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ABSTRACT. Oscillation criteria are established for second-order nonlinear nabla dynamic equa-

tions on an isolated time scale T. Our main goal is to establish a relationship between the oscil-

latory behavior of these equations. We also give two results about the behavior of a second-order

self-adjoint equation with mixed derivatives on a time scale that is unbounded above. We use the

Riccati transformation technique to obtain our results.
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1. INTRODUCTION

In this paper, we are concerned with the oscillation of the second-order nonlinear

nabla functional dynamic equation
(

p(t)y∇(t)
)∇

+ q(t)f(y(τ(t))) = 0 (1.1)

and the second-order nonlinear nabla dynamic equation
(

p(t)y∇(t)
)∇

+ q(t)f(yρ(t)) = 0 (1.2)

on [t0,∞)T where T is an isolated time scale and positive t0 belongs to T. Since

oscillation of solutions is our primary concern, we assume throughout that all time

scales are unbounded above. We assume that p, q, τ , and f satisfy the following

Conditions (H):

(i) p ∈ Cld([t0,∞)T, (0,∞)) satisfies

∫

∞

t0

1

p(t)
∇t = ∞, t ∈ T;

(ii) q ∈ Cld([t0,∞)T, (0,∞));

(iii) τ ∈ Cld(T, T) satisfies lim
t→∞

τ(t) = ∞ and there exists M > 0 such that

|P (t) − P (τ(t))| < M for all t ∈ T,

where P (t) =

∫ t

t0

1

p(s)
∇s;

(iv) f : R → R is continuous, increasing, and f(−u) = −f(u) for u ∈ R.
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By a solution of (1.1) we mean a nontrivial real-valued function y satisfying

(1.1) for t ∈ [t0,∞)T. A solution y of (1.1) is said to be oscillatory if it is nei-

ther eventually positive nor eventually negative; otherwise, it is nonoscillatory. Also,

(1.1) is said to be oscillatory if all its solutions are oscillatory. Our attention is re-

stricted to those solutions of (1.1) which exist on some half line [ty,∞)T and satisfy

sup {|y(t)| : t > t0} > 0 for any t0 ≥ ty. Additionally, we give two results about the

second-order self-adjoint dynamic equation

(

p(t)y∆(t)
)∇

+ q(t)y(t) = 0 (1.3)

on a time scale T where sup T = ∞, p ∈ C(T, (0,∞)), and q ∈ Cld(T, R).

For completeness, we recall the following concepts related to the notion of time

scales. The forward and backward jump operators are defined by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

where inf ∅ := sup T and sup ∅ := inf T. A point t ∈ T is called left-dense if t >

inf T and ρ(t) = t, right-dense if t < sup T and σ(t) = t, left-scattered if ρ(t) < t,

right-scattered if σ(t) > t, dense if ρ(t) = t = σ(t), and isolated if ρ(t) < t < σ(t).

A function f : T → R is said to be left-dense continuous provided f is continuous

at left-dense points in T and its right-hand limits exist and are finite at right-dense

points in T. The set of all left-dense continuous functions is denoted by Cld(T). The

backward graininess function ν on T is defined by ν(t) := t−ρ(t), and for any function

f : T → R the notation f ρ(t) denotes f(ρ(t)). For more on nabla dynamic equations,

see Chapter 3 of [2].

In the next section, we establish a relationship between the oscillatory behavior of

(1.1) and (1.2). We present two lemmas necessary to prove our first main result. In the

last section, we present oscillation criteria for (1.3). We use the Riccati transformation

to obtain these results and close with an example.

2. OSCILLATION EQUIVALENCE OF (1.1) AND (1.2)

Throughout this section, we assume T is isolated. We begin with the following

definition.

Definition 2.1. A nonempty closed subset K of a Banach space X is called a cone

if it possess the following properties:

(i) if α ∈ R
+ and x ∈ K, then αx ∈ K;

(ii) if x, y ∈ K, then x + y ∈ K;

(iii) if x ∈ K − {0}, then −x /∈ K.
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Let X be a Banach space and K be a cone with nonempty interior. Then we define

a partial ordering ≤ on X by

x ≤ y if and only if y − x ∈ K.

We will use the following theorem [4] in order to prove some of our results.

Theorem 2.2 (Knaster’s Fixed-Point Theorem). Let X be a partially ordered Banach

space with ordering ≤. Let Ω be a subset of X with the following properties: The

infimum of Ω belongs to Ω and every nonempty subset of Ω has a supremum which

belongs to Ω. If S : Ω → Ω is an increasing mapping, then S has a fixed point in Ω.

We continue with the following lemma.

Lemma 2.3. Assume (H) holds. A necessary and sufficient condition for (1.2) to be

oscillatory is that the inequality

(p(t)y∇(t))∇ + q(t)f(yρ(t)) ≤ 0 (2.1)

has no eventually positive solutions.

Proof. Assume (2.1) has no eventually positive solutions. Then neither does (1.2),

and so it is oscillatory. If y is an eventually negative solution of (1.2), then let x = −y.

Then x is eventually positive and

(px∇)∇ + qf(xρ) = −(py∇)∇ − qf(yρ) = −
[

(px∇)∇ + qf(xρ)
]

= 0,

and so x is an eventually positive solution of (2.1), which is a contradiction. Hence

(1.2) is oscillatory.

Suppose that (1.2) is oscillatory, and by way of contradiction, assume that (2.1)

has an eventually positive solution y. So there exists T0 ∈ [t0,∞)T such that y(t) > 0

for t ∈ [T0,∞)T. Furthermore, there exists T1 ∈ [T0,∞)T such that y(ρ(t)) > 0 for all

t ∈ [T1,∞)T. Using the sign condition of f in (H), we have f(yρ(t)) > 0 on [T1,∞)T.

The [p(t)y∇(t)]∇ ≤ 0 on [T1,∞)T, and so p(t)y∇(t) is decreasing on [T1,∞)T.

We claim that y∇(t) > 0 on [T1,∞)T. If not, then for some t1 ∈ [T1,∞)T, we

have y∇(t1) ≤ 0. It follows that p(t)y∇(t) ≤ 0 on [t1,∞)T. Now, if y∇(t2) < 0 for

some t2 ∈ [t1,∞)T, then

y(t) − y(t2) =

∫ t

t2

y∇(s)∇s

≤ p(t2)y
∇(t2)

∫ t

t2

∇s

p(s)

→ −∞ as t → ∞,
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which is a contradiction to our assumption that y(t) > 0 [T0,∞)T. Hence it follows

that y∇(t) ≡ 0 on [t1,∞)T, and so (p(t)y∇(t))∇ ≡ 0 and q(t)f(yρ(t)) > 0, which is

contradictory. Consequently, there exists T2 ∈ [T1,∞)T such that

y(t) > 0, y∇(t) > 0, and (p(t)y∇(t))∇ ≤ 0

on [T2,∞)T.

Now integrating (2.1) from t to s yields

p(s)y∇(s) − p(t)y∇(t) +

∫ s

t

q(u)f(yρ(u))∇u ≤ 0

for (s, t) ∈ [t,∞)T×[T2,∞)T. Since p(t)y∇(t) is decreasing on [T1,∞)T, lim
t→∞

p(t)y∆(t) =

L ≥ 0 exists. Letting s → ∞ in the above we obtain

y∇(t) ≥ L

p(t)
+

1

p(t)

∫

∞

t

q(u)f(yρ(u))∇u ≥ 1

p(t)

∫

∞

t

q(u)f(yρ(u))∇u. (2.2)

Now integrating (2.2) from T2 to t yields

y(t) ≥ y(T ) +

∫ t

T2

1

p(s)

∫

∞

s

q(u)f(yρ(u))∇u∇s, t ∈ [T2,∞)T. (2.3)

Let X be the set of all continuous functions on [t0,∞)T satisfying lim
t→∞

y(t) = ∞,

where ‖ · ‖ is defined by ‖y‖ = sup {|u(t)| : t0 ≤ t < ∞}. Then X is a Banach space.

Now, define the set

Ω :=
{

ω ∈ C([t0,∞)T, R+) : 0 ≤ ω(t) ≤ 1, for t ≥ t0
}

,

which is endowed with the usual pointwise ordering ≤: ω1 ≤ ω2 ⇔ ω1(t) ≤ ω2(t) for

t ≥ t0.

One can show that any nonempty subset A of Ω has a supremum which belongs

to Ω and inf Ω ∈ Ω. Define a mapping S on Ω by

(Sω)(t) =







1, if t0 ≤ t ≤ T2,

1
y(t)

(

y(T2) +
∫ t

T2

1
p(s)

∫

∞

s
q(u)f(yρ(u)ωρ(u))∇u∇s

)

, if t ≥ T2.

We claim that SΩ ⊂ Ω and S is nondecreasing. For any ω ∈ Ω, (Sω)(t) is certainly

continuous and for t ∈ [T2,∞)T

q(t)f(yρ(t)ωρ(t)) ≤ q(t)f(yρ(t)),

Thus, from (2.2), 0 ≤ (Sω)(t) ≤ 1 for t ∈ [T2,∞)T, and so S(ω) ∈ Ω. Moreover,

the monotonicity of f yields (Sω1)(t) ≤ (Sω2)(t) provided ω1 ≤ ω2, ω1, ω2 ∈ Ω.

Therefore, by Knaster’s Fixed Point Theorem, there exists ω̃ ∈ Ω such that Sω̃ = ω̃.

Hence, for t ∈ [T2,∞)T,

ω̃(t) =
1

y(t)

(

y(T2) +

∫ t

T2

1

p(s)

∫

∞

s

q(u)f(yρ(u)ω̃ρ(u))∇u∇s

)

,
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On [T2,∞)T, define z(t) := ω̃(t)y(t). Then z(t) is positive, left-dense continuous, and

z(t) = y(T2) +

∫ t

T2

1

p(s)

∫

∞

s

q(v)f(zρ(u)) ∆u ∆s

on [T2,∞)T. As z∇(t) =
1

p(t)

∫

∞

t

q(s)f(zρ(s))∇s and (p(t)z∇(t))∇ = −q(t)f(zρ(t)),

(p(t)z∇(t))∇ + q(t)f(zρ(t)) = 0 has a positive solution, which is a contradiction to

the assumption that all solutions of (1.2) are oscillatory. With this, the proof is

complete.

In a similar manner, we can prove

Lemma 2.4. Assume that (H) holds. Then, every solution of the second -order

nonlinear functional dynamic equation (p(t)y∇(t))∇ + q(t)f(y(τ(t))) = 0 oscillates if

and only if the inequality

(p(t)y∇(t))∇ + q(t)f(y(τ(t))) ≤ 0

has no eventually positive solutions.

Now we state our main result of this section which is an extension of Theorem 2.1

of [10].

Theorem 2.5. Assume (H) holds and ν(t)/p(t) is bounded. Additionally, assume

that for all t ∈ [t0,∞)T, τ(t) ≤ ρ(t) or τ(t) ≥ ρ(t). Then the oscillation of the

second-order nonlinear nabla functional dynamic

(

p(t)y∇(t)
)∇

+ q(t)f(y(τ(t))) = 0 (1.1)

is equivalent to the oscillation of the second-order nonlinear nabla dynamic equation

(

p(t)y∇(t)
)∇

+ q(t)f(yρ(t)) = 0. (1.2)

Proof. The boundedness of ν/p gives the existence of N > 0 such that
ν(t)

p(t)
≤ N for

all t ∈ T. Let K := M + N , where M satisfies property (iii) of (H).

Assume that (1.2) is oscillatory and, suppose to the contrary, that y is a nonoscil-

latory solution of (1.1). Without loss of generality, we assume there exists t1 ∈
[t0,∞)T such that for all t ∈ [t1,∞)T

y(t) > 0, y(τ(t)) > 0, p(t)y∇(t) > 0, and (p(t)y∇(t))∇ ≤ 0

as in the proof of Lemma 2.3. We also conclude that lim
t→∞

p(t)y∇(t) = L ≥ 0 exists.

We now distinguish two cases.

(I) Assume ρ(t) ≤ τ(t) for all t ∈ T. The monotonicity of y and f yields

(p(t)y∇(t))∇ + q(t)f(yρ(t)) ≤ (p(t)y∇(t))∇ + q(t)f(y(τ(t))) = 0,
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and so (2.1) has an eventually positive solution. By Lemma 2.3, (1.2) has a

nonoscillatory solution, which is a contradiction.

(II) Assume next that τ(t) ≤ ρ(t) for all t ∈ T.

(a) Suppose L > 0. Then there exists t2 ∈ [t1,∞)T such that p(t)y∇(t) ≤ L+1

for all t ∈ [t2,∞)T. Furthermore, since τ diverges, there is a t3 ∈ [t2,∞)T

such that τ(t) ≥ t2 for all t ∈ [t3,∞)T. Therefore, if t belongs to [t3,∞)T,

we obtain

yρ(t) − y(τ(t)) =

∫ ρ(t)

τ(t)

p(s)y∇(s)

p(s)
∇s

≤ (L + 1)

∫ ρ(t)

τ(t)

∇s

p(s)

= (L + 1)[P (ρ(t)) − P (τ(t))]

≤ (L + 1)

[
∣

∣

∣

∣

−
∫ t

ρ(t)

∇s

p(s)

∣

∣

∣

∣

+ |P (t) − P (τ(t))|
]

= (L + 1)

[

ν(t)

p(t)
+ M

]

≤ (L + 1)[N + M ].

Consequently, for all t ∈ [t3,∞)T, y(τ(t)) ≥ yρ(t) − (L + 1)K. Now let

z(t) = y(t) − (L + 1)K. Since p(t)y∇(t) ≥ L, for all t sufficiently large,

by integrating the previous inequality, we conclude that z(t) > 0 for large

enough t. Hence, for all sufficiently large t,

z(t) > 0, zρ(t) ≤ y(τ(t)), and (p(t)z∇(t))∇ + q(t)f(zρ(t)) ≤ 0.

We have that (2.1) has an eventually positive solution. By Lemma 2.3, we

conclude (1.2) is nonoscillatory, which is a contradiction.

(b) Assume L = 0. Since y is positive and nondecreasing on [t1,∞)T , there

exists ǫ0 > 0 and t2 ∈ [t1,∞)T such that y(t) > Mǫ0 for all t ∈ [t2,∞)T.

Furthermore, there exists t3 ∈ [t2,∞)T such that p(t)y∇(t) ≤ ǫ0 for all

t ∈ [t3,∞)T. Now, if t ∈ [t3,∞)T, we have

y(t) − y(τ(t)) ≤ ǫ0

∫ t

τ(t)

∇s

p(s)
≤ ǫ0

[

ν(t)

p(t)
+ M

]

,

and so, since y is nondecreasing, for all t ∈ [t3,∞)T

y(τ(t)) ≥ yρ(t) − ǫ0M.

Again, we set z(t) := y(t) − ǫ0M . Then for sufficiently large t

z(t) > 0, zρ(t) ≤ y(τ(t)), and (p(t)z∇(t))∇ + q(t)f(zρ(t)) ≤ 0.
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Hence, (2.1) has an eventually positive solution. Again, we conclude by

Lemma 2.3, (p(t)y∇(t))∇ + q(t)f(yρ(t)) = 0 is nonoscillatory, which is a

contradiction.

Conversely, assume that (1.1) is oscillatory. By way of contradiction, suppose y

is a nonoscillatory solution of (1.2). As we saw in the proof of Lemma 2.3, we can

assume there exists t1 ∈ [t0,∞)T such that for all t ∈ [t1,∞)T

y(t) > 0, y(τ(t)) > 0, p(t)y∇(t) > 0, and (p(t)y∇(t))∇ ≤ 0.

Again, the monotonicity and boundedness of p(t)y∇(t) lead the existence of its non-

negative limit L, and we distinguish two cases.

(I) Assume τ(t) ≤ ρ(t) ≤ t for all t. The monotonicity of y and f yields

(p(t)y∇(t))∇ + q(t)f(y(τ(t))) ≤ (p(t)y∇(t))∇ + q(t)f(yρ(t)) = 0,

and so y is an eventually positive solution of (1.1). By Lemma 2.4, (1.1) has a

nonoscillatory solution, which is a contradiction.

(II) Suppose τ(t) ≥ t ≥ ρ(t) for all t.

(a) Suppose L > 0. Then there exists t2 ∈ [t1,∞)T such that p(t)y∇(t) ≤
L + 1 for all t ∈ [t2,∞)T. The unboundedness of τ yields the existence of

t3 ∈ [t2,∞)T such that τ(t) ≥ t2 for all t ∈ [t3,∞)T. Consequently, for all

t ∈ [t3,∞)T, we obtain

y(τ(t)) − yρ(t) ≤ (L + 1)

∫ τ(t)

ρ(t)

∇s

p(s)

= (L + 1)[P (τ(t)) − P (ρ(t))]

= (L + 1)

[

∫ t

ρ(t)

∇s

p(s)
+

∫ τ(t)

t

∇s

p(s)

]

≤ (L + 1)[N + M ],

which leads to

yρ(t) ≥ y(τ(t)) − (L + 1)K

for all t ∈ [t3,∞)T. As we have done previously, let z(t) = y(t)− (L+1)K.

Then for sufficiently large t, we have

z(t) > 0, z(τ(t)) ≤ yρ(t), and (p(t)zρ(t))ρ + q(t)f(z(τ(t))) ≤ 0.

This leads to a contradiction as in part (I) above.

(b) Assume L = 0. Since y∇(t) and y(t) are both positive, there is an ǫ0 > 0

and a t2 ∈ [t1,∞)T such that y(t) > Mǫ0 for all t ∈ [t2,∞)T. Corresponding

to this ǫ0, there exists t3 ∈ [t1,∞)T such that p(t)y∇(t) ≤ ǫ0 for all t ∈
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[t3,∞)T. In the same manner as above, we set z(t) = y(t)−ǫ0K and obtain

for sufficiently large t,

z(t) > 0, z(τ(t)) ≤ yρ(t), and (p(t)z∇(t))∇ + q(t)f(zρ(t)) ≤ 0,

which again leads to a contradiction.

This completes the proof.

Remark 2.6. Under the assumptions Theorem 2.5, we see that oscillatory behavior

of the more difficult functional equation can be established by considering the nabla

dynamic equation that only involves the backward jump operator ρ.

We now turn our attention to an example of Theorem 2.5. Recall

Theorem 2.7 ([3, Theorem 8.48 (ii)]). If T consists of only isolated points and a < b,

then
∫ b

a

f(t)∇t =
∑

t∈(a,b]

f(t)ν(t).

We now we have an example.

Example 2.8. Let T = 3N and set

p(t) = t, q(t) = 3 + (−1)
ln t

ln 3 , τ(t) = 3t, f(u) = 3
√

u.

We claim that p, q, f, and τ satisfy the appropriate conditions of (H). First we show

that (i) holds. If b = 3m and t0 = 3n, m, n ∈ N, we have

∫

∞

t0

1

p(t)
∇t = lim

b→∞

∫ b

t0

1

p(t)
∇t

= lim
m→∞

3m

∑

t=σ(3n)

ν(t)

p(t)

=
2

3
lim

m→∞

3m

∑

t=3n+1

1

= ∞

because ν(t) =
2

3
t. Note that for any t ∈ T,

q(t) = 3 + (−1)n =







2, n odd

4, n even,
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and so (ii) holds. It is clear that τ belongs to Cld(T, T) and diverges. Also, since,

|P (t) − P (τ(t))| =

∣

∣

∣

∣

∫ t

t0

1

p(s)
∇s −

∫ 3t

t0

1

p(s)
∇s

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ 3t

t

1

s
∇s

∣

∣

∣

∣

=
2

3

3t
∑

s=3t

1

=
2

3
,

(iii) holds. Finally, f(u) = 3
√

u satisfies (iv). Therefore, the oscillation of

(

ty∇(t)
)∇

+
[

3 + (−1)
ln t

ln 3

]

y
1
3

(

t

3

)

= 0

and
(

ty∇(t)
)∇

+
[

3 + (−1)
ln t

ln 3

]

y
1
3 (3t) = 0

is equivalent since ν(t)/p(t) = 2/3.

We conclude this section with comparing

(p(t)y∇)∇ + q(t)f(y(τ(t))) (1.1)

to

(p(t)y∇(t))∇ + Q(t)g(y(η(t))) = 0, (2.4)

on an isolated time scale T where Q, g, and η satisfy the appropriate conditions (H)

and ν/p is bounded. From Theorem 2.5 we see that the oscillation of (2.4) is equiv-

alent to that of

(p(t)y∇(t))∇ + Q(t)g(yρ(t)) = 0. (2.5)

We have the following result.

Theorem 2.9. Assume ν/p is bounded on an isolated time scale T. Further assume

that Q(t) ≤ q(t) for all large t and |g(u)| ≤ |f(u)| for |u| > 0. Then, the oscillation

of (2.4) implies that of (1.1).

Proof. Without loss of generality, suppose to the contrary that (1.1) has an eventually

positive solution. From Theorem 2.5, (1.2) also has an eventually positive solution –

call it y(t). Then

(p(t)y∇(t))∇ + Q(t)g(yρ(t))) ≤ (p(t)y∇(t))∇ + q(t)f(yρ(t))) = 0,

which implies (2.5) has an eventually positive solution. Therefore, (2.4) also has an

eventually positive solution, which is a contradiction to that fact that this equation

is oscillatory.
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3. OSCILLATION OF (1.3)

In this section we give two theorems about the oscillatory behavior of the second-

order self-adjoint dynamic equation

(

p(t)y∆(t)
)∇

+ q(t)y(t) = 0 (1.3)

on a time scale [t0,∞)T where positive t0 ∈ T, sup T = ∞, p ∈ C(T, (0,∞)) and

q ∈ Cld(T, R). These are Theorems 3.4 and 3.6. To obtain these results, we need the

following lemmas:

Lemma 3.1 ([2, Theorem 4.59]). The self-adjoint equation (1.3) has a positive solu-

tion on T if and only if the Riccati equation

z∇(t) + q(t) +
(zρ(t))2

pρ(t) + ν(t)zρ(t)
= 0 (3.1)

has a solution z on T
κ.

Lemma 3.2 ([2, Theorem 4.55]). Let a ∈ T and let ω := sup T. If ω < ∞, then

we assume ρ(ω) = ω. If (1.3) is nonoscillatory on [a, ω), then there is a solution u,

called a recessive solution at ω, such that u is positive on [t0, ω) for some t0 ∈ T, and

if v is any second linearly independent solution, called a dominant solution at ω, the

following hold:

(i) limt→ω−

u(t)
v(t)

= 0,

(ii)
∫ ω

t0

∆t
p(t)u(t)uσ (t)

= ∞,

(iii)
∫ ω

b
∆t

p(t)v(t)vσ (t)
< ∞ b < ω is sufficiently close, and

(iv) p(t)v∆(t)
v(t)

> p(t)u∆(t)
u(t)

for t < ω sufficiently close.

Lemma 3.3 ([2, Theorem 4.63]). Assume z is a solution of (3.1) on [ρ(a), b]T. Let u

be a continuous function on [ρ(a), σ(b)]T whose nabla-derivative is piecewise left-dense

continuous with uρ(a) = uσ(b) = 0. Then we have for all t ∈ [a, b]T,

(zu2)∇(t) = pρ(t)[u∇(t)]2 − q(t)u2(t)

−
{

zρ(t)u(t)
√

pρ(t) + ν(t)zρ(t)
−
√

pρ(t) + ν(t)zρ(t)u∇(t)

}2

.

By a solution of (1.3), we mean a nontrivial real-valued function y on [t0,∞)T

which satisfies (1.3) and the properties y∆ ∈ C([t0,∞)κ
T
, R) and

(

py∆
)∇ ∈ Cld([t0,∞)κ

T
∩

([t0,∞)T)κ , R). Throughout, we impose the following condition: For some a ∈
[t0,∞)T,

∫

∞

a

1

p(s)
∆s and

∫

∞

a

q(s)∇s < ∞. (3.2)



OSCILLATION THEORY 123

Before we begin, note that if y is an eventually positive solution of (1.3), then

y∆ is eventually positive as well. Next we give the following definitions.

A0(t) =

∫

∞

t

q(s)∇s,

A1(t) = A0(t) +

∫

∞

t

(Aρ
0(s))

2

pρ(s) + ν(s)Aρ
0(s)

,∇s,

...

An(t) = A0(t) +

∫

∞

t

(

Aρ
n−1(s)

)2

pρ(s) + ν(s)Aρ
n−1(s)

,∇s,

if the integrals on the right-hand side exist. Now we present our first result of this

section which is an extension of Theorem 3.1 of [10].

Theorem 3.4. Assume one of the following two conditions holds:

(i) there exists some positive integer m such that An is well defined for

n = 0, 1, 2, . . . , m − 1, and

lim
t→∞

∫ t

a

(

Aρ
m−1(s)

)2

pρ(s) + ν(s)Aρ
m−1(s)

,∇s = ∞.

(ii) An is well defined for n = 0, 1, 2, . . . , and there exists t∗ ∈ [t0,∞)T such that

lim
n→∞

An(t∗) = ∞.

Then (1.3) is oscillatory.

Proof. If not, without loss of generality, we assume there exists (1.3) has an eventually

positive solution y, specifically, there exists T ∈ [t0,∞)T such that

y(t) > 0 and y∆(t) > 0

on [T,∞)T. Define the function z on [T,∞)T by

z(t) =
p(t)y∆(t)

y(t)
. (3.3)

Then z(t) > 0, and since y∆(ρ(t)) = y∇(t),

pρ(t) + ν(t)zρ(t) =
pρ(t)

(

yρ(t) + ν(t)y∇(t)
)

yρ(t)
> 0,

for all t ∈ [T,∞)T. From (3.3), we obtain z is a solution (3.1) on [T,∞)T. Since

z(t) > 0, integration of (3.1) from T to t yields
∫ t

T

(zρ(s))2

pρ(s) + ν(s)zρ(s)
∇s < z(T ) −

∫ t

T

q(s)∇s < z(T )

on [T,∞)T. Consequently,

lim
t→∞

∫ t

T

(zρ(s))2

pρ(s) + ν(s)zρ(s)
∇s < ∞.
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Now integrating (3.1) from t to s we obtain

z(t) = z(s) +

∫ s

t

q(u) ∇u +

∫ s

t

(zρ(u))2

pρ(u) + ν(s)zρ(u)
∇u

>

∫ s

t

q(u) ∇u +

∫ s

t

(zρ(u))2

pρ(u) + ν(s)zρ(u)
∇u

for (t, s) ∈ [T,∞)T × [t,∞)T. Therefore,

z(t) ≥
∫

∞

t

q(u) ∇u +

∫

∞

t

(zρ(u))2

pρ(u) + ν(s)zρ(u)
∇u. (3.4)

Now assume Condition (i) holds. We first assume that m = 1. From (3.4) we

obtain that z(t) ≥ A0(t) for all t ∈ [T,∞)T. Since F (u) =
u2

c1 + c2u
is increasing for

u > 0 and nonnegative constants c1, c2, it follows that
∫

∞

t

(Aρ
0(u))

2

pρ(u) + ν(u)Aρ
0(u)

∇u ≤ (zρ(u))2

pρ(u) + ν(u)Aρ
0(u)

∇u < ∞.

This contradicts (i). If m > 1, (3.4) gives z(t) ≥ A1(t) for all t ∈ [T,∞)T. Repeating

this procedure, we obtain z(t) ≥ Am−1(t) for all t ∈ [T,∞)T and

∫

∞

t

(

Aρ
m−1(u)

)2

pρ(u) + ν(u)Aρ
m−1(u)

∇u ≤ (zρ(u))2

pρ(u) + ν(u)Aρ
m−1(u)

∇u < ∞,

which contradicts Condition (i).

Assume that Condition (ii) holds. Similar to the above proof, we obtain

An(t) ≤ z(t) for n ∈ N0. Then, as y(t) > 0,

lim
n→∞

An(t∗) ≤ z(t∗) < ∞,

which gives a contradiction to Condition (ii). The proof is complete.

Remark 3.5. If T = R and p(t) = 1 for all t, then Theorem 3.4 is the same as Yan’s

result for second-order linear differential equations [9].

Our next result is

Theorem 3.6. Assume I = [a,∞)T. If

∫

∞

a

∇t

p(t)
= ∞ and there is a t0 ∈ I and a

u ∈ C1
ld[t0,∞)T such that u(t) > 0 on [t0,∞)T and

∫

∞

t0

{q(t)u2(t) − pρ(t)[u∇(t)]2}∇t = ∞,

then (1.3) is oscillatory on I.

Proof. By way of contradiction, assume (1.3) is nonoscillatory on I. By Lemma 3.2,

there is a dominant solution y of (1.3) at ∞ such that
∫

∞

t1

∆t

p(t)y(t)yσ(t)
< ∞
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for sufficiently large t1 ∈ I. Here we may assume y(t) > 0 on [t1,∞)T. With

T :=max{t0, t1}, by Lemma 3.1, (3.1) has a solution z on [T,∞)T. Now Lemma 3.3

yields

(zu2)∇(t) ≤ pρ(t)[u∇(t)]2 − q(t)u2(t)

for t ∈ [T,∞)T. Integrating from T to t, we obtain

z(t)u2(t) ≤ z(T )u2(T ) −
∫ t

T

{

q(s)u2(s) − pρ(s)[u∇(s)]2
}

∇s

which implies

lim
t→∞

z(t)u2(t) = −∞.

Consequently, there is a S ∈ [T,∞)T such that for t ∈ [S,∞)T

z(t) =
p(t)y∆(t)

y(t)
< 0.

This implies y is decreasing on [S,∞)T, and so
∫

∞

S

1

p(u)
∆u = y(S)yσ(S)

∫

∞

S

1

p(u)y(S)yσ(S)
∆u

≤ y(S)yσ(S)

∫

∞

S

1

p(u)y(u)yσ(u)
∆u

< ∞,

which is a contradiction to divergent nature of
∫

∞

S
1

p(t)
∆t.

We conclude with an example of Theorem 3.6.

Example 3.7. Let T = qN, q > 1 and set

p(t) =
1

t2
, Q(t) =

ln t

t2
, u(t) = t.

Here we let a = t0 = 1. Immediately we see that u belongs to C1
ld([1,∞)T, (0,∞)).

First we show that
∫

∞

1
Q(s)∇s < ∞. To do this, we will use part (vi) of Theorem 8.47

in [3]. In that result, we let

f(t) = ln t and g(t) = − 1

qt
.

Then

f∇(t) =

{

∫ 1

0

1
t
q

+ h t
q
(q − 1) · 1 dh

}

· 1 ≤
∫ 1

0

q

t
dh =

q

t

by Theorem 4.8 of [2] and the Pötzsche Chain Rule [3, Theorem 1.90], and

g∇(t) = −1

q

(

−1

t t
q

)

=
1

t2
.
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Consequently,
∫

∞

1

Q(t)∇t = lim
b→∞

∫ b

1

ln t

(

− 1

qt

)∇

∇t

= lim
b→∞

[

− ln(b)

qb
+

ln(1)

q
−
∫ b

1

(ln t)∇
(

− 1

q t
q

)

∇t

]

= lim
b→∞

[

∫ b

1

(ln t)∇

t
∇t

]

≤ lim
b→∞

[
∫ b

1

q

t2
∇t

]

= q lim
n→∞

qn

∑

t=q

1

t2
(q − 1)t

q

= (q − 1) lim
n→∞

n
∑

k=1

(

1

q

)k

= 1 < ∞.

Next
∫

∞

1

1

p(t)
∇t = lim

b→∞

∫ b

1

t2 ∇t

= lim
m→∞

qm

∑

t=σ(1)

t(q − 1)

q
t2

=
q − 1

q
lim

m→∞

m
∑

k=1

(

q3
)k

= ∞.

Finally
∫

∞

1

[

q(t)u2(t) − pρ(t)[u∇(t)]2
]

∇t =

∫

∞

1

(

ln t − q2

t2

)

∇t

=
q − 1

q
lim

n→∞

n
∑

k=1

[

qk

(

k ln q − q2

(

1

q2

)k
)]

= ∞

because

lim
n→∞

n
∑

k=1

qkq2

(

1

q2

)k

= q2 lim
n→∞

n
∑

k=1

(

1

q

)k

< ∞.

4. CONCLUSION

In this article, we studied the oscillatory behavior of the functional nabla dynamic

equation
(

p(t)y∇(t)
)∇

+ q(t)f(y(τ(t))) = 0
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on an isolated time scale T. We showed this equation’s oscillatory behavior is equiv-

alent to that of
(

p(t)y∇(t)
)∇

+ q(t)f(yρ(t)) = 0.

This equivalence was obtained by establishing a relationship between the oscillatory

solutions of the functional nabla dynamic equation and
(

p(t)y∇(t)
)∇

+q(t)f(y(τ(t))) ≤
0 as well as one between the oscillatory solutions of the nabla dynamic equation and

its corresponding inequality. On any time scale T we considered the second-order

self-adjoint equation with mixed derivatives
(

p(t)y∆(t)
)∇

+ q(t)y(t) = 0

and established two sufficient conditions for the oscillation using the Riccati trans-

formation technique.
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