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ABSTRACT. This paper is concerned with exponential stability in mean square for stochastic
Cohen-Grossberg-type BAM neural networks with S-type distributed delays. By using Lyapunov
functional method and with the help of stochastic analysis technique, the sufficient conditions to
guarantee the exponential stability in mean square for the neural networks are obtained. An example

is given to demonstrate the advantage and applicability of the proposed results.
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1. Introduction

The Cohen-Grossberg-type BAM neural networks was first proposed in 1983 by
Cohen and Grossberg [1]. Because of its wide applications in pattern recognition,
signal process, optimization problems and many other fields, the stability of the neu-
ral networks with discrete delays or distributed delays, which these applications are
largely dependent upon, has been extensively studied [4]-[9]. Recently, the various
results have been obtained for the stability of stochastic Cohen-Grossberg-type BAM
neural networks with discrete and distributed delays due to signal interference by
random factors [10]-[15]. But it has rare reports for the stability of the stochastic
neural networks with S-type distributed delays. For the systems with discrete and
distributed delays are complementary events, and the system with S-type distributed
delays contains systems with discrete and distributed delays [2], [16]. So, it is very
meaningful to study the stability of stochastic Cohen-Grossberg-type BAM neural
networks with S-type distributed delays. In this paper, we focus on the stability for
the stochastic Cohen-Grossberg-type BAM neural networks with S-type distributed
delays, which the motivation come from the mathematics and applications of the neu-
ral networks. Some sufficient conditions of the exponential stability in mean square

are obtained in terms of Lyapunov functional and stochastic analysis technique. An
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example is given to demonstrate the advantage and applicability of the proposed

results.

2. Preliminaries

Consider the following stochastic Cohen-Grossberg-type BAM neural networks
with S-type distributed

(1) = —u(a(0)) | as as(1)) — i A0

- by 2o Filys(t+6))dn” (6) - L} dt + é%(%(t))dwg’(t),

=1

dy;(t) = —=B;(y;(t)) | b;(y;(t)) — écijgz'(f’fz’(t)) (1)

2

_ édij fi)oo gi(x;(t + 9))d77i(2)(9) — Jj} dt + éﬁj(ﬂfi(t))dwm—ki(t%

l’l(t) = ¢2(t>7 te (—OO, O],
\yj(t> = Spj(t)v te (_0070]7

where ¢;(t) and ¢;(t) are bounded in (—o0,0], z;(t) and y;(t) are the neuron state

variable. o;(s) and (3;(s) represent the amplification functions of the ith and jth cell
neurons. a;(s) and b;(s) are appropriately behaved functions, a;;, bj;, ¢ij, dij, f;(s) and
g:(s) represent interconnection weight coefficients and the neuron activation functions,
respectively. W (t) = (wy(t), wa(t), ..., Wmin(t))T is n + m dimensional Brownian
motion defined on a complete probability space (€2, F}, P) with a natural filtration
F;. 0ji(s) and 7;;(s) are diffusion coefficients, I; and J; denote external inputs to the
neurons introduced from outside the network. f_ooo 1y, (t+ «9))d7}§»1) (6), fi)oo gi(xi(t+
9))dni(2)(9) are Lebesgue-Stieltjes integrable, and nﬁl)(ﬁ), ni(z)(ﬁ) are nondecreasing

bounded variation functions which satisfy

0 0
[ a o=t [ aPe - &)
Throughout this paper, we assume that

(H1) f;(s), 9i(s), 0ji(s), 7i;(s) are Lipschitz continuous. That is, exist positive con-
stants p;, gi, Mj;, N;; such that

1£3(t) = fi(s)| < pslt = sl 19:(t) = gi(s)] < qalt — ], (3)

|0ji(t) — ji(s)| < Myilt — sl |73 (t) — 735(s)| < Niglt — ], (4)

for all t,s € R.
(H2) There exists a positive constant A such that

0 0
/ e—zAadn](l)(g) < +o00, / e dn (0) < +oo0, (5)

— o0
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(H3) ai(s) and B;(s) are continuous bounded functions in R, and there exist positive
constants a, @;, Qj, Bj, such that

o, < a(s) gai,gj <Bi(s)<B;, i=1,2,...,n, j=12,...,m. (6)

(H4) There exist positive constants f;, v; such that

wi(2 — 2a,a;) + [al-pj(aji + bjikj)m + uﬁj(c;; + djjl Vg + I/]Nz] 0, (7

<
Il
-

s

vj(2 =26.b;) + Z[@%’(CZ + d L)y + pid(af + bk )p + pMZ] <0, (8)

i=1
with af; = |azil, b; = [bsl, ¢ = leyl, df = |di].
(H5) There exist constants a; > 0, b; > O, such that

ai(r) = ai(y) = ai(z — y), b;(x) = b;(y) = b;(z —y), (9)
for all z,y € R, and q;(0) = b;(0) = 0.
(H6)

=) pilaf + k) >0, b —Zqzc +dfil;) > 0. (10)

Definition 2.1 ([14]). The equilibrium point of system (1) is said to be exponentially

stable in mean square, if there exist positive constants K, ¢, such that
> Elxi(t) =z P+ Ely()—y;)? < Ke (B = P+E Y lo;—y;I*), (11)
i=1 j=1 i=1 j=1

for all t > 0. When |¢; — x| = Sup |¢z( ) =77 e —yil = sup  |p;(0) — yjl.

—0o<f —00<60<0

Lemma 2.2 ([3]). For the equation
d(t) = f(we, t)dt + g(z, )AW (L), to <1, (12)

where xy = x(t+0) : —7 < 0 <0 is regarded as a C([—7,0]; R")-valued stochastic
process, and the initial data i, = @(0) is an Fi,-measurable C([—7,0]; R™) with
Elpl? < oco. Assume that for any b € (tg, 00)

(1) F(1,0) € L([to,V}; ") and g(t,0) € L*([to, b; ™).

(2) There is a constant K,, = K, (b) > 0 such that

1f(t,0) = f(t, )] < Kaullp =9, [g9(t, 0) — g(t,0)] < Kalle — 9, (13)

for allt € [ty,b] and v, v : [—7,0] — R™ with ||| V ||¢] < n.
(3) There is a function V(t,x) € C([toy—7,00)x R"; R;) with lim inf V(s,z) = o0

|z|— 00 to<s<oo
such that the following priori estimate is satisfied

EV(t,x(t)) < L(t), (14)
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where L : [tg,T) — Ry with sup,ey, o L(s) < oo for any given t € [ty,00), then the

solution z(t) to (12) is unique and exists globally on [ty — T,00).
Let V(t,x) € C([ty — 7,00) X R™"; R, ) and
1
LV (t, 2(t)) = Vi(t, 2(8) + Va(t, 2(0) f (£ 20) + 5trg" (t 2 Vaalt, 2(£) g (¢, 1) (15)

Then, from It6 formula [3], it follows

V(t,z(t)) :V(to,z(to))—l—/ LV(s,x(s))ds—l—/ Veg(s, z5)dW(s). (16)

to to

Remark 2.3. The condition (1) holds obviously if f(p,t) = f(¥), g(p,t) = g(¢).

3. Main result and its proof

Consider the following model:

(1) = —oult) (1) = 35 aefy, ()
= S50 [0 ot + ) 0) =
dy;(t) = —=0;(t) b'(?/j( ) = Z cijgi(i(t))

Z di; f (i (t + 9))dn] )(0) — J]} dt.

(17)

\

In a similar way of proof for the literature [4], under hypotheses (H1)-(H6), we can
prove that there exists an equilibrium point z* = (2%, 23, ..., 2%, v}, v5, ..., y5)T of

the system (17) by using topological degree and homotopy invariance, i.e.,

(z7) — Zajz‘fj(y;) — Z bjik; fi(y;) — 1 =0, (18)

Zcz]gz Z dzylzgz - 0 (19)

Hypotheses
(H7) 0ji(y;) = 1ij(2;) = 0,i = 1,2,...,n, j =1,2,...,m
From (H7),we know that then z* is an equilibrium point of the system (1).

Theorem 3.1. Assume that (H1)—(HT7) hold. Then, the equilibrium point z* of system

(1) is exponentially stable in mean square.

Proof. From Lemma 2.2, we can prove that the system (1) has a unique solution

2(t) = (T1,%9, - T, Y1, Y2, -+, Ym) L, t € [0,00), which the solution belongs to
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M?(]0,00); R™*™). By the condition ffoo dnj(»l)(é’) = kj, fi]oo dn®(0) = 1; and (H2),
we know that, exists a A > 0, such that [15]

0 0
/ e Mdn;"(0) < +oo, / e My (6) < +oc, (20)
for all A € (0, ), and
0 0
lim 6_2>\0d77](-1)(9) = lim_ 6_2’\90[772-(2)(9) = +o00, (21)
A—AJ o A—AJ—
Define
F(\) = 2ui(a;a; — Z{ aip;(aj; + byk;) i
7=1
0
+ v; 3, (c + d+/ _2’\96177 )q, + V]NZ] , (22)
G(N) = 2v4(B [ﬂ i (¢ +dil) v
i=1
" 0
a5 / OO e

then, by (H3) and (H4), we get F'(0) > 0, G(0) > 0, and we also have A — % Hence
exists a A* € (0,3) such that [16]

0
POz 00< [ e 0) <+ (24)

—00
0

GOz 0k < [ e (6) < +oc. (25)

— o0

Let

= 3 t) i
P [ [y a0, @)

i=1 j=1
Vy = Z vie Ny, (t) — y; |
+ZZﬂ dw%”]/ / SN0y (s) — 2t Pdsdn®(0).  (27)

i=1 j=1

From (4), (5), (24), (25), (H5), It6 formula and Jensen inequality, we have

LVy = 2N e il (t) — a7

1=1
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n m 0
=S b [ (@0 -y =l +6) — ;P 0
i=1 j=1 -
26”“2%(%(0 —af)[=ai (1)) (as(wi(t) = Y azfi(y; (1))
_Zbﬂ/ fi(y;(t +0) dn] '(6) — tzz,uzaﬂ y;(t
i=1 j5=1

NS ) —
i=1

n m 0
+3°N @bl / (el () — y11? — lys(t + 0) — 1)) (6)

i=1 j=1 o0

2t Zm zi(t) — xf )y (z(t))[a; (xi(t)) — a;(z])]
o2V tz#: it (it Zaﬂ fity; (8) — f3(y7))
o tzm (ei(t) — 2 ona f: / (fi(s(t +0)) = £(y;))dn" (0)

+ e Z Z 105 (y; (D) = o5(7)

i=1 j=1

< 2NN " pla(t) —
i=1

+3°N @bl / (e y;(8) =y 2 — ly;(t + 0) — y3[)dn" (0)

i=1 j=1

26””Zuig,-ai|xi< Y —xIZ%PH% il

=1

e tzzma byzpj‘xz |/ ly;(t +0) — yj‘dﬁ ( )

=1 j5=1

Z“ZZMZ Sl (8) — i

i=1 j5=1

€S ) - 20 < ) 34|

0

P2t Z |yj _ y] Z J13%e ij al ji + b;;/ e—2>\*9dnj(1)(9)) + Z MZM]%] .
- i=1

o0
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m

LV, < Y wylys(0) — w3 P |20 = B,0) + Y Biailc + dijl)
=1

J=1 L

n m 0
4 €2>\ t Z |LL’Z(T,) . Ij‘2 Zﬂjyjqi(c;; + dz—;/
=1 B

Lj=1

P02 (0) + 3 ujN;-] .
j=1

(29)

[e.9]

From (24), (25), (28) and (29), we have

LV (t,2(t)) = LV; + LV;

et (Z i (t) = 2 PEO) + ) lys(t) — y;*VG(A*)) <0. (30)

J=1

From (16), it follows
V(t, 2(t)) = V(0, 2(0)) +/0 LV (s,2(s))ds
/ 262 ™3 pul(s) — 27l 5) ey (5)

=1 j=1

b [ 20 )~ D) (31

=1 j=1

From (30) and (31), we can get
EV(t,z(t)) = EV(0,2(0)) + /t ELV (s, z(s))ds < EV(0,2(0))

<3 ulorri s £ S wiatin, [0l o

i=1 j=1
+EZVM R+ B> uB i / / Olas(s) — a; [dsdn® (6)
i=1 j=1
< Ezm — ] + E— Zimaz bjips / e —1)dn"(0) s — y;
i=1 i=1 j=1
+ EZVM G By YD e [ (@ - a0 -
i=1 j=1
_Ez|¢,—x ? i+ QA*f;ijd;qi / Ow<e-”*9—1>dn§2’<e>]
J
+Ez;\<p] yj\2 vj + X Zﬂzaz iDj /0 (e — 1)d77§1)(9)] : (32)
] N
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From (26), (27) and (32), we obtain

pet (Z Blai(t) = a3 + 3 Elyy(t) - y;|2) < BVt 2(1)) < EV(0,2(0))

K (Ezm e —y;|2) | 3)
i=1 =1

where
B 1 o — + ‘ —2)*0 (2
K= 1Si§I}Ll,211§jSm {M * 2\ 21 Vil i /_oo(e ~ D (6),
‘]:
1 ¢ ‘ %0 (1)
_ —9)\*
Vit o Zmaibﬁpg’/ (e — 1)dn; (9)},
i=1 —0

p=min{yu;,v;},1 <i<n,1<j<m. (34)

That is
- * - * K —2)\* - * - *
Y Elri(t) —xiP+ > Ely(t) —y;P < —e M UEY o — 2P+ E Y lo; — i)
i=1 j=1 P i=1 j=1
(35)

So, the system (1)is exponentially stable in mean square. O

Remark 3.2. When 0;;(s) = 7;;(s) = 0, then system (1) becomes to neural networks

without random disturbance.

Remark 3.3. When «;(s) = §;(s) = 1, and 0j;(s) = 7;(s) = 0,the system (1) is
simplified to the general BAM with S-type distributed delays

(1) = () + 1 afy05(8) + 3 by [ Fis(t+ 0 (0) + 1

n " (36)
i3(1) = =bs (03 (1)) + 3 cusgn(@i(®)) + X [ giailt + 0))dn” (9) + T,
which is the model in literature [4].
Remark 3.4. When «;(s) = §;(s) = 1, and
0 (0) = j
0, —oo<O<—p;
1, —1,<6<0
0 (6) =
0, —oco<b<-—m7
then
° (1) ’ (2)
/]fﬂw@+ﬂﬁmu(@=fﬂw@—pﬂx/ gi(zi(t + 0))dn;” (0) = gi(z:(t — 7)),

the system (1) becomes to the model of literature [13]. So, this paper includes of
results of Wang and Xu (2002), and Li and Fu (2011) as a special case.
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4. Example

Consider the Cohen-Grossberg-type BAM neural networks (1) with the following
parameters

ai(zi(t)) = B(y;(t)) =2 —cos(t), 1 =1,2,j = 1,2,
ai(x) = 4z, as(x) = bz, bi(y) = 6y, ba(y) = 3.5y,
a1 = 0.25,a9; = 0.125, a15 = —0.25, a9 = —0.125,
b11 = 0.5,b91 = 0.25, b1 = —0.5, byy = —0.25,

c11 = 0.1,c091 =0.2,c19 = —0.1, co0 = —0.2,
dyp = 0.15,dy; = 0.3, d12 = —0.15,dge = —0.3,
o11(y1(t)) = 0.5y1(), 021 (y2(t)) = 0, 012(y1(t)) = 0, 022(y2(t)) = 0.2y2(¢),
T11(21(t)) = 21 (t), 721 (22(t)) = 0, T12(21(t)) = 0, Too(22(t)) = 0.625(1),
fi(x) = gi(z) = sin(x), §1) = 172.(2) =¢’.
That it is obvious that p;, = ¢ =k; =1, = 1, a; = ﬁj =1, @ = Bj =3, My; =
0.5, My = 0.2, N1; = 1, Nag = 0.6, we also assume p; = v; = 1, then, we get

(u1(2 —2a,a1) + ji[@lpj(ajl + b k) + v B, (¢l + difl) g + v NE] < —0.125 < 0,
(2 — 2a,a) + jé[agpj(a;; + bk e + v B;(c3; 4 dila)ga + v N3] < —1.39 <0,
(2 =25 b1) + ié[ﬁlqz’(cﬁ +dil)v + wd(af; + bik)py + M7 < =2 <0,

| 2(2 = 28,2) + ié[ﬁzqz’(cﬁ +djbli)ve + il (ag; + byka)pe + M) < —0.46 <0,

Therefore, [0,0,0,0]7 is the equilibrium point of system (1), which is exponentially
stable in mean square.
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