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ABSTRACT. In this paper, we present a new and simple approach to coupled fixed point theory of
multi-valued maps. By using our method, we first give a very simple proof of the recent coupled fixed
point theorems established by Samet and Vetro [B. Samet, C. Vetro, Coupled fixed point theorems for
multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Analysis
74(2011), 4260-4268.] Then, we use our technique to present a new tripled fixed point theorem in a

general setting.
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1. Introduction and Preliminaries

Existence of a fixed point for contraction type mappings in partially ordered
metric spaces has been considered recently by many authors [1-7]. In [3] and [7],
the authors proved some coupled fixed point theorems and noted their results can be

used to investigate a large class of problems.

Recently, Samet and Vetro [10] introduced the concept of a coupled fixed point
for a multi-valued mapping and obtained some existence theorems for contractive

type multi-valued mappings in partially ordered metric spaces.

In this paper, we present a new and simple approach to coupled fixed point theory
of multi-valued maps. By using our technique, we first show that the main results
of Samet and Vetro [10] are immediate consequences of the well-known fixed point

theorems of Ciri¢ [11]. Next, motivated by the work of Borcut and Berinde [12], we
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introduce the concept of a tripled fixed point of a multi-valued map and present a new
tripled fixed point result for multi-valued contraction maps in a very general setting.

Let (X, d) be a metric space. We denote by C'L(X) the collection of all nonempty
closed subsets of X. For A C X and x € X, let d(z, A) = inf,ca d(z, a).

The following theorems follow from Theorem 2.1 and Theorem 2.2 in [11] and

Theorem 2.1 in [13] and will be used in the next sections.

Theorem 1.1 ([11], Theorem 2.1). Let (X, d) be a complete metric space, ) # Q C X
and let T : X — CL(X) be a multi-valued map with T(Q) C Q. Suppose that the
function f: X — R defined by f(x) = d(x,Tx),x € X is lower semicontinuous and
that there exists a function ¢ : [0,00) — [a,1), 0 < a < 1, satisfying

limsup p(r) < 1 for each t € [0, 00).

r—tt

Assume that for any x € Q) there i1s a y € Tx satisfying the following conditions:

o(f(x))d(z,y) < f(x) and f(y) < o(f(x))d(z,y).

Then T has a fixed point.

Theorem 1.2 ([11], Theorem 2.2). Let (X, d) be a complete metric space, ) # @ C X
and let T : X — CL(X) be a multi-valued map with T(Q) C Q. Suppose that the
function f: X — R defined by f(x) = d(z,T(x)),z € X is lower semicontinuous and
that there exists a function ¢ : [0,00) — [a,1), 0 < a < 1, satisfying

limsup p(r) < 1 for each t € [0, 00).

r—tt

Assume that for any x € Q) there i1s a y € Tx satisfying the following conditions:

e(d(z,y))d(x,y) < f(x) and f(y) < o(d(z,y))d(z,y).

Then T has a fixed point.

Theorem 1.3 ([13], Theorem 2.1). Let (X, d) be a complete metric space, ) # Q C X
and let T : X — CL(X) be a multi-valued map with T(Q) C Q. Suppose that the
function f: X — R defined by f(x) = d(z,T(x)),z € X, is lower semicontinuous

and assume that for each x € Q) there exists a y € Tx satisfying
a(f(z))d(z,y) < f(x) and f(y) < B(f(2))d(z,y),
where a : [0, diam(X)) — (0,1] and 3 : [0, diam(X)) — [0,1) satisfy that

liminf o(r) > 0, limsup plr) <1, Vte|0,diam(X)),
r—tt rstt Oé(’l")

and one of a and (3 is nondecreasing. Then, T has a fized point.
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Definition 1.4 ([10]). Let X be a nonempty set and F': X x X — 2% be a given
multi-valued map. We say that (z,y) € X x X is a coupled fixed point of F if

x € F(z,y) and y € F(y, z).

2. Coupled Fixed Point Theory

Let (X, d) be a complete metric space. Throughout this section, let M = X x X and
let p be the metric on M which is defined by

p((2,y), (u,v)) = d(z,u) + d(y, v).

Then it is straightforward to show that (M, p) is a complete metric space.

Definition 2.1 ([10]). Let (X, d) be a metric space endowed with a partial order <.
Let G: X — X be a given mapping. Let

A={(z,y) e X x X :G(x) G(y)}.
Let F: X x X — 2% be a given multi-valued map. F is said to be a A-symmetric

mapping if
(z,y) € A= F(z,y) x F(y,z) C A.

Now we give a very simple proof of the main results of Samet and Vetro [10].

Theorem 2.2 ([8], Theorem 2.1). Let (X,d) be a complete metric space endowed
with a partial order < and we suppose that A # (. Let F : X x X — CL(X) be a
A-symmetric mapping. Suppose that the function f: X x X — [0,00) defined by

flz,y) = d(z, F(z,y)) + d(y, F(y, x)) for all z,y € X,
is lower semicontinuous and that there exists a function ¢ : [0,00) — [a,1),0 < a < 1,

satisfying
limsup p(r) < 1 for each t € [0, 00).

r—tt

Assume that for any (x,y) € A there exist a uw € F(z,y) and av € F(y, ) satisfying

o(f (z,y)ld(z,u) + d(y,v)] < f(z,y)
and
flu,0) < o(f(2,y))ld(z, u) + d(y, v)].
Then F' has a coupled fixed point.
Proof. Let T : M — M be defined by T'(x,y) = F(x,y) X F(y, x), for each (x,y) € M.
Then (x,y) is a coupled fixed point of F' if and only if (z,y) be a fixed point of 7.

Since Fis A-symmetric then T'(A) C A. From our assumptions, we have

f(z,y) = p((z,y), T(x,y)) = d(z, F(z,y)) + d(y, F(y,2)), (z,y) € M
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is lower semicontinuous and for any (x,y) € A there exists (u,v) € T'(x,y) such that

o(f(z,y))p((z,y), (u,v)) < f(z,y)
and

flu,v) < o(f(z,y)p((z,y), (u,v)).
Then by Theorem 1.1, T" has a fixed point and so we are finished. O

Theorem 2.3 ([10], Theorem 2.2). Let (X, d) be a complete metric space endowed
with a partial order < and we suppose that A # 0. Let F : X x X — CL(X) be a
A-symmetric mapping. Suppose that the function f: X x X — [0,00) defined by

fla,y) = d(z, F(z,y)) + d(y, F(y, x)) for all z,y € X,
is lower semicontinuous and that there exists a function ¢ : [0,00) — [a,1),0 < a < 1,

satisfying
limsup p(r) < 1 for each t € [0, 00).

r—tt

Assume that for any (z,y) € A there exist a u € F(x,y) and a v € F(y,x) satisfying

Veld(z,u) +d(y, v))d(x,u) + d(y, )] < f(z,y)

and
flu,v) < p(d(z, u) + d(y,v))[d(z, u) + d(y,v)).
Then F has a coupled fixed point.

Proof. Let T : M — M be defined by T'(z,y) = F(x,y) x F(y,x), for each (x,y) €
X x X. Since F is A-symmetric then T(A) C A. From our assumptions, we have

flz,y) = p((z,y), T(x,y)) = d(x, F(z,y)) + d(y, F(y,z)), (z,y) € M

is lower semicontinuous and for any (z,y) € A there exists (u,v) € T'(x,y) such that

Velp((z,u), (y,v))p((2,y), (u,0)) < pl(z,y),T(z,y))

and
p((u,v), T(u,v)) < p(p((z,y), (u,v)p((x,y), (u, v)).
Then by Theorem 1.2, T has a fixed point and so F' has a coupled fixed point. O

Theorem 2.4. Let (X,d) be a complete metric space, ) # Qo C X and let F :
X x X — CL(X) be a multi-valued map with F(Qy X Qo) C Qo. Suppose that the
function f: X x X — R defined by

f(z,y) =d(z, F(z,y)) + d(y, F(y,x)) for all z,y € X,

is lower semicontinuous and assume that for each (x,y) € Qo X Qo there exist a

u € F(x,y) and a v € F(y,x) satisfying

a(f(z,y)ld(z, u) + d(y,v)] < f(x,y) and f(u,v) < B(f(z,y))[d(z,u) +d(y, v)],
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where « : [0, diam(X)) — (0,1] and 5 : [0, diam(X)) — [0, 1) satisfy that

liminf o(r) > 0, limsup plr) <1, Vte|0,diam(X)),
r—tt r—tt Oé(’l")

and one of a and (3 is nondecreasing. Then, F' has a coupled fized point.

Proof. Let T : M — M be defined by T'(z,y) = F(x,y) x F(y,z), for each (x,y) €
X x X. Let Q = Qp x Qo. Since F(Qy x Qp) C (o then T(Q) C Q. From our

assumptions, we have

flz,y) = p((z,y), T(x,y)) = d(x, F(z,y)) + d(y, F(y,z)), (z,y) € M

is lower semicontinuous and for any (z,y) € @ there exists a (u,v) € T(z,y) such
that

a(f(z,y))p((z, ), (u,v)) < f(z,y) and f(u,v) < B(f(z,y))p((z,y), (u,v)).
Then by Theorem 1.3, T has a fixed point and so I’ has a coupled fixed point. O

3. Tripled Fixed Point Theory

Definition 3.1 ([14]). Let X be a nonempty set and F': X x X x X — 2X be a
multi-valued map. We say that (z,y,2) € X x X x X is a tripled fixed point of F' if

I’GF(ZE,y,Z), yeF(:%Zax) andzeF(z,x,y).

Definition 3.2. Let F' : X x X x X — 2% be a given multi-map and § # A C
X x X x X. We say that F is A-symmetric if

(z,y,2) € A= F(a,y,2) x Fy, z,2) x F(z,2,y) € A.
Let (X, d) be a complete metric space. Throughout this section, let M = X X
X x X and let p be the metric on M which is defined by
p((x,y,2), (u,v,w)) = d(z,u) + d(y,v) + d(z,w).

Then it is straightforward to show that (M, p) is a complete metric space.

Now, we are ready to prove our new tripled fixed point results for multi-maps.

Theorem 3.3. Let (X, d) be a complete metric space and we assume that ) # A C
XXxXxX. Let F: X xX xX — CL(X) be a A-symmetric mapping. Suppose
that the function f: X x X x X — [0,00) defined by

f(x,y,2) = d(z, F(z,y,2)) + d(y, F(y, z,7)) + d(z, F(z,7,y)) ,

x,y,z € X, is lower semicontinuous and that there exists a function ¢ : [0,00) —
la,1), 0 < a < 1, satisfying

limsup ¢(r) < 1 for each t € [0,00).

r—tt
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Suppose that for each (x,y,2) € A there exist u € F(x,y,2), v € F(y,z,2) and
w € F(z,z,y) satisfying

a(f(z,y, 2)[d(z,u) + d(y,v) + d(z, w)] < f(z,y,2)
and
flu,v,w) < B(f (2, y, 2)[d(z,u) + d(y, v) + d(z, w)],
where « : [0, diam(X)) — (0,1] and 5 : [0, diam(X)) — [0, 1) satisfy that
B(r)

ligigfa(r) > 0, h?ijgpw <1, Vtel0,diam(X)),

and one of a and (3 is nondecreasing. Then T has a fized point.

Proof. Let T : M — M be defined by
T(x,y,z) = F(z,y,2) X F(y,z,x) x F(z,2,y),

for each (z,y,2) € X x X x X. Then (z,v, z) is a tripled fixed point of F" if and only
if (x,7,2) be a fixed point of T. Since F is A-symmetric then T(A) C A. From our

assumptions, we have
a(f(z,y,2))p((z,y, 2), (w,v,w)) < fz,y, 2)
and

fu,v,w) < B(f (2, 2)p((, 9, 2), (u, v, w)).

Then all of the assumptions of Theorem 1.3 are satisfied and then 7' has a fixed
point. ]

From Theorem 1.2 and using our technique, we obtain the following result.

Theorem 3.4. Let (X,d) be a complete metric space, ) # Qo C X and let F :
X x X x X — CL(X) be a multimap with F(Qo x Qo X Qo) C Qo. Suppose that the
function f: X x X x X — [0,00) defined by

f(z,y,2) = d(z, F(z,y,2)) + d(y, F(y, z, %)) + d(z, F(z,2,y)) ,
x,y,z € X, is lower semicontinuous and that there exists a function ¢ : [0,00) —
la,1), 0 < a < 1, satisfying

limsup ¢(r) < 1 for each t € [0,00).

r—tt
Suppose that for each (x,y,z) € Qo x Qo X Qg there existu € F(x,y,2),v € F(y, z,x)
and w € F(z,z,y) satisfying

Veld(z,u) + d(y,v) + d(z, w))ld(z,u) + d(y,v) + d(z,0)] < f(z,y,2)

and

flu,v,w) < p(d(z,u) + d(y,v) + d(z,w))[d(z,u) + d(y,v) + d(z, w)].
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Then F' has a tripled fized point.

Remark 3.5. By using our technique, coupled and tripled counterparts of well-known

multi-valued fixed point theorems in metric spaces could be easily deduced.
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