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1. INTRODUCTION

In this paper we first prove an alternative of Leray-Schauder type. This in par-

ticular improves a result in [5] where a condition was omitted. Then using this

Leray-Schauder alternative we will obtain a new fixed point result of Furi-Pera type.

This improves a result in [6] where one of the conditions was incorrectly stated and its

proof needs to be adjusted slightly (see Theorem 2.4 below). Our results in particular

extend those of [2, 3, 5, 12]. For the remainder of this section we gather some nota-

tions and preliminary facts. Let X be a Banach space, let B(X) denote the collection

of all nonempty bounded subsets of X and W(X) the subset of B(X) consisting of

all weakly compact subsets of X. Also, let Br denote the closed ball centered at 0

with radius r.

Definition 1.1. A function ψ : B(X) → R+ is said to be a measure of weak non-

compactness if it satisfies the following conditions :

(1) The family ker(ψ) = {M ∈ B(X) : ψ(M) = 0} is nonempty and ker(ψ) is

contained in the set of relatively weakly compact sets of X.

(2) M1 ⊆M2 ⇒ ψ(M1) ≤ ψ(M2).

(3) ψ(co(M)) = ψ(M), where co(M) is the closed convex hull of M .

(4) ψ(λM1 + (1 − λ)M2) ≤ λψ(M1) + (1 − λ)ψ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty weakly closed subsets of X with M1 bounded

and M1 ⊇M2 ⊇ · · · ⊇Mn ⊇ · · · such that limn→∞ ψ(Mn) = 0, then M∞ :=
⋂∞

n=1Mn

is nonempty.
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The family kerψ described in (1) is said to be the kernel of the measure of weak

noncompactness ψ. Note that the intersection set M∞ from (5) belongs to kerψ since

ψ(M∞) ≤ ψ(Mn) for every n and limn→∞ ψ(Mn) = 0. Also, it can be easily verified

that the measure ψ satisfies

(1.1) ψ(Mw) = ψ(M)

where Mw is the weak closure of M .

A measure of weak noncompactness ψ is said to be regular if

(1.2) ψ(M) = 0 if and only if M is relatively weakly compact,

subadditive if

(1.3) ψ(M1 +M2) ≤ ψ(M1) + ψ(M2),

homogeneous if

(1.4) ψ(λM) = |λ|ψ(M), λ ∈ R,

set additive if

(1.5) ψ(M1 ∪M2) = max(ψ(M1), ψ(M2)).

An important example of a measure of weak noncompactness has been defined

by De Blasi [8] as follows :

(1.6) w(M) = inf{r > 0 : there exists W ∈ W(X) with M ⊆ W +Br},

for each M ∈ B(X).

Notice that w(·) is regular, homogeneous, subadditive and set additive (see [8]).

Let X and Y be topological spaces. A multivalued map F : X → 2Y is a point

to set function if for each x ∈ X, F (x) is a nonempty subset of Y . For a subset M

of X we write F (M) = ∪x∈MF (x) and F−1(M) = {x ∈ X : F (x) ∩M 6= ∅}. The

graph of F is the set Gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}. We say that F is upper

semicontinuous (u.s.c. for short) at x ∈ X if for every neighborhood V of F (x) there

exists a neighborhood U of x with F (U) ⊆ V (equivalently, F : X → 2Y is u.s.c. if for

any net {xα} in X and any closed set B in Y with xα → x0 ∈ X and F (xα) ∩B 6= ∅

for all α, we have F (x0) ∩B 6= ∅). We say that F : X → 2Y is upper semicontinuous

if it is upper semicontinuous at every x ∈ X. The function F is lower semicontinuous

(l.s.c.) if the set F−1(B) is open for any open set B in Y . If F is l.s.c. and u.s.c., then

F is continuous.

If Y is compact, and the images F (x) are closed, then F is upper semicontinuous

if and only if F has a closed graph. In this case, if Y is compact, we have that F

is upper semicontinuous if xn → x, yn → y, and yn ∈ F (xn), together imply that

y ∈ F (x). When X is a Banach space we say that F : X → 2X is weakly upper
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semicontinuous if F is upper semicontinuous in X endowed with the weak topology.

Also, F : X → 2X is said to have weakly sequentially closed graph if the graph of F

is sequentially closed w.r.t. the weak topology of X.

Definition 1.2. Let X be a Banach space and let ψ be a measure of weak non-

compactness on X. A multivalued mapping B : D(B) ⊆ X → 2X is said to be

ψ-condensing if it maps bounded sets into bounded sets and ψ(B(S)) < ψ(S) when-

ever S is a bounded subset of D(B) such that ψ(S) > 0.

The following Sadovskii type fixed point theorem (see [5]) for multivalued map-

pings with weakly sequentially closed graph will be used in Section 2.

Theorem 1.3. Let X be a Banach space, ψ a regular set additive measure of weak

noncompactness on X and C a nonempty closed convex subset of X. Suppose F :

C → C(C) is ψ-condensing, F (C) is bounded and F has weakly sequentially closed

graph; here C(C) denotes the family of nonempty, closed, convex subsets of C. Then

F has a fixed point.

2. FIXED POINT THEOREMS

Our first result is a Leray-Schauder alternative principle.

Theorem 2.1. Let X be a Banach space and ψ a regular set additive measure of weak

noncompactness on X. Let Q and C be closed, convex subsets of X with Q ⊆ C. In

addition, let U be a weakly open subset of Q with 0 ∈ U . Suppose F : Uw → C(C)

has weakly sequentially closed graph, F (Uw) is bounded and F is a ψ-condensing map.

Also assume U is weakly open in C and F transforms relatively weakly compact sets

into relatively weakly compact sets. Then either

(2.1) F has a fixed point,

or

(2.2) there is a point u ∈ ∂QU and λ ∈ (0, 1) with u ∈ λFu;

here ∂QU is the weak boundary of U in Q.

Proof. Suppose (2.2) does not occur and F does not have a fixed point on ∂QU

(otherwise we are finished since (2.1) occurs). Let

M = {x ∈ Uw : x ∈ λFx for some λ ∈ [0, 1]}.

The set M is nonempty since 0 ∈ U . Also M is weakly sequentially closed. Indeed

let (xn) be sequence of M which converges weakly to some x ∈ Uw and let (λn) be

a sequence of [0, 1] satisfying xn ∈ λnFxn. Then for each n there is a zn ∈ Fxn

with xn = λnzn. By passing to a subsequence if necessary, we may assume that (λn)
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converges to some λ ∈ [0, 1] and without loss of generality assume λn 6= 0 for all n.

This implies that the sequence (zn) converges weakly to some z ∈ Uw with x = λz.

Since F has weakly sequentially closed graph then z ∈ F (x). Hence x ∈ λFx and

therefore x ∈ M . Thus M is weakly sequentially closed. We now claim that M is

relatively weakly compact. Suppose ψ(M) > 0. Since M ⊆ co(F (M) ∪ {0}) then

ψ(M) ≤ ψ(co(F (M) ∪ {0})) = ψ(F (M)) < ψ(M),

which is a contradiction. Hence ψ(M) = 0 and therefore Mw is weakly compact. This

proves our claim. Now let x ∈ Mw. Since Mw is weakly compact (Eberlein-Šmulian

theorem [10 pg. 549]) then there is a sequence (xn) in M which converges weakly to

x. Since M is weakly sequentially closed we have x ∈ M. Thus Mw = M . Hence

M is weakly closed and therefore weakly compact. From our assumptions we have

M∩∂QU = ∅. Since X endowed with the weak topology is a locally convex space then

there exists a continuous mapping ρ : Uw → [0, 1] with ρ(M) = 1 and ρ(∂QU) = 0.

Let

J(x) =

{

ρ(x)F (x), x ∈ Uw,

0, x ∈ C \ Uw.

Clearly J : C → C(C) has weakly sequentially closed graph since F has sequentially

closed graph. Moreover, for any S ⊆ C we have

J(S) ⊆ co(J(S ∩ U) ∪ {0}).

If ψ(S ∩ U) > 0 then

ψ(J(S)) ≤ ψ(co(F (S ∩ U) ∪ {0})) = ψ(F (S ∩ U)) < ψ(S ∩ U) ≤ ψ(S),

whereas if ψ(S ∩ U) = 0 then

ψ(J(S)) ≤ ψ(F (S ∩ U)) = 0 < ψ(S),

if ψ(S) > 0. Thus J : C → C(C) is ψ-condensing. From Theorem 1.3 there exists

x ∈ C such that x ∈ J(x). Now x ∈ U since 0 ∈ U . Consequently x ∈ ρ(x)F (x) and

so x ∈M . This implies ρ(x) = 1 and so x ∈ F (x).

Remark 2.2. In Theorem 2.1 above notice ∂QU = ∂CU . We note that the condition

U is weakly open in C was omitted in Theorem 2.6 in [4] and in Theorem 2.1 (and the

other results in Section 2) in [13] and the condition F transforms relatively weakly

compact sets into relatively weakly compact sets was omitted in Theorem 2.2 in [5].

Corollary 2.3. Let X be a Banach space and ψ a regular set additive measure of

weak noncompactness on X. Let C be a closed, convex subsets of X. In addition let

U be a weakly open subset of C with 0 ∈ U . Suppose F : Uw → C(C) has weakly

sequentially closed graph, F (Uw) is bounded and F is a ψ-condensing map. Also
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assume F transforms relatively weakly compact sets into relatively weakly compact

sets. Then either

(2.3) F has a fixed point,

or

(2.4) there is a point u ∈ ∂CU and λ ∈ (0, 1) with u ∈ λFu;

here ∂CU is the weak boundary of U in C.

Our next result is a Furi-Pera type result.

Theorem 2.4. Let X be a Banach space and ψ a regular and set additive measure

of weak noncompactness on X. Let C be a closed convex subset of X and Q a closed

convex subset of C with 0 ∈ Q. Assume the weak topology on C is metrizable. Also,

assume F : Q→ C(C) has weakly sequentially closed graph, F is ψ-condensing map,

F (Q) bounded and F transforms relatively weakly compact sets into relatively weakly

compact sets. In addition, assume that the following conditions are satisfied:

(i) there exists a weakly continuous retraction r : X → Q, with r(D) ⊆ co(D ∪ {0})

for any bounded subset D of X and r(x) = x for x ∈ Q.

(ii) if {(xj , λj)}
∞
j=1 is a sequence in Q × [0, 1] with xj ⇀ x ∈ ∂Q, λj → λ and

x ∈ λF (x), 0 ≤ λ < 1, then λjF (xj) ⊆ Q for j sufficiently large; here ∂Q is the

weak boundary of Q relative to C.

Then F has a fixed point in Q.

Proof. Let r be as described in (i) and let

B = {x ∈ X : x ∈ Fr(x)}.

We first show that B 6= ∅. To see this, consider Fr : C → C(C). Clearly Fr has

weakly sequentially closed graph, since F has weakly sequentially closed graph and r

is weakly continuous. Now we show that Fr is a ψ-condensing map. To see this, let

A be a bounded subset of C and ψ(A) > 0. Now

F r(A) ⊆ F co(A ∪ {0}).

Note ψ(co(A ∪ {0})) = ψ(A) > 0 so

ψ(F r(A)) < ψ(co(A ∪ {0})) = ψ(A).

Thus Fr is a ψ-condensing map. Now Theorem 1.3 guarantees that there exists

y ∈ C with y ∈ Fr(y). Thus y ∈ B and B 6= ∅. Note B is weakly sequentially closed,

since Fr has weakly sequentially closed graph. Moreover, we claim that B is weakly

compact. To see this, first note

B ⊆ F r (B) ⊆ F co(B ∪ {0}).
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If ψ(B) > 0 then since ψ(co(B ∪ {0})) = ψ(B) > 0 we have

ψ(B) ≤ ψ(F co(B ∪ {0})) < ψ(co(B ∪ {0})) = ψ(B),

a contradiction. Thus, ψ(B) = 0 and so B is relatively weakly compact. Now let

x ∈ Bw. Since Bw is weakly compact then there is a sequence (xn) of elements of B

which converges weakly to some x. Since B is weakly sequentially closed then x ∈ B.

Thus, Bw = B. This implies that B is weakly compact.

We now show that B ∩ Q 6= ∅. Suppose B ∩ Q = ∅. From our assumption the

weak topology on C is metrizable, let d∗ denote the metric. With respect to (C, d∗)

note Q is closed, B is compact, B ∩Q = ∅ so there exists ǫ > 0 with

d∗(B,Q) = inf{d∗(x, y) : x ∈ B, y ∈ Q} > ǫ.

For i ∈ {1, 2 . . .}, let

Ui =
{

x ∈ C : d∗(x,Q) <
ǫ

i

}

.

For each i ∈ {1, 2 . . .} fixed, Ui is open with respect to d∗ and so Ui is weakly open

in C. Also

Uw
i = Ud∗

i =
{

x ∈ C : d∗(x,Q) ≤
ǫ

i

}

and ∂Ui =
{

x ∈ C : d∗(x,Q) =
ǫ

i

}

.

Note Uw
i ∩ B = ∅, so Corollary 2.3 (with F = Fr, U = Ui) guarantees that there

exists yi ∈ ∂Ui and λi ∈ (0, 1) with yi ∈ λiFr(yi); note F r transforms relatively

weakly compact sets into relatively weakly compact sets since r is weakly continuous

and F transforms relatively weakly compact sets into relatively weakly compact sets

and note also (see above) that F r is a ψ-condensing map. Note since yi ∈ ∂Ui that

λiFr(yi) 6⊆ Q. We now consider

D = {x ∈ X : x ∈ λFr(x), for some λ ∈ [0, 1]}.

Note

D ⊆ co(F rD ∪ {0}) ⊆ co(F (co(D ∪ {0})) ∪ {0})

so if ψ(D) > 0 then since ψ(co(D ∪ {0})) = ψ(D) we have

ψ(D) ≤ ψ(co(F (co(D∪{0}))∪{0})) = ψ(F (co(D∪{0}))) < ψ(co(D∪{0})) = ψ(D),

a contradiction. Thus ψ(D) = 0 so D is relatively weakly compact. The reasoning

above implies that D is weakly compact. Then, up to a subsequence, we may assume

that λi → λ∗ ∈ [0, 1] and yi ⇀ y∗ ∈ Q. Since F has weakly sequentially closed graph

then y∗ ∈ λ∗Fr(y∗). Note λ∗ 6= 1 since B ∩ Q = ∅. From assumption (ii) it follows

that λiFr(yi) ⊆ Q for j sufficiently large, which is a contradiction. Thus B ∩Q 6= ∅,

so there exists x ∈ Q with x ∈ Fr(x), i.e. x ∈ Fx.
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Remark 2.5. One of the conditions in Theorem 2.3 in [6] was stated incorrectly and

the proof has to be adjusted slightly (i.e. modify slightly the proof of Theorem 2.4

above).

Next we establish an existence principle for the operator equation

(2.5) y(t) ∈ N y(t), t ∈ [0, T ] (T > 0 fixed)

in C([0, T ],Rn). Our result extends a result in [12, Theorem 3.9] and in [3, Theorem

2.8] (we note that one of the assumption in [12] was stated incorrectly). Recall

W k,p([0, T ],Rn), 1 ≤ p < ∞, denotes the space of functions u : [0, T ] → Rn with

u(k−1) ∈ AC[0, T ] and u(k) ∈ Lp[0, T ]. Note W k,p([0, T ],Rn) is reflexive if 1 < p <∞.

Also we let ‖ · ‖∞ denote the usual supremum norm and ‖ · ‖2 the usual L2 norm.

Theorem 2.6. Suppose N : W 1,2([0, T ],Rn) → K(W 1,2([0, T ],Rn)) has weakly se-

quentially closed graph; here K(W 1,2([0, T ],Rn)) denotes the family of nonempty,

convex, weakly closed subsets of W 1,2([0, T ],Rn). In addition assume the following

two conditions hold:

(2.6)

{

∃ M0 > 0 such that if u ∈W 1,2([0, T ],Rn) satisfies

u ∈ λNu for 0 < λ < 1, then ‖u‖∞ 6= M0

and

(2.7)











∃N0 ≥M0, and ∃N1 > 0 such that if u ∈W 1,2([0, T ],Rn)

with ‖u‖∞ ≤M0 and ‖u′‖2 ≤ N1, then ‖N u‖∞ ≤ N0

and ‖N u‖2 ≤ N1.

Then (2.5) has a solution in W 1,2([0, T ],Rn).

Proof. Let E = W 1,2([0, T ],Rn),

C =
{

u ∈ W 1,2([0, T ],Rn) : ‖u‖∞ ≤ N0 and ‖u′‖2 ≤ N1

}

and

U =
{

u ∈W 1,2([0, T ],Rn) : ‖u‖∞ < M0 and ‖u′‖2 ≤ N1

}

.

Notice C is a convex, closed, bounded subset of E. We first show U is weakly open

in C. To do this we will show that C\U is weakly closed. Let x ∈ C\Uw. Then

there exists xn ∈ C\U (see [7 pp. 81, 9 pp. 93]) with xn ⇀ x (here W 1,2([0, T ],Rn)

is endowed with the weak topology and ⇀ denotes weak convergence). We must

show x ∈ C\U . Now since the embedding j : W 1,2([0, T ],Rn) → C([0, T ],Rn) is

completely continuous [1], there is a subsequence S of integers with

xn → x in C([0, T ],Rn) and x′n ⇀ x′ in L2([0, T ],Rn)

as n→ ∞ in S. Also

‖x‖∞ = lim
n→∞

‖xn‖∞ and ‖x′‖2 ≤ lim inf ‖x′n‖2 ≤ N1.
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Note M0 ≤ ‖x‖∞ ≤ N0 since M0 ≤ ‖xn‖∞ ≤ N0 for all n. As a result x ∈ C\U , so

C\Uw = C\U . Thus U is weakly open in C. Also

∂ U = {u ∈ C : ‖u‖∞ = M0} and Uw = {u ∈ C : ‖u‖∞ ≤M0} .

To see this let x ∈ Uw. Then [7 pp. 81] guarantees that there exists xn ∈ U with

xn ⇀ x. Essentially the same reasoning as above yields ‖x‖∞ ≤M0 and ‖x′‖2 ≤ N1,

so Uw ⊆ {u ∈ C : ‖u‖∞ ≤ M0}. On the other hand if x ∈ A = {u ∈ C : ‖u‖∞ ≤M0}

(note A is closed), then there exists xn ∈ U with xn → x in W 1,2([0, T ],Rn), so in

particular xn ⇀ x in W 1,2([0, T ],Rn). Thus x ∈ Uw, so Uw = {u ∈ C : ‖u‖∞ ≤M0}.

Next note C is weakly compact (note W 1,2([0, T ],Rn) is reflexive), (2.7) guar-

antees that N : Uw → C(C) and N transforms relatively weakly sets into relatively

weakly compact sets (note N(Uw) ⊆ C and C is weakly compact). Also (2.6) guar-

antees that (2.4) is not true (note if there exists x ∈ ∂U and λ ∈ (0, 1) with x ∈ λNx

then ‖x‖∞ = M0 since x ∈ ∂U and ‖x‖∞ 6= M0 from (2.6)). Corollary 2.3 guarantees

that N has a fixed point in Uw.

Remark 2.7. In Theorem 2.6 it is enough to assume N : Uw → K(C) has weakly

sequentially closed graph; here U and C are as described in the proof.

Remark 2.8. Indeed it is clear that there is an analogue of Theorem 2.6 where

W 1,2([0, T ],Rn) is replaced by W k,p([0, T ],Rn), here 1 < p <∞.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.

[2] R. P. Agarwal and D. O’Regan, Fixed point theory for set valued mappings between topological

vector spaces having sufficiently many linear functionals, Computers and Mathematics with

Applications 41 (2001), 917–928.

[3] R. P. Agarwal and D. O’Regan, Homototy results for weakly sequentially upper semicontinuous

maps, Nonlinear Functional Analysis and Applications 8 (2003), 111–122.

[4] R. P. Agarwal, D. O’Regan, M. A. Taoudi, Browder-Krasnoselskii type fixed point theorems

in Banach spaces, Fixed Point Theory Appl. 2010, 243716, 20 pp.

[5] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theorems for condensing mappings

under weak topology features, Fixed Point Theory 12 (2011), 247–254.

[6] R. P. Agarwal, D. O’Regan and M. A. Taoudi, Fixed point theory for multivalued weakly

convex-power condensing mappings with application to integral inclusions, Memoirs on Dif-

ferential Equations and Mathematical Physics 57 (2012), 17–40.

[7] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,

Proc. Sympos. Pure Math. 18 (1976), 1–305.

[8] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math.

Roum. 21 (1977), 259–262.

[9] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, 1985.

[10] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston,

1965.



FIXED POINT RESULTS 243

[11] K. Floret, Weakly compact sets, Lecture Notes Math. 801 (1980), 1–123.

[12] D. O’Regan, A fixed point theorem for weakly condensing operators, Proc. Royal Soc. Edin-

burgh 126A (1996), 391–398.

[13] D. O’Regan and M. A. Taoudi, Fixed point theorems for the sum of two weakly sequentially

continuous mappings, Nonlinear Anal. 73 (2010), no. 2, 283–289.


