
Communications in Applied Analysis 19 (2015), 527–542

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS

FOR HIGHER-ORDER NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS

QINGKAI KONG AND MICHAEL MCCABE

Department of Mathematics, Northern Illinois University

DeKalb, IL 60115 USA

E-mail: kong@math.niu.edu E-mail: mccabe@math.niu.edu

ABSTRACT. In this paper, we study the boundary value problem consisting of the higher-order

fractional differential equation

(−1)m
(

Dα
0+

)m
u = f(t, u), 0 < t < 1,

and the boundary conditions
(

(

Dα
0+

)i
u
)

(0) =
(

(

Dα
0+

)i
u
)

(1) = 0, i = 0, 1, . . . , m − 1,

where 1 < α < 2, m ∈ N, Dα
0+ is the Riemann-Liouville fractional differential operator, and

(

Dα
0+

)j+1
= Dα

0+

(

Dα
0+

)j
for j = 0, . . . , m − 1, with

(

Dα
0+

)0
= I, the identity operator. By finding

the Green’s function using the iteration method and applying the Krasnosel’skii fixed point theorem,

we establish the existence of one, two, any finite number, and even a countably infinite number of

positive solutions. Criteria for the nonexistence of positive solutions are also obtained. Our results

cover, improve, and complement those by Jiang and Yuan for the case m = 1.

AMS (MOS) Subject Classification. primary 34B15; secondary 34B18.

1. INTRODUCTION

Fractional differential equations arise from and have extensive applications in

many fields of science and engineering and have been a focus of research in recent

years, see [4, 6, 12] and the references therein. For basic knowledge on fractional

calculus, the reader is referred to [6, 10, 11].

In this paper, we study the existence of positive solutions of the boundary value

problem (BVP) consisting of the (mα)-th order fractional differential equation

(−1)m(Dα
0+)mu = f(t, u) (1.1)

and the boundary conditions (BCs)
(

(Dα
0+)iu

)

(0) =
(

(Dα
0+)iu

)

(1) = 0, i = 0, 1, . . . , m − 1, (1.2)
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where 1 < α < 2, m ∈ N, Dα
0+ is the Riemann-Liouville fractional differential operator

defined as

(Dα
0+u)(t) =

1

Γ(2 − α)

d2

dt2

∫ t

0

(t − s)1−αu(s)ds,

and
(

Dα
0+

)j+1
= Dα

0+

(

Dα
0+

)j
for j = 0, . . . , m − 1, with

(

Dα
0+

)0
= I, the identity

operator.

Assume throughout this paper that f(t, u) ∈ C([0, 1] × [0,∞), [0,∞)) and there

exist g ∈ C([0,∞), [0,∞)) and q1, q2 ∈ C((0, 1), (0,∞)) such that

q1(t)g(y) ≤ f(t, tα−2y) ≤ q2(t)g(y), t ∈ (0, 1), y ∈ (0,∞), (1.3)

and
∫ 1

0

qi(s)ds < ∞, i = 1, 2. (1.4)

We denote

g0 = lim
y→0+

g(y)

y
and g∞ = lim

y→∞

g(y)

y
(1.5)

and assume g0 and g∞ exist in the generalized sense that 0 ≤ g0, g∞ ≤ ∞.

A solution u(t) of BVP (1.1), (1.2) is said to be a positive solution if it satisfies

(−1)k
(

(

Dα
0+

)k
u
)

(t) > 0, t ∈ (0, 1),

for k = 0, . . . , m − 1.

Recently, the special case of BVP (1.1), (1.2) with m = 1, i.e., the BVP

Dα
0+u + f(t, u) = 0, u(0) = u(1) = 0, (1.6)

has been studied by Bai and Lü [3] and Jiang and Yuan [5]. In fact, Bai and Lü [3]

showed that the function

G(t, s) =

{

(t(1−s))α−1
−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(t(1−s))α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1;

is the Green’s function of BVP (1.6); and based on this, Jiang and Yuan [5] obtained

the following criteria for BVP (1.6) to have one and two positive solutions:

Theorem 1.1. BVP (1.6) has at least one positive solution if either g0 = 0 and

g∞ = ∞, or g0 = ∞ and g∞ = 0.

Theorem 1.2. Let

M1 =

(

1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)ds

)−1

and

M2 =

(

∫ 3/4

1/4

(1/2)2−αG(1/2, s)q1(s)ds

)−1

.

Then BVP (1.6) has at least two positive solutions if either
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(a) g0 = g∞ = ∞ and there exists a p > 0 such that 0 ≤ y ≤ p implies g(y) < M1p,

or

(b) g0 = g∞ = 0 and there exists a p > 0 such that p(α − 1)/16 ≤ y ≤ p implies

g(y) > M2p.

Motivated by the iteration method for deriving Greens functions for higher-order

BVPs utilized in [1, 2, 7, 8], in this paper, we will further extend the work for BVP

(1.6) in [3, 5] to the general BVP (1.1), (1.2). In particular, by finding the Green’s

function for the higher-order problem and applying the Krasnosel’skii fixed point

theorem, we will establish the existence of one, two, any finite number, and even

a countably infinite number of positive solutions. Criteria for the nonexistence of

positive solutions are also obtained. Our results cover, improve, and complement

those in [5] for the case m = 1.

This paper is organized as follows: After this introduction, we present our main

results in Section 2, followed by several examples for illustrations in Section 3. The

proofs of the main results are given in Section 4.

2. MAIN RESULT

To present our main results, we need to introduce the following notation: Let

G1(t, s) =

{

(t(1−s))α−1
−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(t(1−s))α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

(2.1)

and by iteration, we define

Gi(t, s) =

∫ 1

0

G1(t, τ)Gi−1(τ, s)dτ, i = 2, . . . , m. (2.2)

Let

G∗(t, s) = t2−αGm(t, s). (2.3)

It is easy to see that Gi(t, s) > 0 for t, s ∈ (0, 1) and i = 1, . . . , m. Consequently,

G∗(t, s) > 0 for t, s ∈ (0, 1). For convenience, we denote

M1 =

(

(

B(α, α)

Γ(α)

)m−1
1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)ds

)−1

, (2.4)

M2 =

(

∫ 3/4

1/4

G∗(1/2, s)q1(s)ds

)−1

,

and

β =
α − 1

16

(

α2 − α

2 + 4α

)m−1

, (2.5)

where B is the beta function operator. Clearly, 0 < β < 1.
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The first theorem provides conditions for BVP (1.1), (1.2) to have at least one

positive solution.

Theorem 2.1. Assume there exist 0 < r∗ < r∗ [respectively, 0 < r∗ < r∗] such that

g(y) < M1r∗ for y ∈ [0, r∗] (2.6)

and

g(y) ≥ M2r
∗ for y ∈ [βr∗, r∗]. (2.7)

Then BVP (1.1), (1.2) has at least one positive solution u(t) satisfying that r∗ <

maxt∈[0,1]{t
2−αu(t)} < r∗ [respectively, r∗ < maxt∈[0,1]{t

2−αu(t)} < r∗].

From this theorem, we further develop more criteria for the existence of at least

one positive solution using g0 and g∞ defined by (1.5).

Corollary 2.2. BVP (1.1), (1.2) has at least one positive solution if one of the

following conditions is satisfied:

(a) g0 = ∞ and (2.6) holds for some r∗ > 0,

(b) g∞ = ∞ and (2.6) holds for some r∗ > 0,

(c) g0 = 0 and (2.7) holds for some r∗ > 0,

(d) g∞ = 0 and (2.7) holds for some r∗ > 0,

(e) g0 = 0 and g∞ = ∞,

(f) g0 = ∞ and g∞ = 0.

By combining the results in Corollary 2.2, we also obtain criteria for BVP (1.1),

(1.2) to have at least two positive solutions.

Theorem 2.3. BVP (1.1), (1.2) has at least two positive solutions if one of the

following conditions is satisfied:

(a) g0 = ∞, g∞ = ∞, and (2.6) holds for some r∗ > 0;

(b) g0 = 0, g∞ = 0, and (2.7) holds for some r∗ > 0.

By applying Theorem 2.1 repeatedly, we obtain criteria for BVP (1.1), (1.2) to

have multiple positive solutions.

Theorem 2.4. Let {ri}
n
i=1 ⊆ R be such that 0 < r1 < r2 < r3 < · · · < rn. Assume

either

(a) (2.6) holds with r∗ = ri when i is odd, and (2.7) holds with r∗ = ri when i is

even; or

(b) (2.6) holds with r∗ = ri when i is even, and (2.7) holds with r∗ = ri when i is

odd.

Then BVP (1.1), (1.2) has at least n − 1 positive solutions.
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Theorem 2.5. Let {ri}
∞

i=1 ⊆ R be such that 0 < r1 < r2 < r3 < · · ·. Assume either

(a) (2.6) holds with r∗ = ri when i is odd, and (2.7) holds with r∗ = ri when i is

even; or

(b) (2.6) holds with r∗ = ri when i is even, and (2.7) holds with r∗ = ri when i is

odd.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

The last theorem is on the nonexistence of positive solutions.

Theorem 2.6. BVP (1.1), (1.2) has no positive solution if either

(a) g(y)/y < M1 for all y ∈ (0,∞); or

(b) g(y)/y > β−1M2 for all y ∈ (0,∞).

3. EXAMPLES

In this section we give several examples to demonstrate the applications of the

criteria obtained in Section 2. All the examples below are for BVP (1.1), (1.2), where

α is given in the equation, and β, M1, and M2 are given in Section 2.

Example 3.1. Let f(t, u) = tk(2−α)uk. Then f(t, tα−2y) = yk and

q1(t)g(y) ≤ f(t, tα−2y) ≤ q2(t)g(y)

with q1(t) = q2(t) = 1 and g(y) = yk.

(a) If k > 1, then g0 = 0 and g∞ = ∞; i.e., condition (e) of Corollary 2.2 is satisfied.

By Corollary 2.2, BVP (1.1), (1.2) has at least one positive solution.

(b) If 0 < k < 1, then g0 = ∞ and g∞ = 0; i.e., condition (f) of Corollary 2.2 is

satisfied. By Corollary 2.2, BVP (1.1), (1.2) has at least one positive solution.

Example 3.2. Let f(t, u) = c
(

tk1(2−α)uk1 + tk2(2−α)uk2

)

with c > 0 and 0 < k1 <

1 < k2 < ∞. Then f(t, tα−2y) = c
(

yk1 + yk2

)

and

q1(t)g(y) ≤ f(t, tα−2y) ≤ q2(t)g(y)

with q1(t) = q2(t) = 1 and g(y) = c
(

yk1 + yk2

)

. Let r =
(

1−k1

k2−1

)
1

k2−k1 . Then

(a) BVP (1.1), (1.2) has at least two positive solutions when

0 < c < r
(

rk1 + rk2

)−1
M1;

(b) BVP (1.1), (1.2) has no positive solution when c > r
(

rk1 + rk2

)−1
M2.

In fact, it is easy to see that g is strictly increasing, g0 = ∞ and g∞ = ∞, and g(y)/y

assumes its minimum at y = r on [0,∞).

When 0 < c < r
(

rk1 + rk2

)−1
M1 and y ∈ [0, r], we have g(y) < g(r) ≤ rM1. Thus,

(2.6) holds holds with r∗ = r and hence condition (a) of Theorem 2.3 is satisfied. By

Theorem 2.3, BVP (1.1), (1.2) has at least two positive solutions.
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When c > r
(

rk1 + rk2

)−1
M2, g(y)/y ≥ g(r)/r > M2 on (0,∞) and hence condi-

tion (b) of Theorem 2.6 is satisfied. Then by Theorem 2.6, BVP (1.1), (1.2) has no

positive solution.

Example 3.3. Let f(t, u) =
ct4−2αu2

1 + t4−2αu2
with c > 0. Then f(t, tα−2y) =

cy2

1 + y2
and

q1(t)g(y) ≤ f(t, tα−2y) ≤ q2(t)g(y)

with q1(t) = q2(t) = 1 and g(y) = cy2/(1 + y2). Then

(a) BVP (1.1), (1.2) has at least two positive solutions when c ≥ β−2 (1 + β2) M2;

(b) BVP (1.1), (1.2) has no positive solution when 0 < c < 2M1.

In fact, it is easy to see that g is strictly increasing, g0 = 0 and g∞ = 0, and g(y)/y

assumes its maximum c/2 at y = 1 on (0,∞).

When c ≥ β−2 (1 + β2) M2 and y ∈ [β, 1], we have g(y) ≥ g(β) = M2. Thus, (2.7)

holds for r∗ = 1 and hence condition (b) of Theorem 2.3 is satisfied. By Theorem

2.3, BVP (1.1), (1.2) has at least two positive solutions.

When 0 < c < 2M1, g(y)/y ≤ g(r∗)/r∗ < M1 on (0,∞) and hence condition (a)

of Theorem 2.6 is satisfied. Then by Theorem 2.6, BVP (1.1), (1.2) has no positive

solution.

4. PROOFS

The proof of Theorem 2.1 utilizes the following Krasnosel’skii’s fixed point theo-

rem from [9].

Lemma 4.1. Let X be a Banach space and K ⊂ X a cone in X. Assume Ω1 and

Ω2 are bounded open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2, and let

Γ : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(a) ‖Γu‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Γu‖ ≥ ‖u‖ for any u ∈ K ∩ ∂Ω2; or

(b) ‖Γu‖ ≥ ‖u‖ for any u ∈ K ∩ ∂Ω1 and ‖Γu‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω2.

Then Γ has a fixed point in K ∩ (Ω2 \ Ω1).

We then discuss the Green’s functions which are related to BVP (1.1), (1.2).

Lemma 4.2. For k = 1, 2, . . . , m, the function Gk(t, s) given by (2.2) is the Green’s

function for the BVP consisting of the equation

(−1)k
(

(Dα
0+)ku

)

(t) = 0, 0 < t < 1, (4.1)

and the BC
(

(

Dα
0+

)i
u
)

(0) =
(

(

Dα
0+

)i
u
)

(1) = 0, i = 0, 1, . . . , k − 1; (4.2)
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i.e., for any h ∈ C([0, 1], R)

u(t) =

∫ 1

0

Gk(t, s)h(s)ds (4.3)

is the unique solution of the BVP consisting of the equation

(−1)k
(

(Dα
0+)ku

)

(t) = h(t), 0 < t < 1, (4.4)

and BC (4.2).

Proof. From [5, Lemma 2.3], the conclusion holds for k = 1. Assume it holds for

some k ≤ m− 1. Then the solution u(t) of BVP (4.4), (4.2) with k replaced by k + 1

satisfies that

(−1)
((

Dα
0+

)

u
)

(t) =

∫ 1

0

Gk(t, s)h(s)ds

and BC u(0) = u(1) = 0. By the conclusion for k = 1,

u(t) =

∫ 1

0

G1(t, τ)

(
∫ 1

0

Gk(τ, s)h(s)ds

)

dτ

=

∫ 1

0

(
∫ 1

0

G1(t, τ)Gk(τ, s)dτ

)

h(s)ds

=

∫ 1

0

Gk+1(t, s)h(s)ds.

This means that Gk+1(t, s) is the Green’s function for BVP (4.1), (4.2) with k replaced

by k + 1.

In the sequel, we denote G(t, s) = Gm(t, s) for simplicity. Recall that G∗(t, s) is

defined by (2.3).

Lemma 4.3. Let

A =
α − 1

Γ(α)
B(α + 1, α + 1) and B =

1

Γ(α)
B(α, α). (4.5)

Then for t, s ∈ [0, 1],

G(t, s) = G(1 − s, 1 − t) (4.6)

and

Am−1(α − 1)

Γ(α)
tα−1(1 − t)s(1 − s)α−1 ≤ G(t, s) ≤

Bm−1

Γ(α)
tα−1(1 − t)(1 − s)α−2. (4.7)

Furthermore, for t, s ∈ [0, 1],

Am−1(α − 1)

Γ(α)
t(1 − t)s(1 − s)α−1 ≤ G∗(t, s) ≤

Bm−1

Γ(α)
s(1 − s)α−1. (4.8)
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Proof. We first show that

Gk(t, s) = Gk(1 − s, 1 − t), t, s ∈ [0, 1] (4.9)

for k = 1, 2, . . . , m. In fact, by [5, Theorem 1.1], (4.9) holds for k = 1. Assume (4.9)

holds for some k ≤ m − 1. Note from (2.2) we have
∫ 1

0

G1(t, r)Gk(r, s)dr =

∫ 1

0

· · ·

∫ 1

0

G1(t, r1)G1(r1, r2) · · · G1(rk, s)drk · · · dr2dr1

and
∫ 1

0

Gk(t, r)G1(r, s)dr =

∫ 1

0

· · ·

∫ 1

0

G1(t, r1) · · · G1(rk−1, rk)G1(rk, s)dr1 · · · drk−1drk.

Thus,

Gk+1(t, s) =

∫ 1

0

G1(t, τ)Gk(τ, s)dτ =

∫ 1

0

Gk(t, τ)G1(τ, s)dτ

=

∫ 1

0

Gk(1 − τ, 1 − t)G1(1 − s, 1 − τ)dτ =

∫ 1

0

G1(1 − s, 1 − τ)Gk(1 − τ, 1 − t)dτ

=

∫ 1

0

G1(1 − s, τ)Gk(τ, 1 − t)dτ = Gk+1(1 − s, 1 − t),

i.e., Gk+1(t, s) = Gk+1(1 − s, 1 − t). As a result, (4.6) holds.

Now we show that

Ak−1(α − 1)

Γ(α)
tα−1(1 − t)s(1 − s)α−1 ≤ Gk(t, s) ≤

Bk−1

Γ(α)
tα−1(1 − t)(1 − s)α−2 (4.10)

holds for k = 1, . . . , m. It has been shown in [5] that for all t, s ∈ [0, 1],

α − 1

Γ(α)
tα−1(1 − t)s(1 − s)α−1 ≤ G1(t, s) ≤

1

Γ(α)
tα−1(1 − t)(1 − s)α−2.

Thus, (4.10) holds for k = 1. Assume (4.10) holds for some k ≤ m− 1; i.e., for every

t, s ∈ [0, 1],

Ak−1(α − 1)

Γ(α)
tα−1(1 − t)s(1 − s)α−1 ≤ Gk(t, s) ≤

Bk−1

Γ(α)
tα−1(1 − t)(1 − s)α−2.

Then

Gk+1(t, s) =

∫ 1

0

G1(t, τ)Gk(τ, s)dτ

≤

∫ 1

0

(

1

Γ(α)
tα−1(1 − t)(1 − τ)α−2

)(

Bk−1

Γ(α)
τα−1(1 − τ)(1 − s)α−2

)

dτ

=
Bk−1

Γ2(α)
tα−1(1 − t)(1 − s)α−2

∫ 1

0

τα−1(1 − τ)α−1dτ

=
Bk−1

Γ2(α)
tα−1(1 − t)(1 − s)α−2B(α, α)

=
Bk

Γ(α)
tα−1(1 − t)(1 − s)α−2
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and

Gk+1(t, s) =

∫ 1

0

G1(t, τ)Gk(τ, s)dτ

≥

∫ 1

0

(

α − 1

Γ(α)
tα−1(1 − t)τ(1 − τ)α−1

)(

Ak−1(α − 1)

Γ(α)
(1 − τ)τα−1s(1 − s)α−1

)

dτ

= Ak−1

(

α − 1

Γ(α)

)2

tα−1(1 − t)s(1 − s)α−1

∫ 1

0

τα(1 − τ)αdτ

= Ak−1

(

α − 1

Γ(α)

)2

tα−1(1 − t)s(1 − s)α−1B(α + 1, α + 1)

= Ak α − 1

Γ(α)
tα−1(1 − t)s(1 − s)α−1.

The combination of the above two inequalities shows that (4.10) holds for k + 1. As

a result, (4.7) holds.

Inequality (4.8) follows from the definition of G∗ and the first part of this lemma.

We denote by E = C([0, 1]) the Banach space of continuous functions on [0, 1]

endowed with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|. We define a cone K in E

by

K = {y ∈ E | y(t) ≥ 16βt(1 − t)‖y‖, t ∈ [0, 1]}, (4.11)

where β is given by (2.5), and an operator T : E → E by

(Ty) (t) =

∫ 1

0

G∗(t, s)f(s, sα−2y(s)) ds, t ∈ [0, 1]. (4.12)

Lemma 4.4. The operator T satisfies that T (E) ⊂ K and is completely continuous

on K.

Proof. Due to the nonnegativity of f and G∗, we have (Ty) (t) ≥ 0 for y ∈ E and

t ∈ [0, 1]. By applying (4.8) to (4.12) we have

(Ty) (t) =

∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds

≥
Am−1(α − 1)

Γ(α)
t(1 − t)

∫ 1

0

s(1 − s)α−1f(s, sα−2y(s))ds

(4.13)

and

‖Ty‖ ≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1f(s, sα−2y(s))ds. (4.14)
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We note from (4.5) that

A

B
=

(α − 1)B(1 + α, 1 + α)

B(α, α)
=

(α − 1)
(

(Γ(1+α))2

Γ(2+2α)

)

(

(Γ(α))2

Γ(2α)

)

= (α − 1)

(

(Γ(1 + α))2

(Γ(α))2

)

(

Γ(2α)

Γ(2 + 2α)

)

=
(α − 1)α2

α(2 + 4α)
=

α2 − α

2 + 4α
.

Thus, by (4.13), (4.14), and (2.5) we see that for t ∈ [0, 1],

(Ty) (t) ≥

(

A

B

)m−1

(α − 1)t(1 − t)‖Ty‖

= (α − 1)

(

α2 − α

2 + 4α

)m−1

t(1 − t)‖Ty‖ = 16βt(1 − t)‖Ty‖.

Hence, T (E) ⊂ K.

Let D ⊆ K be bounded. Then there exists r > 0 such that ‖y‖ ≤ r for all y ∈ D.

Let

M = max
0≤y≤r

|g(y)|.

Then from (4.8), for all y ∈ D, we have

0 ≤ (Ty)(t) ≤

∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds

≤

∫ 1

0

G∗(t, s)q2(s)g(y(s))ds

≤
MBm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)ds < ∞. (4.15)

Thus T (D) is bounded. This means that T is a bounded operator on K.

Finally, we show that T is equicontinuous. Since G∗(t, s) is uniformly continuous

on [0, 1] × [0, 1], for any ǫ > 0, y ∈ D, and t1, t2 ∈ [0, 1], there exists a δ > 0, such

that if |t2 − t1| < δ, then

|G∗(t2, s) − G∗(t1, s)| <
ǫ

M
∫ 1

0
q2(s)ds

.

By (1.3),

|(Ty)(t2) − (Ty)(t1)| =

∣

∣

∣

∣

∫ 1

0

(G∗(t2, s) − G∗(t1, s)) f(s, sα−2y(s))ds

∣

∣

∣

∣

≤

∫ 1

0

|G∗(t2, s) − G∗(t1, s)| f(s, sα−2y(s))ds

<

(

ǫ

M
∫ 1

0
q2(s)ds

)

∫ 1

0

q2(s)g(y(s))ds

≤

(

ǫ

M
∫ 1

0
q2(s)ds

)

M

∫ 1

0

q2(s)ds = ǫ.
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Thus, T is equicontinuous on K. By the Arzela-Arscoli Theorem, T is completely

continuous on K.

In the following, for r > 0 we define

Ωr = {y ∈ E | ‖y‖ < r} and ∂Ωr = {y ∈ E | ‖y‖ = r} .

Proof of Theorem 2.1. Without loss of generality, we assume 0 < r∗ < r∗. Let y ∈

K ∩ ∂Ωr∗ . Then by Lemma 4.3 and (1.3)
∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds ≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1f(s, sα−2y(s))ds

≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)g(y(s))ds.

Since ‖y‖ = r∗, we have 0 ≤ y(t) ≤ r∗ for t ∈ [0, 1] and hence by (2.6), g(y(t)) < M1r∗

for t ∈ [0, 1]. It follows from (2.4) and (4.5) that for t ∈ [0, 1]

(Ty) (t) ≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)g(y(s))ds

<
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)M1r∗ds

= r∗

(

M1B
m−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)ds

)

= r∗ = ‖y‖. (4.16)

This implies that ‖Ty‖ < ‖y‖ for all y ∈ K ∩ ∂Ωr∗ .

Let y ∈ K ∩ ∂Ωr∗ . Since ‖y‖ = r∗, by (4.11) we see that βr∗ ≤ y(t) ≤ r∗ for

1/4 ≤ t ≤ 3/4 and hence by (2.7), g(y(t)) ≥ M2r
∗ for 1/4 ≤ t ≤ 3/4. It follows from

(1.3) that

‖Ty‖ ≥ (Ty)(
1

2
) >

∫ 3/4

1/4

G∗(
1

2
, s)q1(s)g(y(s))ds

≥

∫ 3/4

1/4

G∗(
1

2
, s)q1(s)M2r

∗ds = r∗

(

M2

∫ 3/4

1/4

G∗(
1

2
, s)q1(s)ds

)

= r∗ = ‖y‖. (4.17)

This implies ‖Ty‖ > ‖y‖ for all y ∈ K ∩ ∂Ωr∗ .

By Lemma 4.1, the operator T has a fixed point y in K ∩
(

Ωr∗\Ωr∗

)

. Note from

(1.3) and (4.17) we have r∗ < ‖y‖ < r∗. It follows that

y(t) =

∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds, t ∈ [0, 1].

Define u(t) = tα−2y(t) for t ∈ (0, 1]. Then by (2.3), we have for t ∈ (0, 1]

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (4.18)
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To confirm that u(t) is a solution of BVP (1.1), (1.2), we need to show u(t) is

defined and continuous at 0, and hence f(t, u(t)) is continuous on [0, 1]. In fact, since

y(t) ≤ r∗ for t ∈ (0, 1], we have

0 ≤ lim
t→0+

u(t) = lim
t→0+

∫ 1

0

G(t, s)f(s, u(s))ds

= lim
t→0+

∫ 1

0

G(t, s)f(s, sα−2y(s))ds

≤ lim
t→0+

∫ 1

0

G(t, s)q2(s)g(y(s))ds

≤ lim
t→0+

∫ 1

0

G(t, s)q2(s)ds

(

max
0≤y≤r∗

g(y)

)

= 0.

Hence, we may define u(0) = 0 to make u(t) continuous at 0. It is easy to see that

(4.18) holds for t ∈ [0, 1]. By Lemma 4.2, u(t) is a solution of BVP (1.1), (1.2).

Note that for k = 0, 1, . . . , m − 1 and t ∈ [0, 1],

(−1)k
(

Dα
0+u
)

(t) =

∫ 1

0

Gk(t, s)f(s, u(s))ds > 0.

Thus, u(t) is a positive solution of the BVP (1.1), (1.2). It is easy to see that

r∗ < maxt∈[0,1]{t
2−αu(t)} < r∗.

Proof of Corollary 2.2. (a) Since g0 = ∞, there exists some r∗ ∈ (0, r∗) such that,

g(y)/y ≥ β−1M2 for y ∈ [βr∗, r∗]. This implies g(y) ≥ β−1M2y ≥ M2r
∗. Hence

condition (2.7) holds. Since (2.6) also holds, by Theorem 2.1, BVP (1.1), (1.2) has

at least one positive solution u. Note that maxt∈[0,1]{t
2−αu(t)} < r∗.

(b) Since g∞ = ∞, there exists some r∗ > r∗ such that g(y)/y ≥ β−1M2 for

y ∈ [βr∗, r∗]. This implies g(y) ≥ β−1M2y ≥ M2r
∗. Hence condition (2.7) holds.

Since (2.6) also holds, by Theorem 2.1, BVP (1.1), (1.2) has at least one positive

solution u. Note that maxt∈[0,1]{t
2−αu(t)} > r∗.

(c) Since g0 = 0, there exists some r∗ ∈ (0, r∗) such that g(y)/y < M1 for

y ∈ [0, r∗]. This implies g(y) < M1y ≤ M1r∗, for y ∈ [0, r∗]. Hence condition (2.6)

holds. Since (2.7) also holds, by Theorem 2.1 BVP (1.1), (1.2) has at least one positive

solution.

(e) As above, g0 = 0 and g∞ = ∞ imply (2.6) and (2.7) hold for some 0 < r∗ < r∗.

Thus, the conclusion follows from Theorem 2.1.

The proofs of parts (d) and (f) involve more technical arguments. In both cases

we have g∞ = 0. Thus, there exists r > 0 such that

g(y) ≤ ǫy for y ≥ r, (4.19)
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where ǫ > 0 is chosen to satisfy that

Bm−1 ǫ

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)ds < 1.

Hence, B1−mΓ(α) − ǫ
∫ 1

0
s(1 − s)α−1q2(s)ds > 0. Let R be any constant such that

R ≥
max0≤y≤r {g(y)}

∫ 1

0
s(1 − s)α−1q2(s)ds

B1−mΓ(α) − ǫ
∫ 1

0
s(1 − s)α−1q2(s)ds

. (4.20)

Then for y ∈ K ∩ ∂ΩR,

(Ty) (t) =

∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds

≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1f(s, sα−2y(s))ds

≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)g(y(s))ds.

Let I1 = {s ∈ [0, 1] | y(s) ∈ [0, r]} and I2 = {s ∈ [0, 1] | y(s) ∈ [r, R]}. Then
∫ 1

0

s(1 − s)α−1q2(s)g(y(s))ds

=

∫

I1

s(1 − s)α−1q2(s)g(y(s))ds +

∫

I2

s(1 − s)α−1q2(s)g(y(s))ds.

By (4.20),
∫

I1

s(1 − s)α−1q2(s)g(y(s))ds ≤ max
0≤y≤r

{g(y)}

∫ 1

0

s(1 − s)α−1q2(s)ds

≤ R

(

B1−mΓ(α) − ǫ

∫ 1

0

s(1 − s)α−1q2(s)ds

)

= RB1−mΓ(α) − ǫR

∫ 1

0

s(1 − s)α−1q2(s)ds.

By (4.19),
∫

I2

s(1 − s)α−1q2(s)g(y(s))ds ≤ max
r≤y≤R

{g(y)}

∫ 1

0

s(1 − s)α−1q2(s)ds

≤ ǫR

∫ 1

0

s(1 − s)α−1q2(s)ds.

Combining the above inequalities we have

(Ty)(t) ≤
Bm−1

Γ(α)

[
∫

I1

s(1 − s)α−1q2(s)g(y(s))ds

+

∫

I2

s(1 − s)α−1q2(s)g(y(s))ds

]

≤
Bm−1

Γ(α)
RB1−mΓ(α) = R = ‖y‖.
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Thus, for y ∈ K ∩ ∂ΩR, we have ‖Ty‖ ≤ ‖y‖.

(d) As shown in the proof of Theorem 2.1, (2.7) implies that ‖Ty‖ > ‖y‖ for all

y ∈ K ∩ ∂Ωr∗ . Now we choose R > r∗. By Lemma 4.1, the operator T has a fixed

point y in K ∩
(

ΩR\Ωr∗
)

. The rest of the proof is the same as that of Theorem 2.1

and hence is omitted.

(f) Since g0 = ∞, there exists some r∗ ∈ (0, R) such that g(y)/y ≥ β−1M2 for

y ∈ [βr∗, r∗]. This implies that g(y) ≥ β−1M2y ≥ M2r
∗ for y ∈ [βr∗, r∗]. As in the

proof Theorem 2.1 we have ‖Ty‖ > ‖y‖ for all y ∈ K ∩ ∂Ωr∗ . By Lemma 4.1, the

operator T has a fixed point y in K ∩
(

ΩR\Ωr∗
)

. The rest of the proof is the same as

that of Theorem 2.1 and hence is omitted.

Proof of Theorem 2.3. (a) By Corollary 2.2, Parts (a) and (b) we see that that BVP

(1.1), (1.2) has at least two positive solution u1 and u2. From the proofs of Corollary

2.2, Parts (a) and (b), we also see that

max
t∈[0,1]

{t2−αu1(t)} < r∗ < max
t∈[0,1]

{t2−αu2(t)}.

This means that u1 and u2 are distinct.

(b) By Corollary 2.2, Parts (c) and (e), we see that that BVP (1.1),(1.2) has at

least two positive solutions u1 and u2. As shown in Part (a), the two solutions are

distinct.

Proof of Theorem 2.4. By Theorem 2.1, for k = 1, . . . , n − 1, BVP (1.1),(1.2) has a

solution uk satisfying that

rk < max
t∈[0,1]

{t2−αuk(t)} < rk+1.

Hence the solutions uk, k = 1, . . . , n − 1, are distinct.

The proof of Theorem 2.5 is essentially the same as that of Theorem 2.4 and

hence is omitted.

Proof of Theorem 2.6. (a) Assume BVP (1.1), (1.2) has a positive solution u(t). Then

y(t) = t2−αu(t) is a fixed point of the operator T defined by (4.12). Let ‖y‖ = r.

Then by the condition, g(y(t)) < M1y(t) ≤ M1r. Hence by (1.3), (4.7), (2.4), and

(4.5), we have that for t ∈ [0, 1]

y(t) = (Ty)(t) =

∫ 1

0

G∗(t, s)f(s, sα−2y(s))ds

≤

∫ 1

0

G∗(t, s)q2(s)g(y(s))ds ≤
Bm−1

Γ(α)

∫ 1

0

s(1 − s)α−1q2(s)g(y(s))ds

<
Bm−1

Γ(α)

(
∫ 1

0

s(1 − s)α−1q2(s)ds

)

M1r = r.

This contradicts the assumption that ‖y‖ = r.
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(b) Again, assume BVP (1.1), (1.2) has a positive solution u(t), then y(t) =

t2−αu(t) is a fixed point of the operator T defined by (4.12). Let ‖y‖ = r. By Lemma

4.4, Ty ∈ K, and so is y. This implies that βr ≤ y(t) ≤ r for 1/4 ≤ t ≤ 3/4. Let

1/4 ≤ t ≤ 3/4. By the condition, g(y(t)) > β−1M2y(t) ≥ M2r, and hence

‖Ty‖ ≥ (Ty)(
1

2
) =

∫ 1

0

G∗(
1

2
, s)f(s, sα−2y(s))ds

>

∫ 3/4

1/4

G∗(
1

2
, s)q1(s)g(y(s))ds

≥

(

∫ 3/4

1/4

G∗(
1

2
, s)q1(s)ds

)

M2r = r.

This also contradicts the assumption that ‖y‖ = r.
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