + 1, 1=1,2,...,2m —1 (1.5)

with
To=a, Tom =0, (1.6)
where a < —2m and b > 0. Equation (1.5) is a selection of x;11 —z;_1 € dz; + 1, i =
1,2,...,2m — 1, where the operator 0 is the sub-differential of the convex function
¢(x) := |z|. (Obviously the operator x — 0|z| is maximal monotone and takes values

in the interval [—1,1].) We can easily see that the solution of equation (1.5) is given
by

a+2j5, if vy >0
T2 ==X a, if 1 <0
a+ 7, if 21=0
and
T2j4+1 = X1,

for all indices j. Therefore no solution of (1.5) exists satisfying the conditions (1.6).
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A more general situation of the boundary value problem (1.3) was investigated
by Apreutesei (see [8], Theorem 6.1.2), where inclusion in (1.3) becomes

Wipr — (L4 0)u+0iu;—1 € ¢;Tu; + f;, i=1,2,...,N (L.7)
1.7

U =T, UNy1 =Y.

Here due to the first part of (1.7), Apreutesei does not apply the Morosanu’s method,
but, instead, he applies a variational method by using the Yosida approximation of the
operator T'. The method was already used previously elsewhere, see, e.g., Morosanu
and Petrovanu [31], Aftabizadeh, Aizicovici and Pavel [2], Moudafi [32], and it works
as follows:

Step 1. Formulate suitable maximal monotone operators F and 7 defined on an
appropriate Hilbert space H such that problem (1.7) is equivalent to (1.4).

Since the form of the first part of (1.7) does not help to apply Morosanu’s Step 2,
we may consider the Yosida approximation 7, of 7 for which it is known that it
defines a single valued operator satisfying the convergence

lim 7,(z) = T°(z),

A—0t

where 7°(z) is the element of minimum norm of 7 (), see, e.g., Apreutesei [8] and
the references therein. Next we discuss the second step:

Step 2. For each A > 0 show that the operator F + 7, is maximal monotone,
thus given any f € H and r > 0 there exists a point z,, in H such that
f(x,W) + ,T)\(SL’)\,,«) + TTxr + f =0. (18)

Step 3. Show that the strong limit

lim z, = z,,
A—0t

say, exists and, due to (1.8), it satisfies —f € F(x,) + 7% (z,) + rz,.
Step 4. Show that the strong limit

lim z, =: z*
r—0+

exists, which leads to the desired (unique) solution of the original problem.

In this work we apply the previous method to a system of difference inclusions,
which might be generated from a system of differential inclusions of the form

k
Yn(t) + pu()yn () + qu'(t)yj(t) € ()T (yn(t)) + fu(t), t € (0,1) (1.9)

n=1,2,...,k, associated with the boundary conditions
yn(0) = a”, ya(1) = 0", (1.10)

where, for each index n, T is a point-to-set valued maximal monotone operator with
domain D(T") C H — H and such that 0 € N, D (T™).
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To get a discrete version of problem (1.9) -(1.10) one can follow many methods
exhibited in the literature. For instance, one can use equal steps of the time, though
we should mention an interesting method where a linear approximation of the second
derivative by four consecutive values of the state, together with a nonuniform mesh,
which is suggested by Herceg [24]. See, also, Amodio and Sgura [5]. In our situation
we prefer to follow the classical way, namely, use equal mesh: Indeed, we consider
system (1.9) and, for a fixed h € (0,1), we let N be the integer part of . Take h
small enough so that N > 1. Define the quantities' 27 := v, (ih), i =0,1,..., N and
T4, = b" and approximate the first and second derivatives of y,, at ih with the usual
quotients (y,(ih) — yn((i —1)h))(h)""and (ya((i + 1)) — 2y,(ih) +yu((i — 1)) (R) 72,
respectively. By this way we (can say that) approximate system (1.9)-(1.10) by the
discrete inclusion (1.1) associated with the boundary conditions (1.2). The coefficients
07, (M e, ¢ are real numbers defined by 07 := 1 — hp,(ih) — (h)?q.(ih), ¢ =1 —

hpn(ih), 5{ = (h)2q;(ih), ¢ := (h)?ca(ih), ul := (h)?fn(ih).
And although in this case the coefficients satisfy the identity

0i — ¢ = —ei, (1.11)

in the sequel we shall not assume such a condition. Instead, we shall impose such
conditions which do not require the truth of (1.11). For instance, in an example
discussed in the last section we will use a restriction like 67" — (" > |e7'].

Obviously systems (1.3) and (1.7) are special cases of (1.1).

A great number of existence results related to Dirichlet boundary value problems
concerning difference equations can be found in the literature. For instance, in a
Banach space E a two-point discrete boundary value problem of the form

A*y(i— 1)+ f(i,y())) =0, i=1,2,...,N
y(0) =0, y(N+1)=0,

is discussed in [18], where the function f : {0,1,..., N} x E — E is weakly-weakly
sequentially continuous in the usual sense, i.e. given any sequence (z,) in E with
w — limz,, = x it follows that w — lim f (i, x,) = f(i,x), 1 =0,1,..., N.

(1.12)

The existence results obtained in [18] are proved by using the well known Darbo
fixed point theorem (see, e.g., Kubiaczyk [26]) concerning the measure of noncom-
pactness for weakly sequentially continuous mappings. The same problem (but in
the real line case) was, also, discussed by Zhang and Liu [45], via the critical point
theory (Mountain Pass Theorem). For another similar situation, where the discrete
time is replaced by an abstract time - scale, there is an interesting discussion by Agar-
wal, Otero-Espinar, Perera and Vivero [4], where variational methods are used. The

I'WARNING: To avoid confusion of exponents, powers and indices we would like to make clear
the following:

The exponent n in symbols like ™ will denote the n index of the item x. For the n-th power of
x we shall use a parenthesis, like (z)™. Also, symbols like (a;); will mean the k-dimensional vector

(a1, az,...,ak).
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method of lower and upper solutions in the real number space was used by Drabek,
Thompson and Tisdell [19] to investigate existence of solutions of the difference equa-
tion

y(i+1)=2y(i)+y(i—1) = f(i,y(@)), i=1,2,...,n

with boundary conditions involving two, three and four points. Henderson and
Thompson [23] are interested in the existence of triple solutions of problem (1.12).
Other forms of Dirichlet, or mixed type two-point or multi-point boundary value prob-
lems for difference equations of second or higher order can be found in the literature,
see, e.g., [1, 3,6, 7,9, 12, 13, 14, 16, 20, 21, 22, 25, 27, 28, 29, 37, 38, 39, 40, 43, 44]
and the references therein. For systems of difference equations, the problem of the
existence of solutions was investigated elsewhere, see, e.g., [41, 42].

In this work we obtain existence and uniqueness results for the problem (1.1)—
(1.2), by using the variational method based on the main idea of Apreutesei [8] con-
sisted of the four previous steps. Notice that we use a fairly different approach, due
to the system form of the problem, and also because of the fact that the coefficients
0; and (; might not be equal.

The paper is organized as follows:

Section 2 is devoted to some auxiliary facts from linear algebra and some topo-
logical properties of monotone operators. The basic setting of the problem, as well
as the main results are presented in Section 3. In Section 4 we present in the form
of lemmas some useful statements corresponding to the various steps of the method,
which we apply and in Section 5 we give the proof of the main results. Finally, in
Section 6 we present an illustrative example and show that some conditions imposed
are sufficient for the existence of solutions. It is, also, shown that in some cases these
conditions can not be omitted.

2. SOME AUXILIARY FACTS

Since in the sequel we shall use some facts from elementary algebra, we shall
present some of them here, just for completeness of this work.

Let (-,-) > 0 be the inner product and ||-|| the usual norm in the real £ dimensional
space.

We denote by M’ the transpose of any square matrix M. As it is well known, a
k x k- real symmetric (Hermitian) square matrix M is positive definite, if it satisfies
(z, Mz) > 0, for all non-zero vectors z with real entries. Therefore, given a k x k-
real square matrix M with its symmetric part %(M + M’) being positive definite, it
holds (z, Mz) = (z, (M + M’)z) > 0, for all non-zero real vectors z. Thus we can
say that M is positive definite as well.

Notice that a Hermitian matrix is positive definite if and only if all of its eigen-

values are positive.
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Lemma 2.1. Assume that X; ,i=1,2,..., N are real positive definite k x k-matrices
and let pg, p1 be positive real numbers. Also, let £ be the set of all vectors

(Ul,’l}g, e ,UN)
in the cartesian product RF x R¥ x ... x R*¥ (N factors) satisfying inequality

>~ Xw) < po( Yo(Il)?) + (2.1)

i=1 i=1
Then it holds

il < i(;)o - Vo) + ), (22)

for all components v; of all vectors (vy, vy, ...,vxN) in E, where > 0 is the smallest
eigenvalue of all matrices X;.

Proof. Indeed, for each ¢« = 1,2,..., N choose an orthonormal basis made up of
eigenvectors vy ;, Vo, . . . Ug; of %(XZ + X/) corresponding to the (positive) eigenvalues
M1y 2,05 - - - Poei- Then any v; € R* can be written in the form

= filvl,i + 52202,2' + -+ fka,i-

Therefore, if a point (vy,vs,...,vx) € & satisfies
al 1 N N 1
2
Z<'Uia §(X7, + XZ/)UZ> - E <UZ',X7;UZ'> S p0< E (H’UZH)z) —+ P1,
=1 i=1 i=1

then it holds

N Nk N N .
1 1
i) < 303 i€l = oo 50+ XDes) < o D (il)?) + .
i=1 i=1 j=1 i=1 i=1

Thus we get

N -

2
(Do wl)?)” < 5 (o0 + /o) + tap),

i=1 2

from which (2.2) follows. ]

Before we present next lemma we recall that a directed set is a nonempty set
I, associated with a reflexive and transitive binary relation <, with the additional
property that every pair of elements has an upper bound. Directed sets are, for
instance, the set of natural numbers with the usual order, as well as the set N x N of
pairs of natural numbers with order defined by (ng,n;1) < (mg, my), if ng < mg and
n1 < my. Also, a net in a set X is a function s : I — X, where [ is a directed set.

Lemma 2.2. Let X be a real positive definite matriz and consider a directed set
I. Assume that s;, i € I is a net of positive real numbers satisfying the relation
lims; = 0. Then every net (x;) in R* with (v;, Xx;) < s;, for all i € I satisfies
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Proof. As above, choose an orthonormal basis made up of eigenvectors vy, v, . .. vg of
2(X + X) corresponding to the (positive) eigenvalues i1, pis, . . ., ptg. Then we have
7 = Elvy + Evy + - -+ + Py, and therefore

i 2 (o X) = (o, 506 X)) = ()P + (€)ma -+ (61)a 2 0.

Thus, for each j, it holds lim; gg’ = 0, which implies that lim z; = 0. O

Next we recall some facts from the theory of monotone operators. Many sources
of such arguments can be found in the literature, but we prefer to use the book due
to Cioranescu [17].

Let S : D(S) C H — H be an operator. Then S~! will denote the inverse relation
of S, namely, S™'(y) :={z € H: y € S(x)}. Obviously, S~! is a maximal monotone
operator if and only if S is maximal monotone. The resolvent with parameter A > 0
of S is the single valued operator given by J{ := (I + AS)~!. This is a nonnexpansive
mapping defined everywhere. The Yosida approximate with parameter A > 0 of S is
a monotone operator given by the type

1
Sy == J3),

it is defined everywhere and it is Lipschitz continuous (with Lipschitz parameter 1/\).
Obviously, we have

Jix + \Syax = (2.3)
for all x € H and A > 0.

Observe that, given € H and setting y := Syz, it holds \y = = — J{x, or
Jyx = x — \y. Therefore we have that x € (I + AS)(z — \y), which implies that

Syr =y € S(x—\y) = S(Jyx). (2.4)

More properties of these operators can be found in, for example, [10], Proposition
1.1, page 42.

The following fact is significant in our approach and although it can be found
elsewhere, we shall present the proof here just for completeness of the present work.

Proposition 2.3. Every mazimal monotone operator is w — s-demiclosed and s — w-
demiclosed.

Proof. Assume that A is a maximal monotone operator and consider sequences (z,,)
and (y,) such that y, € Az,, ¥, — ¢ and y, — yo. First we claim that

<xna yn> - <I0a yO) .
Indeed, we observe that

| (@nyn) = (20, 90) | < llwn = wollllyn — voll + [ {20 — 20, 90) | + l[z0lllyn — woll- (2.5)
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Since x,, — xo and H is a Hilbert space, it follows, that lim,,_.. (z,, — g, %o) = 0.
On the other hand the classical Uniform Boundedness Principle, guarantees that the
sequence (z,) is bounded. Hence, from (2.5), we get lim,, o0 (T, Yn) = (%0, Yo)-

We take some y € Az. Since A is a monotone operator, it holds (z,, — =, y, — y) >

0. BUtv Clearlyv <2Un — T, Yn — y) = <xn7 yn>_<x7 y)—(xn -, y>—<$, Yn — y> Therefore
we get

lim <5(7n — Z,Yn _y> = <$(70,y0> - <LL’,y> - <SL’0 _x7y> - <$L’,y0 _y> =

= (2o, y0 —¥) — (T, Y0 — ¥) = (To — Z, 50 — V)
and so (zg — x,yo — y) > 0. Due to maximality of A the latter gives yy € Axg, which
shows that A is a w — s-demiclosed operator.

The proof that A is s — w-demiclosed is similar. O

Finally we state a useful result concerning the sum of two maximal monotone

operators:

Lemma 2.4 ([11, Theorem 9, case (i)]). If S; : D(S;) € H — H, i = 1,2, are
mazimal monotone operators such that the domain of at least one of them is the
entire space H, then their (point-wise) sum

S1 + SQ . D(Sl) N D(Sg) — H

s a maximal monotone operator.

3. SETTING OF THE PROBLEM

Everywhere in this work we shall assume that the coefficients ¢ and (" are
positive real numbers. Also, we shall assume that the operators 7", n =1,2,... k
are maximal monotone having the property that 0 € N, D(7™) and moreover, without
loss of generality, 0 € T™(0) for all n. If the last condition is not true, then we can
set

S"u = T"u — wy,
where w{ is the minimum-norm point of 77(0). (The latter exists because the set
T"(0) is closed and convex.) Then we can take a system of the form (1.1) having
in the right side the quantity c]'S™u}' + v}, where the perturbation v} is the vector
ui + clwyg.

First, for each n =1,2,..., kand i € {1,2,..., N + 1} define the quantities

al =1, ol =al,, (3.1)
and we formulate the following k x k& matrices:

ol 0 - 0 0 -0

09?...0 0<i2...0

7 .

o 0 --- 6k 0 0 --- ¢k

(2
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as well as
2 k
-l 0 —ek
Ei = i .
- 0

Moreover, for simplicity, we consider the k x k - matrix F; := 2[,, + 0, + E;, as well
as the 2k x 2k-matrix

E PR AN Mll M12
M= H v = 21 22 | o
Tixk kak M* M
where the blocks M% (i, € {1,2}) are k x k -matrices.
We create the following condition:

(C1) The k x k-matrix
MllEl + M12
is non-singular.

Lemma 3.1. Under the condition (C1), the N-term of the k x k matriz solution A,
of the recursive equation

Nv1 = BNy — Zigg Ny, 0> 11 (3.3)
with initial values Ng = Iy and Ay = Ey, is a nonsingular matriz.

Proof. Define the 2k x k-matrix

- A1 El
A = = .
' (AO) (chk)

Also, from (3.3) it follows that it satisfies the linear recursive relation

_ E; -7, _
Ai+1 — +1 +1 AZ
sk Opxk

and observe that

This gives
N-2
- En_i —Zn_
Ay = A = MA;,
v g (Ikxk Okxk ) o
from which the result follows, since we have Ay = M''E, + M2 ]

Next we define the matrices
al 0 -+ 0 0 —|e?| .- —|ef|

0 af -+ 0 —leil 0 el
Ci:: . . . aGi::

o 0 --- aoF —let| —|e?| --- 0
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and we assume the following condition:
(C2): The k x k-matrices

Cz(@z_Zz+Gz)7 1= 1,2,,N
are positive definite.

Remark 3.2. Since the matrices C; and Z; are diagonal with positive elements, under
the condition (C2), the k& x k matrix C;(©; + G;) is also positive definite.

To proceed, consider the matrix

0 -+ 0

0 k2 0
K= . :

0 O Kk

where

and assume the following condition:

(C3): For any i = 1,2, ..., N the matrix
. 1

is positive definite.

Now we are ready to formulate our main result of this work:

Theorem 3.3. Assume that T7 : D(T’) ¢ H — H, j = 1,2,...,k are mazimal
monotone operators. If the coefficients ¢! and (' are positive real numbers and the
conditions (C1)—(C3) are satisfied, then the boundary value problem (1.1)~(1.2) admits
a unique solution.

We will give the proof of this theorem in Section 5.

4. USEFUL LEMMAS
We start with the following existence result:

Lemma 4.1. Assume that condition (C1) is satisfied. Then given a", 0" in H and
(fM); € HN, n = 1,...,k, there exists a unique (27); € HY satisfying the (finite)

2

recursive scheme
Wy = (2400} + (Pl + Y elal = f7 (4.1)
Jj#n

1=1,2,...,N,n=1,2,... k, where xj := a" and x7,, :=b".
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Proof. Denote the column vectors (z}'),, (a"),, (0™), and (f*), by the symbols X,

(2

A, B and F; respectively. Then system (4.1) can be written in the equivalent form
XH-l :EZXZ_ZZXZ—1+F;7 L= 172aaN> (42)
where

X() = A and XN+1 = B.

In order to show that the scheme (4.1) is solvable, we will use a simple version
of the so called shooting method. More precisely, we will show that there is a vector
U = (u") € H* such that, if X = A and X; = U and X; solves (4.2), then
XN+1 = B.

To this end, for each U = (u") € H* we take the unique solution X;(U) of the
recursive relation (4.2) with Xo(U) = A and X;(U) = U. Then we get

Xo(U) = E. X (U) — 2 Xo(U) + Fy = BE\U — Z\A+ Fy =: MU + ®,.
Also we have
X3(U) = By Xo(U) — ZoX1(U) + Fy = Ey(MU + @y) — ZoU + Fy =: AU + @y,
where the matrices
No=1, A :=FE;, Ay:=FE)A| —
and
Dy:=0, & :=F — 1A, Oy:=FEP + I
do not depend on U. Similarly, by induction, we obtain

Xip1(U) = AU + @5,

where

Ni=EN 1 —ZNo, 122
and ®; do not depend on U.

Since the requirement
B =Xn1(U) =ANU + Dy,

must be satisfied, it is sufficient the original vector U to be chosen in such way that

ANU = B — Oy (4.3)

By Lemma 3.1 we know that the matrix Ay is invertible, thus from (4.3) a unique
vector U can be found. The lemma is proved. O
To formulate the problem under consideration, for each j = 1,2,..., k denote by

L; the space HY := H x H x --- x H (N factors) endowed with the inner product

N .
= ol (ziy)y
=1
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We let £ be the product [] i L7 of all these spaces furnished with inner product the
sum of the inner products of all factors. In the sequel, for simplicity, we shall not use
the index j in the symbol of the inner product (z,y);.

The most important role in our approach will be played by an operator defined
in the following way:

Given the vectors A := (a") and B := (b") appeared in the boundary condition
(1.2), define the operator

QAB):L—-L
such that for all j,n=1,2,... k

Q((xg)u A,B)} = —xy + (1 +67)2} — (fa” — Zglxlv

Jj#n
J#N
O((2]); A, B)jy = =b" + (1 + 0%)a — (R, ZngN
J#n

Lemma 4.2. Assume that the conditions (C1) and (C2) are satisfied. Then the
operator Q(+; A, B) is mazximal monotone.

Proof. First we will show that Q(+; A, B) is a monotone operator acting on the Hilbert
space £. We take two points z := (z}) and y := (y/) in £ and define their initial and
the final values as follows:

n __ n __ n n _ n _ 3
ry =Yy =a" and T, =Yy, = 0"

For simplicity we put

J

i ::xg—xg_l, ¢f ::yzj_yzj—h i=1... ,N+1

and

& =0/ —¢), i=0,1,...,N+1.

Then observe that
—a (s — yi) + aF (L+67) (a7 — o))
— oG — yita) Zafc":‘f(fﬁf—yf)
J#n

= o[ = (Pl = i) + 02 — w7

(= i) = D el — )]
i#n
= [ = (Pl = W) + (97 — 47

+ 6 (x] —yl) Zs x] —yl}

J#n
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Therefore we have

k N
=3[ = (e — et — )+ e — O — o)

n=1 i=1
k

O G =yt el =) = Do el (ol — gl gy | =

Jj#n n=1

But, for each n = 1,2, ..., k, it holds

\]:
I

O(?[—<Q0?+1—’l/}2+1, Z; y2>+<n ; 27 z_yz>
1
o -yt =yl = > <xz—yz,z¢—yf>}

i#n

2

+
=9
=3

-

o [ (i = U, (& = ) + Gt — 00l — )

=1

+ar(le? =yl = S (= el — )|

J#n
and hence
N
Za |:<Soz+1 z+17 @?—1—1 - ¢z‘n+1> - <SO?+1 - ¢2+17 i+1 y2+1>
=1
Gl = ol = ) e — )P = Y el (el — =) ]

J#n

The expressions of the last quantities can be simpliﬁed if we set
w —ZIZ' _yz and pz _<()07, z’ z yz>

Indeed, in this case we get

N
T = Za?(H‘P?H z—‘,—l” Z o pips + Zancn A
+Za"5" (=} — w'l) Zzae —yl, 2 — )

i= 1]7&n

=Za?<||so?+1 ol Zaﬂpy+1+zag
+Za"6" Jwr)? zza & (wl Y,

1=1 j#n

namely

=2

Z (i — ;L+1||)2 + 7",
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where

N N
——Za?p?+1+2a?<f"+2a"6" [w?]])? ZZ@ 7wl .
=1 =1

1=1 j#n

For the constant v we have

V"= (e + ot + an ey + gy — aglps 4 -+ [anCy — o]y
N
+afop(lwp)? + .+ andn (lwil)” = >0 " arel (wl,wy')
1=1 j#n
= oo} + ooy (lwl)* + ... + afox (lwi])? ZZO‘ el (wl,wl'y,
i=1 j#n

because of the choice of the original constants «'. But it holds
pr=(pr = vy =) = (@7 — x5 — (W' —wo), oy — i) =
= (a7 —a" =yl +a", 27 —y7) = (|27 —7)* = (Jwi])*
and therefore

Zv Z[ PO ) + g3 () + ..+ R (k)

n=1

— ZZQ?&{ <wf,wln>}

i=1 j#n

> Z [ 1T (lwy D? + 0305 (lwz)? + ... + e oy (lwi]])?

- Zzamaﬂuwznnwm]

1=1 j#n

Finally, if for each i = 1,2,..., N we denote by s; the vector with entries ||w?||, then
the right side of the previous relation takes the form

(sl,C’l(@l—l—Glsl—l—Zsl, (0, — Z; + Gy)sy),

=2

which is positive, because of assumption (C2) and Remark 3.2. This means that the
quantity

k N
U=3"3al(leha = ¥l + 37"

n=1 i=1 n=1

is nonnegative and therefore the operator €)(+; A, B) is monotone.

To complete the proof of the lemma it remains to show that the range of the
operator I 4+ Q(+; A, B) is the entire space, namely

R(I +Q(+ A,B)) = L.
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To do that it is enough to prove that given (f/) € L, there exists a point (z7) in £

such that by setting xé = a’ and xgv = b, system (4.1) is satisfied. But this fact
is guaranteed from Lemma 4.1. This completes the proof of the lemma. O

Lemma 4.3. Assume that condition (C3) is satisfied and let TS, (\ > 0) be the
Yosida approzimation of each mazimal monotone operator T?. Then, if for given
€ (0,1] and (u}) € L a (finite) sequence (x") exists satisfying

ZL’?_&T (1+9n) n)\r Czn n)\r_l_zgj ])\r " n n)\r_l_rxn)\r_l_u?’ (44)
J#n
forv=1,2,..., N, where

n)\r_ n nAT _ n
Ty a" and wy, =0",

then there exists K > 0 not depending on the indices i,n and the parameters X\, r such
that

|27 < K. (4.5)

Moreover the quantity (T2z!") is also bounded with respect to A and r.

Proof. We use relation (4.4) and have
N
Z Oé? <IZL—;_)¥’ i x?,)\r n, )\r> Z oz"é" ||xn )\r )
N
Z n<n< nAr_xZL)ir’ nAr>+Z Z < ])\r n)\r> (46)

i=1 j#n
N

N
<Tn n)\r’ n)\r>+,rz (||xnkr’|>2+za? <U?,l’?’)\r>,
=1

I
EMZ )

where
5 =0 -

Due to the fact that 0 € N,7"(0), from the monotonicity of 7™, (2.3) and (3.1) it
follows that

N N
S e ) e ).
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Therefore we have
Za“é" 22 < 3 [ (=i, i)
N
AT AT n AT AT n )\7’
-y (2T } _ZO‘ ([l = a2

1=
N
JAT nAT’ n no_MAT
Y (ot ) = St (ura ),
=1

1=1 Jj#n

from which we get
nsn n )\7’ n n AT n AT AT n n
E al o) ( §aN<b —xy Ty >—<x1 —a,a>

—Za (e = 22 ) (43)

=z

—l—Z Z < JAT ”’\T>—§:a? <u?,x?’)‘r>.
1=1 Jj#n i=1

From this relation it follows that
Zanan ||In)\7‘ ‘I‘ZOZ ||xn)\7“_ n)\TH)

N
A A j A A
< apllo" i 1+ 2 e+ (la™ 1D + D af Y el el |27 |
1=1 j#n

(Za (1) (Za (i 12)

which gives the estimate

N
nn n)\r AT n)\r
Zm (I 12+ e (™ = a2y |)?
=1
1 N 1 N 1
n || n n n 2 n n,AT 2
< [Varle |+ —=la" |+ (3 ar e )?) ™| (3 ekl 1)?)
N i=1 i=1
N (4.9)
n j AT AT n
+ >0 ar 3l e + ()
i=1 j#n
Kn n)\r JAT AT n
< l(za (Il )+Z = I e + K
1=1 Jj#n
where
-1/2 = 2\ /2
K7 = gl ]+ (@) e + (3 ekl )?)

1=1
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and

Ky = ([la"]])?

are positive constants not depending on A, r.
Now, from the obvious relation

b= 3 (- o) 1o < 3 )
g(fj )(fa ||x"”—"”||>) e,

i=1 a4y i=1

AT

20|+ e

nAT’

AT
xz

=

we get
n

Za (" = 2 1) + 200, ([la™])?,
z 1,1

o ([l 1) < 22

where we have used the elementary inequality (p+ ¢)? < 2(p* + ¢?). Hence we obtain

nAT n)\T’H) ‘I‘KZ, (410)

Za () <K§‘Za (ll;

where the constants

N m
1 K™
KY =2 al = —
and
N
Ky =2 o ([la"])?

do not depend on the parameters A, r. Combining relation (4.10) with (4.9) we obtain

N
K3 Za"6" (a7 + > a2 )2
i=1

N
TR A
— K5y o> el | (4.11)
i=1 j#n

N 1
< Ky (Y el 1)) + Ky i + K
i=1

Summing up both sides of inequality (4.11) for n =1,2,..., k we obtain

N N 1
>, Gy < oo (D (IID?)” +

i=1 i=1

" represents the vector with entries ||| and the constants py, p1 are given

where v
by
k k
poi=a KiK? and py =Y (KK} + K}),
n=1

n=1
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where

Qi=maxaq;.
2,

Now, we apply Lemma 2.1 and get inequality (4.5), with K being the real number
(21) Y (po + [(po)? + 4up1]*/?), where p is the least eigenvalue of all eigenvalues of the
matrices C;(Ixxr + %IC(@Z- —7Zi+Gy), i =1,2,...,N. This fact, because of (4.4),
guarantees that

T2 < K, (1.12)

for some constant K5 not depending on ¢,n, \,r. The lemma is proved. O
Lemma 4.4. Assume that conditions (C2) and (C3) are satisfied and let (27" be

a (finite) sequence satisfying equation (4.4). Then, given a sequence of real numbers
(\,) converging to zero, the strong limit

lim 2" = 2"
exists and satisfies
oy — (L +00)x" + (o + Z el € AT " + el 4 ul, (4.13)
J#n
foralln=1,2,...,k and
zy" =a" and Ty, =" (4.14)

Proof. First we notice that, since H is a reflexive Banach space, from the classical
Banach-Alaoglu theorem, it is guaranteed that every bounded sequence in H has a
weakly convergent subsequence. Therefore, due to (4.12), without loss of generality,
we can assume that for the given sequence (A,) there is a point w;”" such that

TR o™ — " (4.15)
In order to prove the result, we observe that for two values of v say vy, v, by setting
Y= :E?’/\Vlr and z' 1= ?’/\”ﬂ

from (4.4) it follows that

N
Zazn<yln+1_yzn 7'+1+Z7"y2_z> Zanen n_zz?yz Zl>+
=1

N
> arr(yr, — Ay - z>+Z Py eyl =2y =2y
=1

1=1 Jj#n

N N
=S are (TR =T Ayl — ) e 3l — 272
=1 i=1

or

N
P P ZO”" (llyr" = 21
i=1
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n n n n n n n
- E 7] <yi — Vi1 — % T Yo — Zi—1>

(Hyz_yz 1—2 +Zz 1“ _'_Z Z€j<yz_zz7yz_z>

i=1 Jj#n

ol (T3 yit TQZZ?,@/?—Z?>+7°Za?(||yl‘—2?||)2-
i=1

N
N
The latter, due to (2.3), gives that

o (lyy — 2w ll)? Za"5" lyi' = 271)?

N
Z Hyz_yzl_z +Z7, 1“2_'_2 Zgj<yz_zzvyz_z>
i=1 i=1 j#n

N

Z Q; C <T)\V yz T)?% Zzn> )\V1T)7\Ll,1 yZL - )\Vzir)t2 Zzn>

N

N

n o .n ™ n ™ _n n n n\2

Z <T,\V Yy — T)\VQZia'] nYi — J,\szi > ‘H“ZO%' (i = =21)°
i=1

=1

Now, from (2.4), the monotonicity of 7™ and (4.12) it follows that
N
- Z a7 (gt — 211D = D afa(lyf — vty — =8 + 2 1)?
i=1

N
Z znzz g_zzﬁyz_z>

i=1  j#n

N
Z i (M (175, w2 1D* + A (1T, 271)7)

N
—wﬂw)Za P (T g T2+ Y el = 27
3 =1

(>‘V1 + )‘Vz K5 Zancn +Tza?(’|y? - Zan)z
=1

=1

Therefore we have

ZO& T_'_(Sn ||y2 _ZnH Z Zg]<yz 7,7 _Z>

1=1 Jj#n
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This implies that

N N
Yo ar(r )yt — =) =Y ar Y lelllyl = Alllyr — 27|
i=1

i=1 j#n
N
< (s A (K5 Y e (4.16)
i=1

Taking the sum of both sides of (4.16) for n = 1,2,...,k we let v;*"** be the vector

with arrows [jy/ — 27| = ||xf’)‘”1r - xf”\”QTH. Then we obtain that
N
Z(Ufl’w, Ci(rlkxk + @z — ZZ + Gi)UZl-/l’V2> S ()\Vl + )\VZ)KG, (417)
i=1

for a certain constant Kg not depending on A, , A,,,r and n. Thus, due to Condition

AT
)

(C2), we apply Lemma 2.2 to conclude that the sequence (x;""*"), converges strongly

to some point 2", say. From (4.12) and (2.3) it follows that
lim || J3" 2" — 2T = 0
and therefore

nALT T
i i

s — lim J/\Tun:c
Now, since the operator T" is maximal monotone, by Proposition 2.3, we know
that it is s — w-demiclosed. This means that from the inclusion

TR 2™ e T (JE 2 ™")
and (4.15), we may pass to the limit to get

" € D(T") and w;" € T"(z"").

Considering (4.4) for the values A\, and taking into account the demiclosedness,
we, finally, obtain that (z7") is a solution of the problem (4.13)~(4.14). O

5. PROOF OF THEOREM 3.3

In this section we shall use the previous tools (lemmas etc) to give the proof of
the main theorem of this work.

Proof. Consider, as previously, the Yosida approximation 7 i of each maximal mono-
tone operator 77 and define the operator 7y : £ — L by

(T () = Tou, m=1,2,...,N, n=1,2,... k.
It is easy to see that the operator 7, is maximal operator, since each of its components

has the same property.

Then, due to Lemmas 4.2 and 2.4, the operator €(.; A, B) 4+ 7, is maximal mono-
tone (see, e.g., [17, 165-167, p. 177, exerc. 14 and p. 178 exerc. 18]). This implies
that

R(QUGAB)+ Ty +rl) =L,
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namely for a given (u!) € £, there is a point (27") € L, satisfying the problem (4.4).
Then taking a sequence A, converging to 0, from Lemma 4.4 we conclude that there
is a point (27") € L, satisfying relation (4.13) and (4.14).

We claim that given a sequence (r,) converging to zero the strong limit of the
sequence (27" exists and it is a vector (7
(1.1)—(1.2).

Indeed, first of all, from (4.5) and Banach-Alaoglou theorem it follows that there
exists some () such that

) satisfying the boundary value problem

w—lima?"™ =27, i=1,2,...,N, j=1,2,...,k (5.1)

77

Next consider equation (4.13) for two values r,, and r,, and set

: -
Im=al o m=1,2.
There are points
n n, 1Ty, _
Up'y € TMx7™, m=1,2

such that

Pt = (L0 + GOy + D El0] = cufly + 1 Oy + 1]
J#n
for m = 1, 2. Subtracting the two equations for m = 1 and m = 2 we obtain
i1 — P — L+ 0708 — fa] + (o711 — 910

+ Zfz[ g,1 - 52] = Czn[uznl - uznz] + TVIQSZI - Tuzﬁb?,m (5.2)
i#n

from which it follows that

ZO{ <¢Z+11 _¢?+12 ¢12’ 2,1 Z2>
N
— Z Oénen ¢?,27 21 - ?2> + Z e <¢?—1,1 - ¢?—1,2v ¢Z1 - ¢?2>
=1
+ Z Z 5] <¢ z 29 i Z2>
i=1 j#n

aj’ct <u?1 - u22> ¢Z1 o; 2> + Z a; <7’ul¢z 1 7’1/2@51 2 @i ?2> .

I
i I

Therefore we get

Za"mn — B+ Pl Oy — BTy — Za"é" (681 — sl

—Za?_1<¢21— or 1,1 ¢z2+¢2 127¢z 1,1 ?—1,2>
i=1
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_ZO‘ ||¢21 i—1,1 Zz+¢?—1,2“)2

_'_Z Z€j<¢ 227 n 22>
=1 j#n
N
= > are (upy —uly, 2>+Zam (lo3 1)
=1
N
+Zam<n¢2n Ea Fon T ) (B0, 61)

<U11 Uiy, §;f 22> ZO‘ (o, + 10 ) (071, Bi'a)-

||Mz

Hence, taking into account the boundedness of (z/"*"), we obtain

N
> | S ar(io, = otal)? S (6l bt - )]

n=1 = i=1 Jj#n

k N
ZZ (1981 = 011 = O + 0o )?
S
SZZ (roy +ru)ll0a [l 97l < Ko (1, +12,),
=1 =1

for some constant K7 not depending on v and v5. This relation implies that

kN
Zza (651 — @11 — i + 912l) —I-Z (vi, Ci(©; — Zi + Gi)vy)
n=1 i=1 i=1 (53)

< K8(Tu1 + TV2>7
where v; is the vector with entries [|¢}; —¢7,||. From (5.3) it follows that the sequence

(@)™ = 2™,

converges strongly to vf , say. This and (5.1) guarantee the fact that the limit
s —lima)"™ = s — lim(z]"™ — 22™) + o = vl + o’
exists, thus it is equal to x{ Hence, the limit

v

s —lima}™ = s — lim[(2}"™ — 2)™) + 2)™] = v} + 27,

exists and it is equal to x3. Inductively we conclude that the (strong) limit

v

s —hmx”

exists and it is equal to x{, forall : = 1,2,...,N and 7 = 1,2,..., k. This fact,
the s — w-demiclosedness of operator T and relation (4.13) imply that 27 satisfies
equation (1.1) associated with the conditions (1.2).
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It remains to show uniqueness of the solutions. To this end, assume that xi
and y] are two solutions of equation (1.1) satisfying the conditions (1.2). Then the
quantity z! := 2] — x] satisfies the relation

Aoy — (L0020 + ey + > ele] € (T} — Ty} (5.4)
J#N
foralln=1,2,...,k, as well as
2y =0, zZyy =0. (5.5)

Multiply both sides of (5.4) with af'z!" and reformulate it to get

My — 2 2 — al (0 — ) (|20 —amz?—zr_l,z?_a
—ar Gl =+ S ared (2, ) = aldr(or, — o — gy, (6)
j#n

where vy, and vy, are selections of 7"z} and T"y;" respectively. We use the mono-

tonicity of the operators 7" and take the sum of both sides of (5.6) from i = 1 up to
t = N to obtain

N N
Do aiefy = 2 A = el {E = Ay 2 Za (07 = &Il
i=1 =1
N
=2 _aialla = #l) +ZZ%€, LA 20,
i=1 =1 j#n

or, due to (5.5),

—an(ll2x ) Za O = U= = Z iy (ll27 = 2 )?

(5.7)
+ ZZ&Z el(z],21') > 0.
i=1 j#n
Next, take the sum of both sides in (5.7) from n = 1 up to k and get
A: ZQN 2% 1) +ZZO‘ @ = ¢l 1)
n=1 i=1 (58)

Mw

kN
+ZZ 1l = =)

Hence, from the Schwarz inequality, we have

N
Z; 2,2 <.

n=1 i=1

B< A<, (5.9)
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where

k k N
Bi=3 af(llyD? + D0 Y i (e — 2l
n=1

n=1 i=1

kN kN _ '
YDl = Ul =D 0Dl =

n=1i=1 n=1 i=1 j#n

The sum of the last two terms of B can be written as
N

Z@i, Ci(©; — Zi + Gi)vy),
i=1

where v; is the k-vector with elements ||2/|. Thus, if we assume that 2/ is not zero

for at least one 7, then, due to (5.9) we obtain

0<Zaw (= 1) +ZZ@ (27 = 24 )?

n=1 i=1
+Zu2, (0; — Zi+ Gi)v)) = B< A<0,
which is a contradiction. The proof is complete. O

6. AN APPLICATION

We close the present work by giving an example which illustrates the results.
Also by this example we show that at least condition (C2) can not be ommited for
the existence of solutions.

Consider the system of equations

T — (1 4+ 0w + oy +eys € ;T +uy, i=1,2,...,5,

o) 5 (6.1)
Yiv1 — (1+9>yl+cy2—1+8x2 € C‘T yl+uz7 = 1727”'757
with ¢, ! > 0, for all 7, j, associated with the conditions
o =:a', wg=:b" yop=:a% ys=:0" (6.2)

We set o := 2 + 8 and formulate the matrices

A (¢ 0} ___01___
S R () I

and we let F := oI —e.J. Here I is the 2 x 2 identity matrix and the matrix .J satisfies
JJ = 1. Then the matrix M is given by

_ _ 4
M2 . (E —I E —CI
M= <M21 M22) = <1 0 ) - (I 0
It is not hard to see that? M = E* — 3CE? 4 (%I and M'?2 = —CE? + 2¢%E.

2From now on the symbol a™ will denote the power with exponent n and base a.
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Hence we have
MYE + M"™ = E® — 4CE® + 3C’E
= (ol —eJ)® —4¢(ol —eJ)* +3¢* (ol —eJ)
= 0’1 — bo*eJ + 100°*] — 100°c*J + 5oe'l — °J
—4Co®T +12¢0%e] — 12¢0e?] + 4¢e® T + 3C%01 — 3(%e]
_ (a5 +100%2 + Boet — 4¢o® — 12Coe? + 3&)1
— (5045 + 1002%e% + &5 — 12C0o%e — 4¢e® + 3§25) J
and therefore
det [MHE + Mlﬂ = <05 +100%e? + 5oe® — 4¢3 — 12Coe? + 3(20>2
_ (5045 10023 + &% — 1202 — 4¢P + 3(%)2
= <<75 +1003e% + 5ot — 4¢3 — 12¢Coe® + 3¢%0 + 5o'e
410023 + &5 — 12C0% — 4¢P + 3<2e>
X <05 + 1003e% + 5oe? — 403 — 12Coe® + 3C%0 — bole
—100%e® — 5 + 12¢ 0% + 4¢e® — 3§25)
= ((0+2) = 4o +2)° + 3¢ (0 +¢))
X ((a — &)’ —4¢(o —e)* + 3% (0 — 5))
— (02— &2 ((a o) c) ((a o) 34)
x ((a o) g) ((a o) 3<).
This means that condition (C1) is satisfied if and only if
lo| # |e] and o +£¢ # +£/¢, +£4/3C. (6.3)

Also, we can obtain that Condition (C2) is satisfied if

le] <0—¢ (6.4)
and Condition (C3) is satisfied if
C5
< 0—C. .
= e rac s oy TS (6:5)

Obviously, (6.4) implies both conditions (6.3) and (6.5). Consequently, if the coeffi-
cients ¢ and cz’ are positive, and the operators T, T? are maximal monotone, then
under the condition (6.4), Theorem 3.3 is applicable and therefore the problem (6.1)-
(6.2) admits a unique solution.
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Remark 6.1. Condition (6.4) is not only sufficient for the existence of solutions of
the problem. Indeed, as the following example shows, if this condition does not hold,
then solutions of the problem may not exist.

EXAMPLE. For fixed real numbers «, 8, consider the system
Tipr — (14 0)z; + 21 + (14 0)y; € O|x;| + sin?(a)

6.6
Yirr — (1 4+ 0)yi + yio1 + (1 + 0)z; € O)yi| + cos®(a) (6.6)
fort=1,2,...,5, associated with the boundary conditions
Lo = a1, Yo = A2, I6:b1, yGIbQ. (67)
This problem is of the form (6.1) and its coefficients do not satisfy (6.4). Assume
that it admits a solution z;, v;, ¢ = 1,2,...,5. Then the (finite) sequence u; :=
ri+vy;, 1=1,2,...,5 solves the discrete boundary value problem

Uip1 + Uiy € Olwg| + Olys| + 1, uo = ay + ag, ug = by + by
and therefore we have
bl —+ bg + aq —+ as € 8‘1’1‘ — 8|LL’3‘ —+ 8‘1’5‘ —+ 8\y1| — 8|y3\ —+ 8\y5\ -+ 1.

The right side of this inclusion is a subset of the real line belonging to the interval
[—5,7]. (Recall that the range of the sub-differential operator is a subset of the interval
[—1.1].) Therefore, if, for instance, the boundary conditions satisfy |by +by+a; +as| >
7, then there is no solution of the problem (6.6)—(6.7).
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