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results.
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1. INTRODUCTION

In this paper, we consider the second-order nonlinear boundary value problem

(BVP) consisting of the equation

−∆(p(t − 1)∆u(t − 1)) + q(t)u(t) = λF (t, u(t)), t ∈ [1, T ]Z (1.1)

and the periodic boundary conditions (BCs)

u(0) = u(T ), p(0)∆u(0) = p(T )∆u(T ) (1.2)

where λ is a positive parameter, ∆ is the forward difference operator defined by

∆u(t) = u(t + 1) − u(t), [c, d]Z denotes the discrete interval {c, c + 1, . . . , d} for

any integers c and d with c ≤ d, and F : [1, T ]Z × (0,∞) → R+ is continuous

with R+ = [0,∞). We also assume that p(t) > 0 on [0, T + 1]Z, q(t) ≥ 0 and

q(t) 6≡ 0 on [1, T ]Z. By a positive solution of BVP (1.1), (1.2) we mean a function

u : [0, T+1]Z → R that satisfies both (1.1) and (1.2), and u(t) > 0 for all t ∈ [0, T+1]Z.
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Nonlinear BVPs have been a focus of research for decades due to their special

importance in theory and applications. Significant progress has been made on the

existence, multiplicity, and nonexistence of solutions or positive solutions. For some

work on differential equation periodic BVPs, see [3, 6, 7, 10, 11] and the references

therein; for some results on discrete periodic BVPs, the reader is referred to [1, 2, 5,

12–15] and the references therein.

Recently, mixed monotone operator theory has been used by many authors to

study the existence and uniqueness of positive solutions of BVPs; see, for example,

[8,9,16]. In this paper, we apply this method to investigate the uniqueness of positive

solutions of BVP (1.1), (1.2). Two theorems on the existence, uniqueness, and the

parametric dependence of positive solutions of BVP (1.1), (1.2) are obtained by using

mixed monotone operator theory. Our results reveal the relation between the solution

and the parameter and provide a method to approximate the unique solutions by the

solutions of the associated linear BVPs.

This paper is organized as follows: After this introduction, our main results are

stated in Section 2. Two examples are given in Section 3. All the proofs are given in

Section 4.

2. MAIN RESULTS

In this paper, we let F (t, x) = f(t, x, x) + r(t, x), where f ∈ C([1, T ]Z × (0,∞)×
(0,∞), R+) and r ∈ C([1, T ]Z × (0,∞), R+). The following assumptions will be

needed:

(H1) f(t, ·, y) is increasing for any fixed (t, y) ∈ [1, T ]Z × (0,∞), and f(t, x, ·) is

decreasing for any fixed (t, x) ∈ [1, T ]Z × (0,∞);

(H2) There exists α ∈ (0, 1) such that f(t, κx, κ−1y) ≥ καf(t, x, y) for t ∈ [1, T ]Z,

κ ∈ (0, 1), x ∈ (0,∞), and y ∈ (0,∞);

(H3) r(t, ·) is increasing for any fixed t ∈ [1, T ]Z and there exists a constant w > 0

such that r(t, w) 6≡ 0 on [1, T ]Z;

(H4) r(t, κx) ≥ κr(t, x) for any κ ∈ (0, 1), t ∈ [1, T ]Z, and x ∈ (0,∞);

(H5) There exists η > 0 such that f(t, x, y) ≥ ηr(t, x) for t ∈ [1, T ]Z, x ∈ (0,∞) and

y ∈ (0,∞);

(H6) For α given in (H2), we have α ∈ (0, 1/2) and

r(t, x) ≥ καr(t, x) for t ∈ [1, T ]Z, κ ∈ (0, 1), and x ∈ (0,∞).

Remark 2.1. We would like to make a few comments on the form of the nonlinear

term f above. The analysis in this paper mainly relies on mixed monotone operator

theory. To apply such theory, some authors write the nonlinearity as f(t, x) and

assume that f(t, x) can be decomposed into f(t, x) = g(t, x) + h(t, x), where g is
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continuous and nondecreasing in x, h is continuous and nonincreasing in x, and there

exists α ∈ (0, 1) such that

g(t, κx) ≥ καg(t, x) (2.1)

and

h(t, κ−1x) ≥ καh(t, x) (2.2)

for t in its domain, κ ∈ (0, 1), and x ≥ 0. The reader may refer to [4] for a related

discussion.

Here, the nonlinear term f is written as a function of three arguments. Then,

to apply mixed monotone operator theory, we need to assume that the conditions

(H2) and (H3) above are satisfied. By writing f this way, a larger class of functions

can be covered. For instance, if f(t, x, y) = 3
√

x/
√

y + 1, then f(t, x, y) cannot be

decomposed into a summation of two functions g and h satisfying (2.1) and (2.2), but

f(t, x, y) does satisfy (H2) and (H3) with α = 5/6.

For any u : [0, T + 1]Z → R, let ‖u‖ = maxt∈[0,T+1]Z |u(t)|. The following theorem

is our main result.

Theorem 2.2. Assume that (H1)–(H5) hold. Then

(1) for any λ > 0, BVP (1.1), (1.2) has a unique positive solution uλ(t);

(2) for any positive functions u0, v0 on [0, T + 1]Z, i.e. u0(t) > 0 and v0(t) > 0 on

[0, T + 1]Z, let {un} and {vn} be the solutions of the following linear periodic

BVPs










−∆(p(t − 1)∆un(t − 1)) + q(t)un(t)

= λ[f(t, un−1(t), vn−1(t)) + r(t, un−1(t))],

un(0) = un(T ), p(0)∆un(0) = p(T )∆un(T ),

(2.3)

and










−∆(p(t − 1)∆vn(t − 1)) + q(t)vn(t)

= λ[f(t, vn−1(t), un−1(t)) + r(t, vn−1(t))],

vn(0) = vn(T ), p(0)∆vn(0) = p(T )∆vn(T ),

(2.4)

n = 1, 2, . . . . Then ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n → ∞.

(3) If, in addition, (H6) holds, then the unique solution uλ(t) satisfies the following

properties:

(a) uλ(t) is strictly increasing in λ, i.e. λ1 > λ2 > 0 implies uλ1
(t) > uλ2

(t), for

t ∈ [1, T ]Z;

(b) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ = ∞;

(c) uλ(t) is continuous in λ, i.e. λ → λ0 > 0 implies ‖uλ − uλ0
‖ → 0.

When r(t, x) ≡ 0 on [1, T ]Z × (0,∞), i.e., F (t, x) = f(t, x, x), we obtain a similar

result.
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Theorem 2.3. Assume that (H1) and (H2) hold, and assume that there exists a

constant w > 0 such that f(t, w, w) 6≡ 0. Then

(1) for any λ > 0, BVP (1.1), (1.2) has a unique positive solution uλ(t).

(2) for any positive functions u0, v0 on [0, T +1]Z, let {un} and {vn} be the solutions

of the following linear periodic BVPs
{

−∆(p(t − 1)∆un(t − 1)) + q(t)un(t) = λf(t, un−1(t), vn−1(t)),

un(0) = un(T ), p(0)∆un(0) = p(T )∆un(T ),
(2.5)

and
{

−∆(p(t − 1)∆vn(t − 1)) + q(t)vn(t) = λf(t, vn−1(t), un−1(t)),

vn(0) = vn(T ), p(0)∆vn(0) = p(T )∆vn(T ),
(2.6)

n = 1, 2, . . . . Then ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n → ∞.

(3) If, in addition, α ∈ (0, 1/2), then the unique solution uλ(t) satisfies the three

properties specified in conclusion (3) of Theorem 2.2.

Remark 2.4. In Theorem 2.2 (2) and Theorem 2.3 (2), if we let u0 = v0, then it is

easy to see that un = vn for any n > 0. Hence we only need to solve one linear BVP
{

−∆(p(t − 1)∆un(t − 1)) + q(t)un(t) = λF (t, un−1(t)),

un(0) = un(T ), p(0)∆un(0) = p(T )∆un(T )
(2.7)

in each step. Since Theorem 2.2 (2) and Theorem 2.3 (2) guarantee the convergence of

{un}, therefore, we may use this iteration to approximate the unique positive solution

of BVP (1.1), (1.2).

3. EXAMPLES

In this section, we give two examples to demonstrate the applications of the

results obtained in Section 2.

Example 3.1. Consider BVP (1.1), (1.2) with p(t) = 3t + 6, q(t) = t2, and

F (t, u(t)) = λ[u1/3(t) + u−1/2(t) + arctan(u(t)) + 1].

We claim that BVP (1.1), (1.2) has a unique positive solution for any λ > 0.

In fact, let

f(t, x, y) = x1/3 + y−1/2 + 1 and r(t, x) = arctan(x). (3.1)

It is easy to see that (H1)–(H3) and (H5) hold with α = 1/2 and η = 2/π.

For κ ∈ (0, 1) and x > 0, it is easy to see that

d

dx
[r(κx) − κr(x)] =

κ

1 + κ2x2
− κ

1 + x2
≥ 0.

Hence r(κx) ≥ κr(x) for κ ∈ (0, 1) and x > 0, i.e., (H4) holds.
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Thus by Theorem 2.2 (1), BVP (1.1), (1.2) has a unique positive solution uλ.

Note that for κ ∈ (0, 1) and α ∈ (0, 1), [r(κx) − καr(x)]′|x=0 = κ−κα < 0. Hence

x1/3 + y−1/2 + arctan(x) + 1

does not satisfy (H2), i.e., we cannot use this function as the function f needed in

our theorems.

Numerical solutions of BVP (1.1), (1.2) with λ = 1 and T = 30 are computed

by using (2.7) with u0 ≡ 1 for 40 iterations. The maximum absolute errors En =

‖un − un−1‖ between un and un−1 are given in Table 1, which confirm Theorem 2.2

(2). The graphs of {un}, n = 0, . . . , 40, are given in Figure 1.

n 1 5 9 14 19

En 0.9948 0.0016 4.7298e-05 6.1982e-07 8.0231e-09

i 23 27 31 36 40

En 2.4599e-10 7.5070e-12 2.2829e-13 2.8831e-15 8.8471e-17

Table 1. The maximum absolute error.
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Figure 1. {un}, n = 0, . . . , 40.

Example 3.2. Consider BVP (1.1), (1.2) with p = t2 + 1, q = sin(t) + 5, and

F (t, u(t)) =
t2 + 7

√

u(t)
3
√

u(t)
.

We claim that BVP (1.1), (1.2) has a unique positive solution for any λ > 0.

In fact, let

f(t, x, y) = y−1/3(t2 + x1/7). (3.2)
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Figure 2. {un}, n = 0, . . . , 40.

It is easy to see that (H1) and (H2) hold with α = 10/21. Furthermore, for any

w > 0, we have that f(t, w, w) > 0. Therefore, all the conditions of Theorem 2.3 are

satisfied. Thus for any λ > 0, BVP (1.1), (1.2) has a unique positive solution uλ.

Numerical solutions of BVP (1.1), (1.2) with λ = 1 and T = 30 are computed

by using (2.7) with u0 ≡ 1 for 40 iterations. The results are given in Figure 2. The

dependence of parameter is demonstrated in Figure 3 for different values of λ. These

numerical results confirm our Theorem 2.3.
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4. PROOFS

We will use mixed monotone operator theory to prove our theorems. The follow-

ing definitions and lemma are needed. The reader is referred to [8, Lemma 2.1] for

the details.

Definition 4.1. Let (X, ‖ · ‖) be a Banach space and 0 be the zero element of X.

(a) A nonempty closed convex set P ⊂ X is said to be a cone if it satisfies (i) u ∈ P

and λ > 0 =⇒ λu ∈ P ; (ii) u ∈ P and −u ∈ P =⇒ u = 0.

(b) A cone P is said to be normal if there exists a constant D > 0 such that, for all

u, v ∈ X, 0 ≤ u ≤ v =⇒ ‖u‖ ≤ D‖v‖. The constant D is called the normality

constant of P .

(c) The Banach space (X, ‖ · ‖) is partially ordered by a normal cone P ⊂ E, i.e.,

u ≤ v if v − u ∈ P . If u ≤ v and u 6= v, then we write u < v or v > u.

(d) For any u, v ∈ X, we use the notation u ∼ v to mean that there exist d > 0 and

d > 0 such that dv ≤ u ≤ dv. Given w > 0, i.e., w ≥ 0 and w 6= 0, we define

Pw = {u ∈ X | u ∼ w}. Clearly, Pw ⊂ P .

Definition 4.2. An operator A : Pw × Pw → X is called mixed monotone if A(x, y)

is nondecreasing in x and non-increasing in y; i.e., for x1, x2, y1, y2 ∈ Pw, we have

x1 ≤ x2 and y1 ≥ y2 imply A(x1, y1) ≤ A(x2, y2).

Definition 4.3. An element u ∈ Pw is called a fixed point of A if A(u, u) = u.

Definition 4.4. An operator B : Pw → X is called sub-homogeneous if it satisfies

B(ku) ≥ kB(u) for all u ∈ Pw and k ∈ (0, 1).

Definition 4.5. Let α ∈ [0, 1). An operator B : Pw → X is called α-concave if it

satisfies

B(ku) ≥ kαB(u) for all u ∈ Pw and k ∈ (0, 1).

Note that if an operator is α-concave, then clearly it is also sub-homogeneous.

Lemma 4.6. Let α ∈ (0, 1) and A : Pw × Pw → X be a mixed monotone operator

satisfying

A(κu, κ−1v) ≥ καA(u, v) for all u, v ∈ Pw and κ ∈ (0, 1). (4.1)

(A) Assume that B : Pw → X is an increasing sub-homogeneous operator and the

following conditions hold:

(i) A(w, w) ∈ Pw and B(w) ∈ Pw;

(ii) there exists a constant η > 0 such that A(u, v) ≥ ηB(u) for all u, v ∈ Pw.

Then:

(1) for any λ > 0, λ(A(u, u) + B(u)) = u has a unique solution uλ in Pw.
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(2) for any initial values u0, v0 ∈ Pw, consider the sequences un and vn defined

by

un = λ(A(un−1, vn−1) + B(un−1))

vn = λ(A(vn−1, un−1) + B(vn−1)),

for n = 1, 2, . . . Then, ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n → ∞;

(3) if we further assume that α ∈ (0, 1/2) and B is α-concave, then the unique

solution uλ satisfies the properties:

(a) uλ is strictly increasing in λ, that is, if λ1 > λ2 > 0, then uλ1
> uλ2

;

(b) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ = ∞;

(c) uλ is continuous in λ, that is, if λ → λ0 > 0, then ‖uλ − uλ0
‖ → 0.

(B) Assume that A(w, w) ∈ Pw. Then:

(1) for any λ > 0, λA(u, u) = u has a unique solution uλ in Pw;

(2) for any initial values u0, v0 ∈ Pw, consider the sequences un and vn defined

by

un = λA(un−1, vn−1), vn = λA(vn−1, un−1), n = 1, 2, . . .

Then, ‖un − uλ‖ → 0 and ‖vn − uλ‖ → 0 as n → ∞;

(3) if we further assume that α ∈ (0, 1/2), then the unique solution uλ satisfies

the three properties (a), (b) and (c) specified in (3) of part (A).

The following lemma is excerpted from Atici and Guseinov [2, Theorems 2.1 and

2.2]. We will use it to construct the operators A and B.

Lemma 4.7. Assume p(t) > 0 on [0, T +1]Z, q(t) ≥ 0, and q(t) 6≡ 0 on [1, T ]Z. Then

the BVP consisting of the equation

−∆(p(t − 1)∆u(t − 1)) + q(t)u(t) = 0, t ∈ [1, T ]Z (4.2)

and the BC (1.2) has a Green’s function G : [0, T + 1]Z × [0, T + 1]Z → R with

G(t, s) > 0 for (t, s) ∈ [0, T + 1]Z × [1, T ]Z. (4.3)

Remark 4.8. The reader is referred to [2, Theorem 2.1] for the detail of G.

In the sequel, we define X as the Banach space of real-valued functions on [0, T +

1]Z with the norm ‖u‖ = maxt∈[0,T+1]Z |u(t)|. Also, we define P ⊂ X by

P = {u ∈ X | u(t) ≥ 0 on [0, T + 1]Z}.

Clearly, P is a normal cone with normality constant D = 1. For w given in (H3),

it is easy to see that Pw = {u ∈ P | u(t) > 0 on [0, T + 1]Z} since for any u ∈ Pw,
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0 < mint∈[0,T+1]Z u(t) ≤ u(t) ≤ ‖u‖ on [0, T + 1]Z. We define the operators A :

Pw × Pw → X and B : Pw → X as follows:

A(u, v)(t) =
T

∑

s=1

G(t, s)f(s, u(s), v(s)) (4.4)

and

B(u)(t) =

T
∑

s=1

G(t, s)r(s, u(s)), (4.5)

where G is the Green’s function given in Lemma 4.7.

Remark 4.9. By Lemma 4.7, (4.4), and (4.5), it is easy to see that u(t) is a solution

of BVP (1.1), (1.2) if and only if u = λ(A(u, u) + B(u)).

Proof of Theorem 2.2. (1). By (H1), (4.3), and (4.4), it is easy to see that A is mixed

monotone. Similarly, by (H3), (4.3), and (4.5), B is increasing.

Now, by (H2), (4.3), and (4.4), for u, v ∈ Pw, κ ∈ (0, 1), and t ∈ [0, T + 1]Z, we

have

A(κu, κ−1v)(t) =

T
∑

s=1

G(t, s)f(s, κu(s), κ−1v(s))

≥ κα
T

∑

s=1

G(t, s)f(s, u(s), v(s)) = καA(u, v)(t).

So we have that (4.1) holds. Similarly, by (H4), (4.3), and (4.5), for u ∈ Pw, κ ∈ (0, 1),

and t ∈ [0, T + 1]Z,

B(κu)(t) =
T

∑

s=1

G(t, s)r(s, κu(s)) ≥ κ
T

∑

s=1

G(t, s)r(s, u(s)) = κB(u)(t).

Hence B is sub-homogeneous.

For u, v ∈ Pw, (H5) implies f(t, u(t), v(t)) ≥ ηr(t, u(t)) on [0, T + 1]Z. Then by

(4.3), (4.4), and (4.5), for t ∈ [0, T + 1]Z,

A(u, v)(t) =
T

∑

s=1

G(t, s)f(s, u(s), v(s))

≥η
T

∑

s=1

G(t, s)r(s, u(s)) = ηB(u)(t),

i.e., condition (ii) of Lemma 4.6 (A) holds. In particular, we have

A(w, w)(t) ≥ ηB(w)(t) on [0, T + 1]Z.

Since r(t, w) 6≡ 0 on [0, T + 1]Z, it is easy to see that A(w, w)(t) > 0 and B(w)(t) > 0

on [0, T +1]Z. Hence we have A(w, w) ∈ Pw, B(w) ∈ Pw, i.e., condition (i) of Lemma

4.6 (A) is satisfied.
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Therefore, by applying Lemma 4.6 (A) (1), for any λ > 0, BVP (1.1), (1.2) has a

unique solution uλ in Pw, which is positive. On the other hand, by the definition of

Pw, any positive solution of BVP (1.1), (1.2) must be in Pw. Hence BVP (1.1), (1.2)

has a unique positive solution.

(2). By Lemma 4.7, for n = 1, 2, . . . and t ∈ [0, T + 1]Z,

un(t) = λ
T

∑

s=1

G(t, s)[f(s, un−1(s), vn−1(s)) + r(s, un−1(s))]

is the solution of BVP (2.3). Then by (4.4) and (4.5),

un = λ(A(un−1, vn−1) + B(un−1)).

Similarly, we can show that for n = 1, 2, . . . , vn = λ(A(vn−1, un−1) + B(vn−1)) is the

solution of BVP (2.4). Then the conclusion follows from Lemma 4.6 (A) (2).

(3). If (H6) holds, then α ∈ (0, 1/2) and

B(κu)(t) =
T

∑

s=1

G(t, s)r(s, κu(s))

≥κα
T

∑

s=1

G(t, s)r(s, u(s)) = καB(u)(t),

i.e., B is α-concave. Then Theorem 2.2 (3) follows from Lemma 4.6 (A) (3). �

The proof of Theorem 2.3 is in the same way by using Lemma 4.6 (B). We omit

the detail.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation

under Grant Number DMS-1261308.

REFERENCES

[1] F. M. Atici and A. Cabada, Existence and uniqueness results for discrete second-order periodic

boundary value problems, Computers & Mathematics with Applications 45 (2003), 1417–1427.

[2] F. M. Atici and G. Sh. Guiseinov, Positive periodic solutions for nonlinear difference equations

with periodic coefficients, J. Mathematical Analysis and App. 232 (1999), 166–182.

[3] F. M. Atici and G. Sh. Guseinov, On the existence of solutions for nonlinear differential

equations with periodic boundary conditions, J. Comput. Applied Math. 132 (2001), 341–356.

[4] A. Dogan, J. R. Graef, and L. Kong, Higher order singular multi-point boundary value prob-

lems on time scales, Proc. Edinburgh Math. Soc. 54 (2011), 345–361.

[5] T. He, Y. Lu, Y. Lei, and F. Yang, Nontrivial Periodic Solutions for Nonlinear Second-Order

Difference Equations, Discrete Dynamics in Nature and Society (2011) Article ID 153082, 14

pages.



DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS 173

[6] J. R. Graef and L. Kong, Existence results for nonlinear periodic boundary value problems,

Proc. Edinburgh Math. Soc. 52 (2009), 79–95.

[7] J. R. Graef, L. Kong, and H. Wang, Existence, multiplicity, and dependence on a parameter

for a periodic boundary value problem, J. Differential Equations 245 (2008), 1185–1197.

[8] J. R. Graef, L. Kong, M. Wang, and B. Yang, Uniqueness and parameter dependence of positive

solutions of a discrete fourth order problem, J. Difference Equ. Appl. 19 (2013), 1133–1146.

[9] L. Kong, Second order singular boundary value problems with integral boundary conditions,

Nonlinear Anal. 72 (2010), 2628–2638.

[10] Q. Kong and M. Wang, Eigenvalue approach to even order system periodic boundary value

problems, Canad. Math. Bull. 56 (2013), 102–115.

[11] Q. Kong and M. Wang, Positive solutions of even order system periodic boundary value prob-

lems, Nonlinear Anal. 72 (2010), 1778–1791.

[12] R. Ma, Y. Lu and T. Chen, Existence of one-signed solutions of discrete second-order periodic

boundary value problems, Abstract and Applied Analysis. (2012) Article ID 437912, 13 pages.

[13] R. Ma and H. Ma, Positive solutions for nonlinear discrete periodic boundary value problems,

Computers & Mathematics with Applications 59 (2010), 136–141.

[14] H. Xu, New fixed point theorems of mixed monotone operators and applications to singular

boundary value problems on time scales, Boundary Value Problems 2011 Article ID 567054,

14 pages.

[15] C. Yuan, D. Jiang, and Y. Zhang, Existence and uniqueness of solutions for singular higher or-

der continuous and discrete boundary value problems, Boundary Value Problems 2008 Article

ID 123823, 11 pages.

[16] C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local

existence-uniqueness of positive solutions for nonlinear boundary value problems, J. Math.

Anal. Appl. 382 (2011), 594–614.


