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ABSTRACT. The purpose of this paper is to establish comparison criteria for higher order forced

nonlinear dynamic equation with mixed nonlinearities

{

rn−1(t) (rn−2(t)(· · · (r1(t)x
∆(t))∆ · · · )∆)∆

}∆

+

N
∑

j=0

pj(t)φγj
(x(ϕj(t)) = g(t),

on an above-unbounded time scale T, where n ≥ 2. The results improve the main results of a

number of recent papers and are established for a time scale T without assuming certain restrictive

conditions on T.

AMS (MOS) Subject Classification. 34K11, 39A10, 39A99.

1. INTRODUCTION

Following Hilger’s landmark paper [22], there have been plenty of references fo-

cused on the theory of time scales in order to unify continuous and discrete analysis,

where a time scale is an arbitrary nonempty closed subset of the reals, and the cases

when this time scale is equal to the reals or to the integers represent the classical

theories of differential and of difference equations. Many other interesting time scales

exist, e.g., T = qN0 = {qt : t ∈ N0} for q > 1 (which has important applications in

quantum theory), T = hN with h > 0, T = N
2 and T = Hn the space of the harmonic

numbers. For the notions used below we refer to [5, 6] that provides some basic facts

on time scale. In this paper, we will establish comparison criteria for the higher order

forced nonlinear dynamic equation with mixed nonlinearities of the form

{

rn−1(t) (rn−2(t)(· · · (r1(t)x
∆(t))∆ · · · )∆)∆

}∆
+

N
∑

j=0

pj(t)φγj
(x(ϕj(t)) = g(t), (1.1)
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on an above-unbounded time scale T, where n ≥ 2; φβ(u) := |u|β−1
u, β > 0; ri ∈

Crd (T, (0,∞)), i = 1, 2, . . . , n − 1 and pj ∈ Crd (T, R+), j = 0, 1, . . . , N with pj 6≡ 0,

are real valued, rd-continuous functions; ϕj : T → T is a rd-continuous function such

that limt→∞ ϕj(t) = ∞, j = 0, 1, . . . , N ; and g ∈ Crd (T, R). Throughout this paper,

we let

x[i] := ri

(

x[i−1]
)∆

, i = 1, 2, . . . , n with rn = 1 and x[0] = x,

and there exists an oscillatory function h ∈ C1
rd[t0,∞)T such that g(t) = h[n](t) =

(

h[n−1]
)∆

for t ≥ t0 ∈ T, where h[i] = ri

(

h[i−1]
)∆

, i = 1, 2, . . . , n − 1 with h[0] = h;

and assume that
∫ ∞

t0

∆t

ri(t)
= ∞, i = 1, 2, . . . , n − 1, (1.2)

and

γj < γ0, j = 1, 2, . . . , l; and γj > γ0, j = l + 1, l + 2, . . . , N. (1.3)

By a solution of Eq. (1.1) we mean a nontrivial real–valued function x ∈ C1
rd[Tx,∞)T

for some Tx ≥ t0 such that x[i] ∈ C1
rd[Tx,∞)T, i = 1, 2, . . . , n − 1 and x(t) satisfies

Eq. (1.1) on [Tx,∞)T, where Crd is the space of right-dense continuous functions. An

extendable solution x of (1.1) is said to be oscillatory if it is neither eventually positive

nor eventually negative. Otherwise it is said to be nonoscillatory. There has been an

increasing interest in studying the oscillatory behavior of all order dynamic equations

on time scales, see, for example [2, 1, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 21, 24] and

the references contained therein.

Recently, Erbe, Mert, Peterson and Zafer [10] obtained comparison criterion for

even order dynamic equation

x∆n

(t) + p (t) φγ (x (ϕ (t))) = g(t), (1.4)

where ϕ ∈ Crd (T, T) such that ϕ(t) ≤ t and limt→∞ ϕ(t) = ∞. The results in [10]

apply only to time scales satisfying on unbounded time scale T where σ(t) = at + b,

where a ≥ 1, b ≥ 0 are constants. Hassan [19] extended previous results for even

order dynamic equation

x[n](t) + p (t) φγ (x (ϕ (t))) = g(t),

without assuming certain restrictive conditions on T. The purpose of this paper is to

obtain comparison criteria for the more general forced nonlinear dynamic equation

mixed nonlinearities (1.1) where n ≥ 2 and still without assuming certain restrictive

conditions on T. The results extend the oscillation criteria established in [10, 19].

2. MAIN RESULTS

Before stating our main results, we begin with the following lemmas which will

play an important role in the proof of our main results. The first one is cited from

[19] and improves the well-known lemma due to Kiguradze.
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Lemma 2.1. If Eq. (1.1) has an eventually positive solution x, then there exists an

integer m ∈ [0, n] with m + n odd such that

m ≥ 1 implies y[k] > 0 for k = 0, 1, 2, . . . , m − 1, (2.1)

eventually, and

m ≤ n implies (−1)m+k
y[k] > 0 for k = m, m + 1, . . . , n, (2.2)

eventually, where y := x − h.

The second one is cited from [21, 20].

Lemma 2.2. Assume (1.3) holds. Then there exists an N-tuple (η1, η2, . . . , ηN) with

ηj > 0 satisfying
N

∑

j=1

γjηj = γ0 and

N
∑

j=1

ηj = 1. (2.3)

We will use the following notations: ϕ(t) := inf {ϕ0(t), ϕ1(t), . . . , ϕN(t)} ; and

for any u, v ∈ T, define the functions Ri(v, u), i = 0, 1, . . . , m, Pi(t) and P̄i(t), i =

0, . . . , n − 1, by the following recurrence formulas:

Ri(v, u) :=

{

∫ v

u
Ri−1(s, u)/ rm−i+1(s) ∆s, i = 1, . . . , m,

1, i = 0;

Pi(t) :=

{

∫ ∞

t
Pi−1 (s)∆s

/

rn−i(t) i = 1, . . . , n − 1,
∑N

j=0 pj (t), i = 0;

and

P̄i(t) :=

{

∫ ∞

t
P̄i−1 (s)∆s

/

rn−i(t) i = 1, . . . , n − 1,

p(t), i = 0,

where p(t) := p0 (t) +
N
∏

j=1

[pj(t)/ ηj ]
ηj and provided the improper integrals involved

are convergent.

Theorem 2.3. Let ϕ be a nondecreasing function on [t0,∞)T and there exist two

sequences {sn} and {s̄n} tending to infinity such that for all n,

h (sn) = inf {h (t) : t ≥ sn} ;

h (s̄n) = sup {h (t) : t ≥ s̄n} .
(2.4)

Assume that the first order dynamic equation

z∆(t) + Km(t)φγ0
(z (ϕ(t))) = 0, (2.5)

is oscillatory, where

Km(t) := P̄n−m−1(t)R
γ0

m (ϕ(t), T ) for ϕ(t) ∈ [T,∞)T, (2.6)

for every an integer number m ∈ {1, . . . , n− 1} with m+n is odd and for sufficiently

large T ∈ [t0,∞)T.
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(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and
∫ ∞

t0

Pn−1(s) ∆s = ∞, (2.7)

then every solution of Eq. (1.1) is either oscillatory or tends to zero monotoni-

cally.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss

of generality, x(t) > 0 and x (ϕj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. Define

y(t) := x(t) − h(t) for t ∈ [t0,∞)T. (2.8)

Then

y[i](t) = x[i](t) − h[i](t), i = 1, 2, . . . , n.

Therefore Eq. (1.1) becomes

y[n](t) +
N

∑

j=0

pj(t)φγj
(x(ϕj(t)) = 0, (2.9)

which implies

y[n](t) = −
N

∑

j=0

pj(t)φγj
(x(ϕj(t)) ≤ 0 for t ∈ [t0,∞)T.

This implies that y[i], i = 0, 1, . . . , n− 1 are eventually of one sign. Also since h is an

oscillatory function, then y(t) > 0 on [t1,∞)T for some t1 ∈ [t0,∞)T. It follows from

Lemma 2.1 that there exists an integer m ∈ {0, . . . , n − 1} with m + n is odd such

that (2.1) and (2.2) hold for t ≥ t2 ∈ [t1,∞)T.

(I) When m = 0. In this case n is odd and

(−1)k
y[k] > 0 for k = 0, 1, . . . , n. (2.10)

Since y∆ < 0 eventually and limt→∞ h(t) = 0, then limt→∞ x(t) = limt→∞ y(t) = l1 ≥

0. Then for sufficiently large t3 ∈ [t2,∞)T, we have x(ϕj(t)) ≥ l for t ≥ t3. It follows

that

φγj
(x (ϕj (t))) ≥ lγj ≥ L for t ∈ [t3,∞)T,

where L := inf0≤j≤N {lγj} > 0. Then from (1.1), we obtain

−
(

y[n−1] (t)
)∆

=

N
∑

j=0

pj (t) φγj
(x(ϕj(t)) ≥ L

N
∑

j=0

pj (t) = L P0(t).

Integrating above inequality from t to v ∈ [t,∞)T, we get

−y[n−1](v) + y[n−1](t) ≥ L

∫ v

t

P0 (s)∆s.
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and by (2.2) we see that y[n−1](v) > 0. Hence by taking limits as v → ∞ we have

y[n−1](t) ≥ L

∫ ∞

t

P0 (s)∆s,

which implies

(

y[n−2](t)
)∆

≥ L
1

rn−1(t)

∫ ∞

t

P0 (s) ∆s = L P1(t).

Integrating from t to v ∈ [t,∞)T and letting v → ∞ and using (2.2), we get

−y[n−2](t) ≥ L

∫ ∞

t

P1(s) ∆s.

Continuing this process (n − 3)-times, we get

−y[1](t) ≥ L

∫ ∞

t

Pn−2(s) ∆s,

which implies

−y∆(t) ≥ L
1

r1(t)

∫ ∞

t

Pn−2 (s) ∆s = L Pn−1(t).

Again integrating above inequality from t3 to t ∈ [t3,∞)T, we get

−y(t) + y(t2) ≥ L

∫ t

t3

Pn−1(s) ∆s

Hence by (2.7), we have limt→∞ y(t) = −∞, which contradicts the fact that y > 0

eventually. This shows that if m = 0, then limt→∞ x(t) = 0.

(II) When m ≥ 1. By the facts that x(t) > 0, y(t) > 0, y∆(t) > 0 on [t1,∞)T

and from (2.4) it follows that there exists a constant λ, 0 < λ < 1, such that for

sufficiently large t3 ∈ [t2,∞)T,

ϕj(t) ≥ t1 and x(t) ≥ λy(t) for t ∈ [t3,∞)T,

and so

x(ϕj(t)) ≥ λy(ϕj(t)) for t ∈ [t3,∞)T.

Therefore, Eq. (2.9) becomes for t ∈ [t3,∞)T,

−y[n] (t) ≥

N
∑

j=0

λγjpj (t) φγj
(y (ϕj (t)))

≥
N

∑

j=0

λγjpj (t) φγj
(y (ϕ (t)))

= φγ0
(y (ϕ (t)))

N
∑

j=0

λγjpj (t) [y (ϕ (t))]γj−γ0 . (2.11)

From (2.3) we have
N

∑

j=1

γjηj − γ0

N
∑

j=1

ηj = 0.
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Using the Arithmetic-geometric mean inequality, see [4, Page 17], we have

N
∑

j=1

ηjvj ≥
N
∏

j=1

v
ηj

j , for any vj ≥ 0, j = 1, . . . , N.

Then for t ≥ t3,

N
∑

j=0

λγjpj (t) [x (ϕ (t))]γj−γ0

= λγ0p0 (t) +
N

∑

j=1

ηj

λγjpj(t)

ηj

[x (ϕ (t))]γj−γ0

≥ λγ0p0 (t) +

N
∏

j=1

[

λγjpj(t)

ηj

]ηj

[x (ϕ (t))]ηj(γj−γ0)

= λγ0p0 (t) +
N
∏

j=1

[

λγjpj(t)

ηj

]ηj

= p(t).

This together with (2.11) shows that

−y[n] (t) ≥ p(t)φγ0
(y (ϕ (t))) for t ∈ [t3,∞)T. (2.12)

Integrating Eq. (2.12) from t ≥ t3 to v ∈ [t,∞)T and then using the facts that y is

strictly increasing and ϕ is a nondecreasing function, we get

−y[n−1](v) + y[n−1](t) ≥

∫ v

t

p (s) φγ0
(y (ϕ (s))) ∆s

≥ φγ0
(y (ϕ (t)))

∫ v

t

p (s) ∆s,

and by (2.2) we see that y[n−1](v) > 0. Hence by taking limits as v → ∞ we have

y[n−1](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

p (s)∆s

= φγ0
(y (ϕ (t)))

∫ ∞

t

P̄0 (s) ∆s,

which implies for t ≥ t3

[

y[n−2](t)
]∆

≥ φγ0
(y (ϕ (t)))

1

rn−1(t)

∫ ∞

t

p (s) ∆s

= φγ0
(y (ϕ (t))) P̄1(t). (2.13)

Integrating above inequality (2.13) from t ≥ t3 to v ∈ [t,∞)T and letting v → ∞ and

using (2.1) and (2.2), we get

−y[n−2](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄1(s)∆s,
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Proceeding as above, we obtain

y[n−3](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄2(s)∆s;

−y[n−4](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄3(s)∆s;

...

−y[n−(n−m−1)](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄n−m−2(s)∆s.

Therefore

−y[m+1](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄n−m−2(s)∆s. (2.14)

Also, from (2.1) and (2.2), we get

y[m−1](t) = y[m−1](t3) +

∫ t

t3

y[m] (s)

rm (s)
∆s

≥ y[m] (t)

∫ t

t3

∆s

rm (s)
= y[m] (t) R1(t, t3).

It follows that
(

y[m−2](t)
)∆

≥ y[m] (t)
R1(t, t3)

rm−1 (t)
.

Then for t ∈ [t3,∞)T,

y[m−2](t) ≥ y[m−2](t) − y[m−2](t3)

≥

∫ t

t3

y[m] (s)
R1(s, t3)

rm−1 (s)
∆s

≥ y[m] (t)

∫ t

t3

R1(s, t3)

rm−1 (s)
∆s

= y[m] (t) R2(t, t3).

Analogously, we have

y[m−3](t) ≥ y[m] (t) R3(t, t3);

y[m−4](t) ≥ y[m] (t) R4(t, t3);
...

y[m−m](t) ≥ y[m] (t) Rm(t, t3).

(2.15)

It implies that

y(t) ≥ y[m] (t) Rm(t, t3) for t ∈ [t3,∞)T.

Then for ϕ(t) ∈ [t3,∞)T

y(ϕ(t)) ≥ y[m] (ϕ(t))Rm(ϕ(t), t3). (2.16)

From (2.14) and (2.16), we get

−y[m+1](t) ≥ φγ0

(

y[m] (ϕ(t))
)

Rγ0

m (ϕ(t), t3)

∫ ∞

t

P̄n−m−2(s)∆s,
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or

−
[

y[m](t)
]∆

≥
1

rm+1(t)

∫ ∞

t

P̄n−m−2(s)∆s Rγ0

m (ϕ(t), t3) φγ0

(

y[m] (ϕ(t))
)

= P̄n−m−1(t)R
γ0

m (ϕ(t), t3) φγ0

(

y[m] (ϕ(t))
)

= Km(t)φγ0

(

y[m] (ϕ(t))
)

.

Let z (t) := y[m] (t) > 0, we get

−z∆(t) ≥ Km(t)φγ0
(z (ϕ(t))) ,

or

z∆(t) + Km(t)φγ0
(z (ϕ(t))) ≤ 0. (2.17)

By Corollary 2.3.5 in [3], equation (2.5) has an eventually positive solution which is

a contradiction. This completes the proof.

In the following theorem we use the following notation:

R̄i(v, u) :=

{

∫ v

u
R̄i−1(v, s)

/

rn−i(s) ∆s, i = 1, . . . , n − 1,

1, i = 0,

for any u, v ∈ T.

Theorem 2.4. Assume that (2.4) holds and the first order dynamic equation

z∆(t) + Hm(t) φγ0
(z (t)) = 0, (2.18)

is oscillatory, where for τ(t) ∈ [T,∞)T,

Hm(t) := p(t)
[

R̄n−m−1(t, τ(t))Rm(τ(t), T )
]γ0

with τ(t) := inf {t, ϕ(t)} , (2.19)

for every an integer number m ∈ {1, . . . , n− 1} with m+n is odd and for sufficiently

large T ∈ [t0,∞)T.

(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and (2.7) holds, then every

solution of Eq. (1.1) is either oscillatory or tends to zero monotonically.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss of

generality, x(t) > 0 and x (ϕj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. Proceeding as in

the proof of Theorem 2.3, there exists an integer m ∈ {0, . . . , n − 1} with m+n is odd

such that (2.1) and (2.2) hold for t ≥ t2 ∈ [t1,∞)T, for sufficiently large t1 ∈ [t0,∞)T.

(I) When m = 0. As shown in the proof of Theorem 2.3, We show that if

limt→∞ h(t) = 0 and (2.7) holds, then limt→∞ x(t) = 0.

(II) When m ≥ 1. As seen in the proof of Theorem 2.3, we obtain for t ∈ [t3,∞)T,

for some t3 ∈ [t2,∞)T,

−y[n] (t) ≥ p(t)φγ0
(y (ϕ (t))) . (2.20)
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By the fact that y[n−1] is nonincreasing on [t3,∞)T, we get for v ≥ u ≥ t3,

y[n−1](u) ≥ y[n−1](v) = y[n−1] (v) R̄0(v, u),

which implies
(

y[n−2](u)
)∆

≥ y[n−1] (v)
R̄0(v, u)

rn−1(u)
.

Replacing u by s and integrating with respect to s from u ≥ t3 to v ∈ [u,∞)T and

using (2.2), we get

−y[n−2](u) ≥ y[n−2](v) − y[n−2](u)

= y[n−1] (v)

∫ v

u

R̄0(v, s)

rn−1(s)
∆s

= y[n−1] (v) R̄1(v, u),

which yields

−
(

y[n−3](u)
)∆

≥ y[n−1] (v)
R̄1(v, u)

rn−2(u)
.

Again replacing u by s and integrating with respect to s from u to v, we get

y[n−3](u) ≥ −y[n−3](v) + y[n−3](u)

= y[n−1] (v)

∫ v

u

R̄1(v, s)

rn−2(s)
∆s

= y[n−1] (v) R̄2(v, u).

Proceeding this process, we obtain

−y[n−4](u) ≥ y[n−1] (v) R̄3(v, u);

y[n−5](u) ≥ y[n−1] (v) R̄4(v, u);

...

y[n−(n−m)](u) ≥ y[n−1] (v) R̄n−m−1(v, u).

Therefore

y[m](u) ≥ y[n−1] (v) R̄n−m−1(v, u).

Setting v = t and u = τ(t) gives

y[m](τ(t)) ≥ y[n−1] (t) R̄n−m−1(t, τ(t)) for τ(t) ∈ [t3,∞)T. (2.21)

By (2.15) with t is replaced by τ(t), we have for τ(t) ∈ [t3,∞)T,

y(τ(t)) ≥ y[m] (τ(t)) Rm(τ(t), t3). (2.22)

Pick t4 ∈ [t3,∞)T such that τ(t) ∈ [t3,∞)T for t ≥ t4. Substituting (2.21) into (2.22),

we get for t ∈ [t4,∞)T,

y(τ(t)) ≥ y[n−1] (t) R̄n−m−1(t, τ(t))Rm(τ(t), t3). (2.23)
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Form (2.20) and (2.23) and using the fact that y is strictly increasing, we have

−
(

y[n−1] (t)
)∆

≥ p(t)φγ0
(y (ϕ (t))) ≥ p(t)φγ0

(y (τ (t)))

≥ p(t)
[

R̄n−m−1(t, τ(t))Rm(τ(t), t3)
]γ0

φγ0

(

y[n−1] (t)
)

= Hm(t) φγ0

(

y[n−1] (t)
)

.

Let z (t) := y[n−1] (t) > 0, we get

−z∆(t) ≥ Hm(t) φγ0
(z (t)) ,

or

z∆(t) + Hm(t) φγ0
(z (t)) ≤ 0.

Again, by Corollary 2.3.5 in [3], equation (2.18) has an eventually positive solution

which is a contradiction. This completes the proof.

Theorem 2.5. Let ϕ be a nondecreasing function on [t0,∞)T. Assume that (2.4)

holds and the second order dynamic equation

[

rm(t)z∆(t)
]∆

+ Qm(t)φγ0
(z (ϕ(t))) = 0, (2.24)

is oscillatory, where

Qm(t) := P̄n−m−1(t) [Rm(ϕ(t), T )/R1(ϕ(t), T )]γ0 for ϕ(t) ∈ (T,∞)
T
, (2.25)

for every an integer number m ∈ {1, . . . , n− 1} with m+n is odd and for sufficiently

large T ∈ [t0,∞)T.

(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and (2.7) holds, then every

solution of Eq. (1.1) is either oscillatory or tends to zero monotonically.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss of

generality, x(t) > 0 and x (ϕj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. Proceeding as in

the proof of Theorem 2.3, there exists an integer m ∈ {0, . . . , n − 1} with m+n is odd

such that (2.1) and (2.2) hold for t ≥ t2 ∈ [t1,∞)T, for sufficiently large t1 ∈ [t0,∞)T.

(I) When m = 0. As shown in the proof of Theorem 2.3, We show that if

limt→∞ h(t) = 0 and (2.7) holds, then limt→∞ x(t) = 0.

(II) When m ≥ 1. As seen in the proof of Theorem 2.3, we obtain for t ∈ [t3,∞)T,

for some t3 ∈ [t2,∞)T,

−y[m+1](t) ≥ φγ0
(y (ϕ (t)))

∫ ∞

t

P̄n−m−2(s)∆s. (2.26)

and

y[m−1](t) ≥ y[m] (t) R1(t, t3). (2.27)
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Note that

[

y[m−1](t)

R1(t, t3)

]∆

=

R1(t, t3)
[

y[m−1](t)
]∆

−
1

r1(t)
y[m−1](t)

R1(t, t3)R1(σ(t), t3)

=
1

rm(t)R1(t, t3)R1(σ(t), t3)

(

R1(t, t3)y
[m] (t) − y[m−1](t)

)

,

we have
[

y[m−1](t)

R1(t, t3)

]∆

≤ 0 on (t3,∞)
T
. (2.28)

Since for t ∈ (t3,∞)T,

y[m−1](t) =
y[m−1](t)

R1(t, t3)
R1(t, t3),

we have

(

y[m−2](t)
)∆

=
y[m−1](t)

R1(t, t3)

R1(t, t3)

rm−1 (t)
.

Then by (2.28), we have for t ∈ (t3,∞)T

y[m−2](t) ≥ y[m−2](t) − y[m−2](t3)

=

∫ t

t3

y[m−1] (s)

R1(s, t3)

R1(s, t3)

rm−1 (s)
∆s

≥
y[m−1] (t)

R1(t, t3)

∫ t

t3

R1(s, t3)

rm−1 (s)
∆s

=
y[m−1] (t)

R1(t, t3)
R2(t, t3),

which implies

[

y[m−3](t)
]∆

≥
y[m−1] (t)

R1(t, t3)

R2(t, t3)

rm−2 (t)
.

Then

y[m−3](t) ≥ y[m−3](t) − y[m−3](t3) =

∫ t

t3

(

y[m−3](s)
)∆

∆s

=

∫ t

t3

y[m−1] (s)

R1(s, t3)

R2(s, t3)

rm−2 (s)
∆s

≥
y[m−1] (t)

R1(t, t3)

∫ t

t3

R2(s, t3)

rm−2 (s)
∆s

=
y[m−1] (t)

R1(t, t3)
R3(t, t3).
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Proceeding as above process, we get

y[m−4](t) ≥
y[m−1] (t)

R1(t, t3)
R4(t, t3);

y[m−5](t) ≥
y[m−1] (t)

R1(t, t3)
R5(t, t3);

...

y[m−m](t) ≥
y[m−1] (t)

R1(t, t3)
Rm(t, t3).

It implies that

y(t) ≥
y[m−1] (t)

R1(t, t3)
Rm(t, t3) for t ∈ (t3,∞)T.

Then for ϕ(t) ∈ (t3,∞)
T

y(ϕ(t)) ≥
y[m−1] (ϕ(t))

R1(ϕ(t), t3)
Rm(ϕ(t), t3). (2.29)

From (2.14) and (2.29), we get

−y[m+1](t) ≥ φγ0

(

y[m−1] (ϕ(t))
)

∫ ∞

t

P̄n−m−2(s)∆s

[

Rm(ϕ(t), t3)

R1(ϕ(t), t3)

]γ0

, (2.30)

or

−
[

rm(t)
(

y[m−1](t)
)∆

]∆

≥
1

rm+1(t)

∫ ∞

t

P̄n−m−2(s)∆s

[

Rm(ϕ(t), t3)

R1(ϕ(t), t3)

]γ0

φγ0

(

y[m−1] (ϕ(t))
)

= P̄n−m−1(t)

[

Rm(ϕ(t), t3)

R1(ϕ(t), t3)

]γ0

φγ0

(

y[m−1] (ϕ(t))
)

= Qm(t)φγ0

(

y[m−1] (ϕ(t))
)

. (2.31)

Let z (t) := y[m−1] (t) > 0, we get

−
[

rm(t)z∆(t)
]∆

≥ Qm(t)φγ0
(z (ϕ(t))) ,

or
[

rm(t)z∆(t)
]∆

+ Qm(t)φγ0
(z (ϕ(t))) ≤ 0.

By [19, Lemma 2.2], we get that (2.24) has an eventually positive solution which is a

contradiction. This completes the proof.

1. The conclusion of Theorems 2.3–2.5 remains intact if assumption (2.7) is replaced

by one of the following conditions
∫ ∞

t0

P1(t)∆t = ∞,

∫ ∞

t0

P2(t)∆t = ∞, . . . or

∫ ∞

t0

Pn−2(t)∆t = ∞.
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2. It is easy to show that if either
∫ ∞

t0

P1(t)∆t = ∞ or

∫ ∞

t0

P2(t)∆t = ∞.

then m = n − 1 in Theorems 2.3–2.5.

3. APPLICATIONS

In this section we establish some oscillation criteria for equation (1.1) by using

Theorems 2.3–2.5.

Theorem 3.1. Let 0 < γ0 < 1 and ϕ(t) ∈ [t,∞)T be nondecreasing function on

[t0,∞)T. Assume that (2.4) holds and
∫ ∞

T

Km(s) ∆s = ∞, (3.1)

where Km is defined by (2.6), for every an integer number m ∈ {1, . . . , n − 1} with

m + n is odd and for sufficiently large T ∈ [t0,∞)T.

(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and (2.7) holds, then every

solution of Eq. (1.1) is either oscillatory or tends to zero monotonically.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss of

generality, x(t) > 0 and x (ϕj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. Proceeding as in

the proof of Theorem 2.3, there exists an integer m ∈ {0, . . . , n − 1} with m+n is odd

such that (2.1) and (2.2) hold for t ≥ t2 ∈ [t1,∞)T, for sufficiently large t1 ∈ [t0,∞)T.

(I) When m = 0. As shown in the proof of Theorem 2.3, We show that if

limt→∞ h(t) = 0 and (2.7) holds, then limt→∞ x(t) = 0.

(II) When m ≥ 1. As seen in the proof of Theorem 2.3, we obtain that the first

order dynamic equation

z∆(t) + Km(t)φγ0
(z (ϕ(t))) = 0. (3.2)

has an eventually positive solution z(t) for t ∈ [t3,∞)T, for some t3 ∈ [t2,∞)T. By

the fact that z is nonincreasing on [t3,∞)T and ϕ(t) ≤ t we get from (3.2) that

Km(t) ≤ −
z∆(t)

[z (t)]γ0
for t ∈ [t3,∞)T.

Integrating this inequality from t3 to t, we get
∫ t

t3

Km(s) ∆s ≤ −

∫ t

t3

z∆(s)

[z (s)]γ0
∆s.

Define

F (z (s)) :=

∫ z(s)

z(t3)

du

uγ0

,
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and so

(F (z (s)))∆ =

∫ 1

0

F ′ (zh (s)) dh z∆(s) =

∫ 1

0

1

[zh (s)]γ0
dh z∆(s).

where zh (s) := (1 − h)z (s) + hzσ (s) > 0, for 0 ≤ h ≤ 1, t ∈ [t3,∞)T. Since z is

nonincreasing on [t3,∞)T, we have

zh (s) = (1 − h) z (s) + hzσ (s) ≤ z (s) .

Therefore

(F (z (s)))∆ =

∫ 1

0

1

[zh (s)]γ0
dh z∆(s) ≤

z∆(s)

[z (s)]γ0
.

Hence it follows that
∫ t

t3

Km(s) ∆s ≤ −

∫ t

t3

z∆(s)

[z (s)]γ0
∆s ≤ F (z (t3)) − F (z (t))

=
[z (t3)]

1−γ0

1 − γ0

−
[z (t)]1−γ0

1 − γ0

≤
[z (t3)]

1−γ0

1 − γ0

,

which contradicts (3.1).

Theorem 3.2. Let 0 < γ0 < 1. Assume that (2.4) holds and
∫ ∞

T

Hm(s) ∆s = ∞ (3.3)

where Hm is defined by (2.19), for every an integer number m ∈ {1, . . . , n − 1} with

m + n is odd and for sufficiently large T ∈ [t0,∞)T.

(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and (2.7) holds, then every

solution of Eq. (1.1) is either oscillatory or tends to zero monotonically.

Proof. The proof is similar to the proof of Theorem 3.1 with Km(t) is replaced by

Hm(t) and hence can be omitted.

Theorem 3.3. Let ϕ be nondecreasing function on [t0,∞)T. Assume that (2.4) holds

and
∫ ∞

T

Qm(s)∆s = ∞ (3.4)

where Qm is defined by (2.25), for every an integer number m ∈ {1, . . . , n − 1} with

m + n is odd and for sufficiently large T ∈ [t0,∞)T.

(1) If n ∈ 2N, then every solution of Eq. (1.1) is oscillatory.

(2) If n ∈ 2N + 1 and, in addition, limt→∞ h(t) = 0 and (2.7) holds, then every

solution of Eq. (1.1) is either oscillatory or tends to zero eventually.
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Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without loss of

generality, x(t) > 0 and x (ϕj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. Proceeding as in

the proof of Theorem 2.3, there exists an integer m ∈ {0, . . . , n − 1} with m+n is odd

such that (2.1) and (2.2) hold for t ≥ t2 ∈ [t1,∞)T, for sufficiently large t1 ∈ [t0,∞)T.

(I) When m = 0. As shown in the proof of Theorem 2.3, We show that if

limt→∞ h(t) = 0 and (2.7) holds, then limt→∞ x(t) = 0.

(II) When m ≥ 1. As seen in the proof of Theorem 2.3, we obtain that the second

order dynamic equation
[

rm(t)z∆(t)
]∆

+ Qm(t)φγ0
(z (ϕ(t))) = 0. (3.5)

has an eventually positive solution z(t) for t ∈ [t3,∞)T, for some t3 ∈ [t2,∞)T. It is

easy to see that
[

rm(t)z∆(t)
]∆

≤ 0, z∆(t) > 0 fort ∈ [t3,∞)T.

Integrating the inequality (3.5) from t3 to v ∈ [t,∞)T and letting v → ∞ and using

the fact z is increasing on [t3,∞)T, we get

rm(t3)z
∆(t3) ≥ φγ0

(z (ϕ (t3)))

∫ ∞

t3

Qm(s)∆s,

this contradicts the assumption (3.4). This completes the proof.

Remark 3.4. For further oscillation criteria for equation (1.1), see [1, 2, 8, 9, 12,

13, 15, 17, 24].
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