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1. INTRODUCTION

In 1940, Ulam [31] posed the following problem concerning the stability of func-

tional equations: give conditions in order for a linear mapping near an approximately

linear mapping to exist. The problem for the case of approximately additive mappings

was solved by Hyers [10] who proved that the Cauchy equation is stable in Banach

spaces, and the result of Hyers was generalized by Rassias [27]. Obloza [24] appears

to be the first author who investigated the Hyers-Ulam stability of a differential equa-

tion, followed by Alsina and Ger [2].

Since then there has been a significant amount of interest in Hyers-Ulam stability,

especially in relation to ordinary differential equations; for example see [8, 9, 11, 12,

13, 14, 16, 17, 18, 20, 21, 29, 32]. In our context, Hyers-Ulam stability on (a, b) means

that given ε > 0 and continuous f , whenever an appropriately differentiable function

x : (a, b) → C satisfies

∣

∣an(t)x
(n)(t) + an−1(t)x

(n−1)(t) + · · ·+ a1(t)x
′(t) + a0(t)x(t) − f(t)

∣

∣ ≤ ε, t ∈ (a, b)
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there exists a solution y : (a, b) → C of

an(t)y
(n)(t) + an−1(t)y

(n−1)(t) + · · ·+ a1(t)y
′(t) + a0(t)y(t) = f(t), t ∈ (a, b)

such that |y − x| ≤ Kε on (a, b) for some constant K > 0.

Some contemporary developments in Ulam’s-type stability have been reviewed

in [7]. Rezaei, Jung, and Rassias [28] recently utilized Laplace transforms to investi-

gate the Hyers-Ulam stability of linear equations with constant coefficients. András

and Mészáros [5] used an operator approach to show the stability of linear dynamic

equations on time scales with constant coefficients, as well as for certain integral

equations.

The purpose of this work is to partially fill gaps left by several recent papers. Ab-

dollahpour and Najati [1] and Jung [15] looked at third-order equations with constant

coefficients. Anderson et al [4] considered the Hyers-Ulam stability of second-order

linear dynamic equations with nonconstant coefficients, while Tunç and Biçer [30]

proved the Hyers-Ulam stability of third and fourth-order Cauchy-Euler differential

equations, but not general-order Cauchy-Euler equations. See also Mortici, Rassias,

and Jung [23].

We will also build on work by Popa and Raşa [25, 26]. In particular, we note

that in [26, Theorem 2.2], Popa and Raşa prove the Hyers-Ulam stability of

y′(t) + λ(t)y(t) = f(t), t ∈ I = (a, b), (1.1)

where a, b ∈ R ∪ {±∞}, assuming that the condition

inf
t∈I

|ℜλ(t)| := m > 0 (1.2)

is met, where ℜz is the real part of the complex number z. Building on (1.1), they

discuss Hyers-Ulam stability of higher-order linear differential equations with variable

coefficients, assuming these equations are made up of first-order factors as in (1.1).

What happens if the coefficient function λ in (1.1) vanishes? For example, in [26,

Corollary 3.4], Popa and Raşa discuss the second-order linear equation with variable

coefficients

y′′(t) + a1(t)y
′(t) + a2(t)y(t) = 0, t ∈ I (1.3)

and state that if r2 is a solution of the associated Riccati equation

y′ = y2 − a1(t)y + a2(t), t ∈ I
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with inf |r2(t)| > 0 and inf |a1(t)−r2(t)| > 0 on I, then (1.3) has Hyers-Ulam stability.

Note that if we consider the second-order Cauchy-Euler equation with constants zk ∈
C, that is if

a1(t) := (z1 + z2 + 1)t−1, a2(t) := z1z2t
−2, r2(t) := z1t

−1, I := [1,∞), (1.4)

then r2 is a solution of the associated Riccati equation with inf |r2(t)| = 0 and

inf |a1(t) − r2(t)| = 0 on I, so [26, Corollary 3.4] is silent on this example. In [26,

Corollary 3.5], Popa and Raşa discuss the third-order linear equation with variable

coefficients

y′′′(t) + a1(t)y
′′(t) + a2(t)y

′(t) + a3(t)y(t) = 0, t ∈ I (1.5)

and state that if r3 is a solution of the associated Liénard equation

y′′ + (a1 − 3y)y′ + y3 − a1y
2 + a2y − a3 = 0, t ∈ I,

r2 is a solution of the associated Riccati equation

y′ = y2 − (a1 − r3)y + a2 − 2r′3 + r2
3 − a1r3, t ∈ I,

and r1 := a1 − r3 − r2 with inf |rk(t)| > 0 on I for k = 1, 2, 3, then (1.5) has Hyers-

Ulam stability. If we consider the third-order Cauchy-Euler equation with constants

zk ∈ C, that is if

a1(t) := (z1 + z2 + z3 + 3)t−1, a3(t) := z1z2z3t
−3,

a2(t) := (z1 + z2 + z3 + z1z2 + z1z3 + z2z3 + 1)t−2, (1.6)

r3(t) := z1t
−1, r2(t) := (z2 + 1)t−1, r1(t) := (z3 + 2)t−1, I := [1,∞),

then r3 is a solution of the Liénard equation, r2 is a solution of the Riccati equation,

and inf |rk(t)| = 0 on I for k = 1, 2, 3, so [26, Corollary 3.5] does not apply to this

example.

In fact it can be shown that (1.3) and (1.5) as written, with coefficients from (1.4)

and (1.6), respectively, are unstable in the Hyers-Ulam sense on (0,∞). It turns out

that the presentation of the original equation, even if homogeneous, may determine

the stability. For example, consider a generalization of the second-order Cauchy-Euler

equation (1.3) with coefficients from (1.4), namely

try′′(t) + (z1 + z2 + 1)tr−1y′(t) + z1z2t
r−2y(t) = 0, t ∈ (0,∞) (1.7)
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for r ∈ R and z1, z2 ∈ C\{r − 2}. If y(t) := c1t
−z1 + c2t

−z2 and

x(t) := y(t) +
εt2−r

(z1 + 2 − r)(z2 + 2 − r)
,

then it is clear y is a general solution of (1.7), x is an approximate solution for any

given ε > 0, and |y − x| → ∞ on (0,∞) for r 6= 2, so that (1.7) is unstable if r 6= 2.

The equation

t2y′′(t) + (z1 + z2 + 1)ty′(t) + z1z2y(t) = 0, t ∈ (0,∞),

however, is shown below to be Hyers-Ulam stable if and only if ℜ(z1, z2) 6= 0. Indeed,

our results in Theorem 3.2 will include general-order Cauchy-Euler equations as a

special case.

The discussion will proceed as follows. In Section 2 we will consider singular

first-order linear differential equations that can be written in the form (1.1), where

(1.2) is not assumed, in other words equations with possibly vanishing coefficients.

(Note that Hyers-Ulam stability is independent of the nonhomogeneous term f in

(1.1), so in the sequel we consider only homogeneous equations, that is f ≡ 0; see

Remark 2.3.) In Section 3, we will investigate singular higher-order linear differential

equations that may be rewritten in factored form using first-order factors discussed in

Section 2; the form we consider incorporates constant coefficients and Cauchy-Euler

coefficients, thus in the process extending the results in [1, 4, 15, 25, 26, 30]. Section

4 will cover Hyers-Ulam stability for variable-coefficient first-order equations, and

Section 5 will touch briefly on a corresponding result on time scales.

2. HYERS–ULAM STABILITY FOR CERTAIN FIRST-ORDER

EQUATIONS

Let us recall the definition of Hyers-Ulam stability, here stated for certain first-

order linear differential equations, where the leading coefficient will be allowed to

vanish.

Definition 2.1 (Hyers-Ulam stability). Let a, b ∈ R ∪ {±∞}, ϕ : (a, b) → R be a

continuous function, z ∈ C be a complex constant, and ε > 0 be given. If whenever

a differentiable function x : (a, b) → C satisfies

|ϕ(t)x′(t) + zx(t)| ≤ ε, t ∈ (a, b)
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there exists a solution y : (a, b) → C of ϕ(t)y′(t)+zy(t) = 0 such that |y−x| ≤ Kε on

(a, b) for some constant K > 0, then equation ϕ(t)y′(t) + zy(t) = 0 has Hyers-Ulam

stability (a, b).

Theorem 2.2. Let z ∈ C be a given constant, and let t0 ∈ (a, b) ⊆ (−∞,∞). Let

ϕ : (a, b) → R be a non-negative continuous function such that

(a) lim
t→a+

∫ t0

t

1

ϕ(s)
ds = ∞, or

(b) lim
t→b−

∫ t

t0

1

ϕ(s)
ds = ∞.

Then the differential equation

ϕ(t)y′(t) + zy(t) = 0, t ∈ (a, b), (2.1)

is Hyers-Ulam stable on (a, b) if and only if ℜz 6= 0. Moreover, if (a) and ℜz > 0

hold, or if (b) and ℜz < 0 hold, then the solution y used to show the Hyers-Ulam

stability of (2.1) is unique. If 0 <
∫ b

a
1

ϕ(s)
ds <∞, then (2.1) is Hyers-Ulam stable for

all z ∈ C.

Proof. If ℜz = 0, let β ∈ R and i =
√
−1, and consider the differential equation

ϕ(t)y′(t) + iβy(t) = 0, t ∈ (a, b). (2.2)

We will show (2.2) is unstable in the sense of Hyers and Ulam. Given any ε > 0, for

t ∈ (a, b) let

x(t) = εΦ(t)e−iβΦ(t), Φ(t) :=

∫ t

t0

dτ

ϕ(τ)
. (2.3)

Then

|ϕ(t)x′(t) + iβx(t)| =
∣

∣εe−iβΦ(t)
∣

∣ = ε

for all t ∈ (a, b). Clearly

y(t) = ce−iβΦ(t)

where c is a constant, is the only type of solution of (2.2), but

|y(t) − x(t)| =
∣

∣ce−iβΦ(t) − εΦ(t)e−iβΦ(t)
∣

∣ = |c− εΦ(t)|

is unbounded on (a, b) for any choice of c by (a) or (b). Consequently, (2.2) is unstable

in the sense of Hyers and Ulam on (a, b).

If ℜz 6= 0, suppose x : (a, b) → C is an approximate solution of (2.1) such that

ϕ(t)x′(t) + zx(t) = q(t), |q(t)| ≤ ε, t ∈ (a, b),
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for some integrable perturbation q : (a, b) → C and some ε > 0. Pick y : (a, b) → C

to be a solution of (2.1) in the following way: Let

A =























a if (a),ℜz > 0 hold,

∞ if (b),ℜz < 0 hold,

t0 if otherwise,

(2.4)

and for Φ given in (2.3), take

y(t) = ce−zΦ(t), x(t) = y(t)+e−zΦ(t)

∫ t

A

q(s)

ϕ(s)
ezΦ(s)ds, c = x(t0)+

∫ A

t0

q(s)

ϕ(s)
ezΦ(s)ds,

(2.5)

and see that

|y(t)−x(t)| =

∣

∣

∣

∣

e−zΦ(t)

∫ t

A

q(s)

ϕ(s)
ezΦ(s)ds

∣

∣

∣

∣

≤ ε























∫ t

a
1

ϕ(s)
eℜz(Φ(s)−Φ(t))ds

∫ ∞

t
1

ϕ(s)
eℜz(Φ(s)−Φ(t))ds

∫ max{t0,t}

min{t0,t}
1

ϕ(s)
eℜz(Φ(s)−Φ(t))ds

= ε
eℜz

|ℜz| .

Therefore (2.1) is Hyers-Ulam stable on (a, b) if ℜz 6= 0.

To see uniqueness, suppose x : (a, b) → C is an approximate solution of (2.1)

such that

|ϕ(t)x′(t) + zx(t)| ≤ ε for all t ∈ (a, b)

for some ε > 0. Suppose further that y1, y2 : (a, b) → C are two solutions of (2.1) such

that |yj(t)− x(t)| ≤ εKj for all t ∈ (a, b), for j = 1, 2. Then we have for constants cj

that

yj(t) = cje
−zΦ(t),

where Φ is defined in (2.3), so that

e−Φ(t)ℜz|c1 − c2| = |y1(t) − y2(t)| ≤ |y1(t) − x(t)| + |x(t) − y2(t)| ≤ ε(K1 +K2);

letting t → a+ for ℜz > 0, or t → b− for ℜz < 0, yields ∞ < ε(K1 + K2), a

contradiction. The uniqueness of the solution y is proven for these cases.

If 0 <
∫ b

a
1

ϕ(s)
ds <∞, then Hyers-Ulam stability follows easily for all z ∈ C.

Remark 2.3. Consider the nonhomogeneous version of (2.1), namely

ϕ(t)y′(t) + zy(t) = f(t), t ∈ (a, b), (2.6)
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for some continuous function f : (a, b) → R. We can easily modify the proof of the

previous theorem as follows. If x : (a, b) → C is an approximate solution of (2.6) such

that

ϕ(t)x′(t) + zx(t) − f(t) = q(t), |q(t)| ≤ ε, t ∈ (a, b),

for some integrable perturbation q : (a, b) → C and some ε > 0, pick y : (a, b) → C

to be a solution of (2.6) in the following way: Let Φ be as in (2.3), choose A as in

(2.4), and take

y(t) = ce−zΦ(t) + e−zΦ(t)

∫ t

A

f(s)

ϕ(s)
ezΦ(s)ds, x(t) = y(t) + e−zΦ(t)

∫ t

A

q(s)

ϕ(s)
ezΦ(s)ds,

c = x(t0) +

∫ A

t0

f(s) + q(s)

ϕ(s)
ezΦ(s)ds. (2.7)

As the key calculations are based on |y(t) − x(t)|, we see from (2.5) and (2.7) that

nothing is changed due to f , as its terms subtract off.

Corollary 2.4. Let z ∈ C and γ ∈ R be given constants. The singular differential

equation with vanishing coefficient

tγy′(t) + zy(t) = 0, t ∈ (0,∞), (2.8)

is Hyers-Ulam stable on (0,∞) if and only if ℜz 6= 0. Moreover, if ℜz < 0 and γ ≤ 1,

or if ℜz > 0 and γ ≥ 1, then the solution y used to show the Hyers-Ulam stability of

(2.8) is unique.

Proof. In Theorem 2.2, take a = 0, b = ∞, ϕ(t) = tγ.

3. FACTORING

In this section we show how the results in the previous section can be incorporated

into an investigation of Hyers-Ulam stability for certain higher-order singular linear

differential equations with nonconstant coefficients.

Let D be the differential operator defined by Dy = y′ for differentiable functions

y : (a, b) → C, and I the identity operator given by Iy = y. For a given function

ϕ : (a, b) → R, let (ϕD)0y = Iy = y, (ϕD)y = ϕy′, and for positive integers n,

let (ϕD)ny = (ϕD)n−1ϕDy. We consider the higher-order singular linear differential

equation
n

∑

k=0

αn−k(ϕD)ky(t) = 0 (3.1)
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for some real constants αm, where α0 = 1 for convenience. Note that if ϕ ≡ 1, then

this is the nth-order linear constant coefficient differential equation

n
∑

k=0

αn−ky
(k)(t) = 0,

while if ϕ(t) = t, this is a nested form of the nth-order linear Cauchy-Euler differential

equation
n

∑

k=0

αn−k(tD)ky(t) = 0.

Remark 3.1. Our first task will be to factor (3.1) for the analysis to follow. To

accomplish the factorization of (3.1), we use the substitutions (see also [3, Remark

2.2] and [22])

α1 =
∑

i

zi, α2 =
∑

i<j

zizj , α3 =
∑

i<j<k

zizjzk, α4 =
∑

i<j<k<ℓ

zizjzkzℓ,

· · · αm =
∑

i1<i2<···<im

zi1zi2 · · · zim , · · · αn = z1z2z3 · · · zn,

where zi ∈ C for i = 1, 2, · · · , n. Then we have the factorization of (3.1) given by

n
∑

k=0

αn−k(ϕD)ky(t) =

n
∏

k=1

(ϕD + zkI) y(t) = 0, n ∈ N; (3.2)

see [3, Lemma 2.3] and [30, Section 2] for more on this type of substitution and

factorization. The following result for (3.1) is the main result in this section.

Theorem 3.2 (Hyers-Ulam Stability). Let t0 ∈ (a, b) ⊆ (−∞,∞), and let ϕ :

(a, b) → R be a non-negative continuous function such that

(a) lim
t→a+

∫ t0

t

1

ϕ(s)
ds = ∞, or

(b) lim
t→b−

∫ t

t0

1

ϕ(s)
ds = ∞.

For positive integer n, consider (3.1) with real constants αm for m = 0, 1, . . . , n,

where α0 = 1. Let the substitutions z1, . . . , zn be as given in Remark 3.1. Then (3.1)

has Hyers-Ulam stability on (a, b) if and only if ℜzk 6= 0 for each k = 1, 2, . . . , n. If
∫ b

a
1

ϕ(s)
ds <∞, then (3.1) is Hyers-Ulam stable on (a, b) for all z ∈ C.

Proof. By Remark 3.1 and (3.2) we have that (3.1) can be written in factored form

as
n

∑

k=0

αn−k(ϕD)ky(t) =
n

∏

k=1

(ϕD + zkI) y(t) = 0.
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Assume ℜzk 6= 0. Now suppose there exists a function x such that

∣

∣

∣

∣

∣

n
∏

k=1

(ϕD + zkI) x(t)

∣

∣

∣

∣

∣

≤ ε (3.3)

for some ε > 0, for all t ∈ (a, b). Define the new functions yn ≡ 0, x0 := x and

xk := (ϕD + zkI)xk−1, k = 1, . . . , n. (3.4)

Then

xk(t) = ϕ(t)x′k−1(t) + zkxk−1(t), k = 1, . . . , n, t ∈ (a, b),

and by (3.3) and (3.4) (recall yn = 0 and x0 = x), we have

|yn(t) − xn(t)| = |xn(t)| ≤ ε, t ∈ (a, b) (3.5)

by construction. Hyers-Ulam stability of (3.4) on (a, b) with k = n implies there

exists a solution yn−1 of

(ϕD + znI) yn−1(t) = yn(t)

such that |yn−1(t) − xn−1(t)| ≤ Knε; substituting from (3.4) with k = n − 1 this

inequality becomes

|yn−1(t) − ϕ(t)x′n−2(t) − zn−1xn−2(t)| ≤ Knε,

and so on. We proceed by iterating the proof of Theorem 2.2, and using Remark 2.3.

Let tk ∈ (a, b) and let

Ak =























a if (a),ℜzk > 0 hold,

∞ if (b),ℜzk < 0 hold,

tk if otherwise,

(3.6)

for k = 1, . . . , n. Let xk−1 solve (3.4) with initial condition at tk, and yk−1 solve

(ϕD + zkI) yk−1 = yk, k = 1, . . . , n. (3.7)

If

Φk(t) :=

∫ t

tk

dτ

ϕ(τ)
,
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then take

yk−1(t) = ck−1e
−zkΦk(t) + e−zkΦk(t)

∫ t

Ak

yk(s)

ϕ(s)
ezkΦk(s)ds,

xk−1(t) = yk−1(t) + e−zkΦk(t)
∫ t

Ak

xk(s)

ϕ(s)
ezkΦk(s)ds,

ck−1 = xk−1(tk) +

∫ Ak

tk

yk(s) + xk(s)

ϕ(s)
ezkΦk(s)ds. (3.8)

Using (3.4) and (3.5) we have on (a, b) that

|yk−1(t) − xk−1(t)| ≤ ε
n

∏

j=k

eℜzj

|ℜzj |
,

starting with k = n and proceeding down to k = 1. In particular (recall x0 = x, the

original approximate solution), we arrive at

|y0(t) − x0(t)| = |y0(t) − x(t)| ≤ ε
n

∏

j=1

eℜzj

|ℜzj |
, t ∈ (a, b).

From (3.7), and using the fact that yn = 0, we see that y0 is a solution of the factored

form of (3.1). Thus (3.1) has Hyers-Ulam stability on (a, b).

4. HYERS-ULAM STABILITY FOR VARIABLE-COEFFICIENT

FIRST-ORDER EQUATIONS

In this section we return explicitly to the first-order form of (1.1), namely

y′(t) + λ(t)y(t) = f(t), t ∈ I = (a, b),

where a, b ∈ R ∪ {±∞}. Here we drop the assumption that condition (1.2) holds,

that is we allow

inf
t∈I

|ℜλ(t)| = 0.

Then we have the following general result.

Theorem 4.1. Let t0 ∈ (a, b) ⊆ (−∞,∞), and let λ : (a, b) → C be a continuous

function. Then the differential equation

y′(t) + λ(t)y(t) = 0, t ∈ (a, b), (4.1)

is Hyers-Ulam stable on (a, b) if

K := sup
t∈(a,b)

∫ max{t,t0}

min{t,t0}

eℜΛ(s)−ℜΛ(t)ds <∞, (4.2)
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where Λ(t) :=
∫

λ(t)dt.

Proof. Let x be an approximate solution of (4.1), that is x satisfies

|x′(t) + λ(t)x(t)| ≤ ε.

Then a solution y of (4.1) can be chosen so that

|y(t) − x(t)| ≤ ε

∫ max{t,t0}

min{t,t0}

eℜΛ(s)−ℜΛ(t)ds

using elementary methods. The result follows if (4.2) holds.

Example 4.2. Let t0 ∈ (a, b) and λ(t) := ztr, where z ∈ C and r ∈ R, and consider

the differential equation

y′(t) + ztry(t) = 0, t ∈ (a, b). (4.3)

If (a, b) = (0, 1) and r > 0, then (4.3) is Hyers-Ulam stable on (0, 1), since

K := sup
t∈(0,1)

∫ max{t,t0}

min{t,t0}

e(s
r+1−tr+1)ℜz/(r+1)ds <∞

for any z ∈ C. Clearly λ(t) → 0 as t→ 0+, violating condition (1.2). If (a, b) = (0,∞)

and r = −1, then (4.3) is unstable on (0,∞) for any z ∈ C. Note that in this case,

for t0 ∈ (0,∞),

sup
t∈(a,b)

∫ max{t,t0}

min{t,t0}

eℜΛ(s)−ℜΛ(t)ds = sup
t∈(0,∞)











∣

∣

1
1+ℜz

∣

∣

∣

∣

∣
t− t0

(

t0
t

)ℜz
∣

∣

∣
: ℜz 6= −1,

t| ln(t/t0)| : ℜz = −1,
= ∞.

5. TIME SCALES

In this final section we extend Theorem 4.1 to time scales T in the sense that we

allow domains other than T = R, such as the discrete time scale T = Z and so on.

Notice again that we do not assume any coefficient function is bounded away from 0,

only that an analogous time-scale integral converges.

Theorem 5.1. Let T be a time scale, ϕ, ψ ∈ Crd(a, b)T, and assume

ϕ(t) + µ(t)ψ(t) 6= 0 and

∫ b

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(s))
1

ϕ(s)

∣

∣

∣

∣

∆s <∞

for all t ∈ (a, b)T. Then the first-order dynamic equation

ϕ(t)y∆(t) − ψ(t)y(t) = 0 (5.1)
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has Hyers-Ulam stability on (a, b)T.

Proof. Given ε > 0, suppose there exists an approximate solution x ∈ C∆
rd(a, b)T that

satisfies
∣

∣ϕ(t)x∆(t) − ψ(t)x(t)
∣

∣ ≤ ε, t ∈ (a, b)T.

Set

q(t) := ϕ(t)x∆(t) − ψ(t)x(t), t ∈ (a, b)T;

by the variation of constants formula [6, Theorem 2.77] we have for any t0 ∈ (a, b)T

that x is given by

x(t) = eψ
ϕ

(t, t0)x(t0) +

∫ t

t0

eψ
ϕ

(t, σ(s))
q(s)

ϕ(s)
∆s;

note that the time scales exponential function eψ
ϕ

exists by the assumption ϕ(t) +

µ(t)ψ(t) 6= 0 given in the statement of the theorem. Pick y ∈ C∆
rd(a, b)T to be the

unique solution of the initial value problem

ϕy∆ − ψy = 0, y(t0) = x(t0).

Then

y(t) = eψ
ϕ

(t, t0)x(t0), t ∈ (a, b)T,

and

|x(t) − y(t)| =

∣

∣

∣

∣

∫ t

t0

eψ
ϕ

(t, σ(s))
q(s)

ϕ(s)
∆s

∣

∣

∣

∣

≤ ε

∫ b

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(s))
1

ϕ(s)

∣

∣

∣

∣

∆s.

Therefore (5.1) has Hyers-Ulam stability if the condition

∫ b

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(s))
1

ϕ(s)

∣

∣

∣

∣

∆s <∞

is satisfied.

Example 5.2. Let T = Z, the set of integers. In (5.1) take ϕ ≡ 1 and ψ(t) = −t
t+1

,

and thus consider the difference equation

∆y(t) +
t

t+ 1
y(t) = 0, t ∈ {0, 1, 2, 3, . . .}, (5.2)

where ∆y(t) := y(t + 1) − y(t). Given ε > 0, suppose that some function x is an

approximate solution of (5.2), that is to say suppose x satisfies

∆x(t) +
t

t+ 1
x(t) = q(t), |q(t)| ≤ ε, t ∈ {0, 1, 2, 3, . . .}.
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Then x has the form

x(t) =
x0 +

∑t−1
k=0(k + 1)! q(k)

t!
, t ∈ {0, 1, 2, 3, . . .}.

If we take y to be the function given by

y(t) =
x0

t!
, t ∈ {0, 1, 2, 3, . . .},

then y is a solution of (5.2), and for any t ∈ {0, 1, 2, 3, . . .} we have

|y(t) − x(t)| =
1

t!

∣

∣

∣

∣

∣

t−1
∑

k=0

(k + 1)! q(k)

∣

∣

∣

∣

∣

≤ 1

t!

t−1
∑

k=0

(k + 1)! |q(k)| ≤ ε

t!

t−1
∑

k=0

(k + 1)! ≤ 3

2
ε.

Thus, (5.2) is Hyers-Ulam stable. However, note that

∫ b

a

∣

∣

∣

∣

eψ
ϕ

(t, σ(s))
1

ϕ(s)

∣

∣

∣

∣

∆s =
∞

∑

s=0

|eψ(t, s+ 1)| =
∞

∑

s=0

(s+ 1)!

t!
,

which is unbounded for any t ∈ {0, 1, 2, 3, . . .}. This example and Example 4.2

illustrate why there are no known necessary and sufficient conditions for Hyers-Ulam

stability stated in Theorems 4.1 and 5.1.
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[25] D. Popa and I. Raşa, On the Hyers–Ulam stability of the linear differential equation, J. Math.

Anal. Appl. 381 (2011) 530–537.
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