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1. INTRODUCTION

In this paper we consider the second order nonlinear inclusions with distributed

arguments

(

r (t) x∆ (t)
)∆

∈

∫

b

a

q(t, τ)F (t, xσ (g (t, τ))) ∆τ, for a. e. t ≥ t0 ∈ T, (1.1)

on an arbitrary time scale T ⊆ R with sup T = ∞ and 0 < a < b. Whenever, we write

t ≥ t1, we mean t ∈ [t1,∞) ∩ T = [t1,∞)
T
. We assume that:

(i) r : T → R
+ = (0,∞) is a single real-valued, rd-continuous function and

∫

∞ ∆s

r(s)
< ∞; (1.2)

(ii) q : T × [a, b] → R
+ is a rd-continuous function;

(iii) g : T×[a, b] → T is a decreasing with respect to second variable and g (t, τ) → ∞

as t → ∞, τ ∈ [a, b] ;

(iv) F : [t0,∞)
T
× R → 2R is a multifunction (2R denotes the family of nonempty

subsets of R).
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We note that the usual standard notation in inclusion theory is used here, e.g.

|F (t, u)| := sup {|v| : v ∈ F (t, u)}

and

F (t, u) > 0 means w > 0 for each w ∈ F (t, u) .

In this paper by a solution to inclusion (1.1), we mean a function x ∈ Crd with rx∆ ∈

Crd and
(

rx∆
)∆

∈ L1
loc

[t0,∞)
T
, where Crd is the space of right-dense continuous

functions. We assume throughout that inclusion (1.1) possesses such solutions. We

recall that a solution of inclusion (1.1) is said to be nonoscillatory if there exists a

t1 ∈ T such that x (t) xσ (t) > 0 for all t ∈ [t1,∞)
T
, where the forward jump operator

σ(t) := inf {s ∈ T : s > t}, otherwise, it is said to be oscillatory. Inclusion (1.1) is

said to be oscillatory if all its solutions are oscillatory.

Recently there has been an increasing interest in the study of theory of inclusions

and inparticular the oscillation of differential inclusion

(r (t) x′ (t))
′

∈ F (t, x (t)) , for a. e. t ≥ t0, (1.3)

where
∫

∞ ds

r (s)
= ∞. (1.4)

In [1, 2, 3, 4, 5, 14], Agarwal et al initiated such a study. In this paper, we proceed

further in this direction to establish new criteria for the oscillation of inclusion (1.1)

with distributed deviating arguments. For the oscillation of second order nonlinear

dynamic equations, we refer to [10, 9, 16, 17, 18, 19, 20, 21, 11, 13, 12, 6, 22, 23, 24]

and the references cited therein. The obtained results are new for the continuous case

i.e., T = R as well as the discrete case i.e., T = Z.

2. MAIN RESULTS

We shall employ the following two lemmas.

Lemma 2.1 ([15]). Suppose that |x|∆ is of one sign on [t0,∞)
T
, λ > 0, and λ 6= 1.

Then

|x|∆

(|x|σ)
λ
≤

(

|x|1−λ

)∆

1 − λ
≤

|x|∆

|x|λ
on [t0,∞)

T
. (2.1)

We let

A (t) :=

∫

∞

t

∆s

r (s)
for t ∈ [t0,∞)

T
.

Lemma 2.2 ([15]). Assume that condition (1.2) holds. Suppose x solves (1.1) and

is of one sign on [t0,∞)
T
. Then either

|x|∆ ≥ 0 on [t0,∞)
T
, (2.2)
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or there exists t1 ≥ t0 such that

|x|∆ ≤ 0 on [t1,∞)
T
. (2.3)

Moreover, let

c̄ :=
{

|x (t0)| + r (t0)
∣

∣x∆ (t0)
∣

∣ |A (t0)|
}

sgn x (t0) ,

and

ĉ :=







x (t0)

A (t0)
, if (2.2) holds

r (t1)
∣

∣x∆ (t1)
∣

∣ sgn x (t0) , if (2.3) holds.

Then

|x| ≤ |c̄| on [t0,∞)
T

where c̄ x > 0, (2.4)

and

|x| ≥ |ĉA| on [t0,∞)
T

where ĉ Ax > 0. (2.5)

The following result is concerned with the oscillatory behaviour of inclusion (1.1)

when F is strongly superlinear, i.e., F satisfies condition (2.7) below.

Theorem 2.3. Let
{

F (t, x) < 0, for (t, x) ∈ [t0,∞)
T
× R

+

F (t, x) > 0, for (t, x) ∈ [t0,∞)
T
× R

−
(2.6)

and assume there exists a constant λ > 1 such that the following condition is satisfied:

there exists f : [t0,∞)
T
× R → R with























(a) xf (t, x) > 0 for a. e. t ≥ t0 and x 6= 0;

(b) |f (t, x)|/ |x|λ is nondecreasing in |x| for a. e. t ≥ t0;

(c)

{

|F (t, x)| ≥ f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

+;

|F (t, x)| ≥ −f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

−.

(2.7)

If

ḡ(t) := g (t, a) ≤ t, for t ∈ [t0,∞)
T
, (2.8)

and
∫

∞

t0

Q(s) |f (s, ĉAσ(s))|∆s = ∞, (2.9)

for all nonzero constant ĉ and

Q(t) :=

∫

b

a

q (t, τ) ∆τ, (2.10)

then inclusion (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of inclusion (1.1) on [t0,∞)
T
. Suppose

x (t) > 0 and x (g (t, τ)) > 0 for t ≥ t0 and a ≤ τ ≤ b. Let










y (t) :=
(

r (t) x∆ (t)
)∆

with y (t) ∈
∫

b

a
q(t, τ)F (t, xσ (g (t, τ))) ∆τ

and

y ∈ L1
loc

[t0,∞)
T
.

(2.11)

From (2.6), we have
(

r (t)x∆ (t)
)∆

≤ 0, for a. e. t ≥ t0.

By Lemma 2.2, either (2.2) or (2.3) holds. From (2.7), inclusion (1.1) becomes

(

r (t) x∆ (t)
)∆

+

∫

b

a

q(t, τ)f (t, xσ (g (t, τ)))∆τ ≤ 0, for a. e. t ≥ t0. (2.12)

In the case of (2.2), we use condition (iii) and the fact that x is increasing on [t0,∞)
T
,

we find for sufficiently large t1 ∈ [t0,∞)
T

xσ (g (t, τ)) ≥ x (t0) , for t ≥ t1 and τ ∈ [a, b] .

Using (2.7), see that
f (t, xσ (g (t, τ)))

(xσ (g (t, τ)))λ
≥

f (t, x (t0))

(x (t0))
λ

,

which implies

f (t, xσ (g (t, τ))) ≥
f (t, x (t0))

(x (t0))
λ

(xσ (g (t, τ)))λ ≥ f (t, x (t0)) , for t ≥ t1 and τ ∈ [a, b] .

Then from (2.12), we have

(

r (t) x∆ (t)
)∆

+ f (t, x (t0))

∫

b

a

q(t, τ)∆τ ≤ 0,

or
(

r (t) x∆ (t)
)∆

+ Q (t) f (t, x (t0)) ≤ 0, for t ≥ t1. (2.13)

Integrate (2.13) from t1 to t, we see that

0 ≤ r (t)x∆ (t) ≤ r (t1) x∆ (t1) −

∫

t

t1

Q (s) f (s, x (t0)) ∆s,

or
∫

t

t1

Q (s) f (s, x (t0)) ∆s ≤ r (t1) x∆ (t1) < ∞,

which yields
∫

∞

t1

Q (s) f (s, ĉAσ(s)) ∆s < ∞,

a contradiction to condition (2.9).

In the case of (2.3), we use condition (iii) and the fact that x is decreasing on

[t0,∞)
T
, we get

xσ (g (t, τ)) ≥ xσ (g (t, a)) , for t ≥ t0 and τ ∈ [a, b] .
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Using (2.7), see that

f (t, xσ (g (t, τ)))

(xσ (g (t, τ)))λ
≥

f (t, xσ (g (t, a)))

(xσ (g (t, a)))λ
,

which implies, for t ≥ t0 and τ ∈ [a, b]

f (t, xσ (g (t, τ))) ≥ f (t, xσ (g (t, a)))

(

xσ (g (t, τ))

xσ (g (t, a))

)λ

≥ f (t, xσ (g (t, a))) . (2.14)

Combining (2.12) and (2.14) we get

(

r (t) x∆ (t)
)∆

+

(
∫

b

a

q(t, τ)∆τ

)

f (t, xσ (g (t, a))) ≤ 0, (2.15)

or
(

r (t) x∆ (t)
)∆

+ Q (t) f (t, xσ (ḡ (t))) ≤ 0, for t ≥ t0. (2.16)

In view (2.5) and (2.7), one can easily see that

f (t, xσ (ḡ (t)))

(xσ (ḡ (t)))λ
≥

f (t, xσ (t))

(xσ (t))λ
≥

f (t, ĉ Aσ (t))

(ĉ Aσ (t))λ
, for t ≥ t0. (2.17)

Let u, v, t ∈ T with u, v, t ≥ t0. Let s ∈ T with s ≥ t0. Integrate (2.16) from v to

s and divide the resulting inequality by r (s) . Now, integrate the resulting equation

from u to t, we obtain

x (t) ≤ x (u)+r (v)x∆ (v)

∫

t

u

∆s

r (s)
−

∫

t

u

1

r (s)

∫

s

v

Q (τ) f (τ, xσ (ḡ (τ))) ∆τ∆s. (2.18)

Using (2.18) with t ≥ u ≥ t1 = v, we have

x (u) ≥ x (t) − r (t1)x∆ (t1)

∫

t

u

∆s

r (s)
+

∫

t

u

1

r (s)

∫

s

t1

Q (τ) f (τ, xσ (ḡ (τ)))∆τ∆s

≥ −r (t1) x∆ (t1)

∫

t

u

∆s

r (s)
+

∫

t

u

1

r (s)

∫

s

t1

Q (τ) f (τ, xσ (ḡ (τ))) ∆τ∆s

≥ −r (t1) x∆ (t1)

∫

t

u

∆s

r (s)
+

∫

t

u

∆s

r (s)

∫

u

t1

Q (τ) f (τ, xσ (ḡ (τ))) ∆τ. (2.19)

Using (2.17) in (2.19), we get

x (u) ≥ bA (u) + A (u)

∫

u

t1

Q (τ) f (τ, xσ (ḡ (τ)))∆τ

≥ bA (u) + A (u)

∫

u

t1

Q (τ)
f (τ, ĉ Aσ (τ))

(ĉ Aσ (τ))λ
(xσ (ḡ (τ)))λ ∆τ

≥ bA (u) + A (u)

∫

u

t1

Q (τ)
f (τ, ĉ Aσ (τ))

(ĉ Aσ (τ))λ
(xσ (τ))λ ∆τ,

where b := −r (t1) x∆ (t1) > 0. Let

w (u) := b + ĉ−λ

∫

u

t1

Q (τ) f (τ, ĉ Aσ (τ))

(

xσ (τ)

Aσ (τ)

)λ

∆τ.
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Therefore

w (u) ≤
x (u)

A (u)
,

and hence

w (u) ≥ b + ĉ−λ

∫

u

t1

Q (τ) f (τ, ĉ Aσ (τ)) (wσ (τ))λ ∆τ,

or

w∆ (u) ≥ ĉ−λQ (u) f (τ, ĉ Aσ (u)) (wσ (u))λ
.

Using the first inequality of (2.1) in the above inequality, we obtain

ĉ−λQ (u) f (τ, ĉ Aσ (u)) ≤
w∆ (u)

(wσ (u))λ
≤

(

w1−λ (u)
)∆

1 − λ
.

Integrating this inequality from t1 to t ≥ t1, we have

w1−λ (t1) ≥ w1−λ (t) +
λ − 1

ĉλ

∫

t

t1

Q (τ) f (τ, ĉ Aσ (τ)) ∆τ

≥
λ − 1

ĉλ

∫

t

t1

Q (τ) f (τ, ĉ Aσ (τ)) ∆τ,

which contradicts condition (2.9). A parallel argument holds when x (t) is negative.

This completes the proof.

Next, we present the following result which is concerned with the case when F is

strongly sublinear, i.e., F satisfies condition (2.20) below.

Theorem 2.4. Let (2.6) and (2.8) hold and assume that there exists a constant λ,

0 < λ < 1 such that the following condition holds: there exists f : [t0,∞)
T
× R → R

with






























(a) xf (t, x) > 0 for a. e. t ≥ t0 and x 6= 0;

(b) |f (t, x)| is nondecreasing in |x| for a. e. t ≥ t0;

(c) |f (t, x)|/ |x|λ is nonincreasing in |x| for a. e. t ≥ t0;

(d)

{

|F (t, x)| ≥ f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

+;

|F (t, x)| ≥ −f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

−.

(2.20)

If

σ (g (t, a)) ≤ t, for t ∈ [t0,∞)
T
, (2.21)

and
∫

∞

t0

1

r (s)

∫

s

t0

Q(u) |f (u, c̄)|∆u ∆s = ∞, (2.22)

for all nonzero constant c̄ and Q is defined by (2.10), then inclusion (1.1) is oscilla-

tory.
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Proof. Let x be a nonoscillatory solution of inclusion (1.1) on [t0,∞)
T
. Suppose

x (t) > 0 and x (g (t, τ)) > 0 for t ≥ t0 and a ≤ τ ≤ b. By Lemma 2.2, either

(2.2) or (2.3) holds.

In the case of (2.2), as shown in the proof of Theorem 2.3, we find for sufficiently

large t1 ∈ [t0,∞)
T

xσ (g (t, τ)) ≥ x (t0) , for t ≥ t1 and τ ∈ [a, b] ,

and thus by integrating (2.12) twice from t1 to t and using (b) of (2.20), one can

easily find

x (t) ≤ x (t1) + r (t1) x∆ (t1)

∫

t

t1

∆s

r (s)

−

∫

t

t1

1

r (s)

∫

s

t1

∫

b

a

q (u, τ) f (u, xσ (g (u, τ))) ∆τ∆u∆s

≤ x (t1) + r (t1) x∆ (t1)

∫

t

t1

∆s

r (s)
−

∫

t

t1

1

r (s)

∫

s

t1

Q (u) f (u, x (t0)) ∆u∆s,

a contradiction to condition (2.22). In the case of (2.3), using (iii), (b) of (2.20) and

(2.21) in (2.12), we have

(

r (t) x∆ (t)
)∆

+ Q (t) f (t, x (t)) ≤ 0, for t ≥ t1 ≥ t0. (2.23)

Now, using (2.4) and (c) of (2.20), we find

f (t, x (t))

xλ (t)
≥

f (t, c̄)

c̄λ
, for t ≥ t2 ≥ t1. (2.24)

Integrating (2.23) from t2 to t and using the fact that x∆ < 0 on [t2,∞)
T
, we get

−x∆ (t) ≥ −
r (t2)x∆ (t2)

r (t)
+

1

r (t)

∫

t

t2

Q (s) f (s, x (s))∆s

≥
(c̄)−λ

r (t)

∫

t

t2

Q (s) f (s, c̄)xλ (s)∆s

≥

(

(c̄)−λ

r (t)

∫

t

t2

Q (s) f (s, c̄)∆s

)

xλ (t) , for t ≥ t2,

or

(c̄)−λ

r (t)

∫

t

t2

Q (s) f (s, c̄)∆s ≤ −
x∆ (t)

xλ (t)

and by the second inequality of (2.1), we have

(c̄)−λ

r (t)

∫

t

t2

Q (s) f (s, c̄)∆s ≤ −
x∆ (t)

xλ (t)
≤ −

(

x1−λ (t)
)∆

1 − λ
.
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Integrating this inequality from t2 to t ≥ t2, we obtain

x1−λ (t2) ≥ x1−λ (t) +
1 − λ

(c̄)λ

∫

t

t2

1

r (s)

∫

s

t2

Q (τ) f (τ, c̄)∆τ∆s

≥
1 − λ

(c̄)λ

∫

t

t2

1

r (s)

∫

s

t2

Q (τ) f (τ, c̄)∆τ∆s,

which contradicts condition (2.22). This completes the proof.

Next, we present the following result.

Theorem 2.5. Let conditions (i)–(iv) and (2.6) hold and assume that there exists

f : [t0,∞)
T
× R → R with























(a) xf (t, x) > 0 for a. e. t ≥ t0 and x 6= 0;

(b) |f (t, x)| is nondecreasing in |x| for a. e. t ≥ t0;

(c)

{

|F (t, x)| ≥ f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

+;

|F (t, x)| ≥ −f (t, x) , for (t, x) ∈ [t0,∞)
T
× R

−.

(2.25)

If

g (t, τ) ≤ t, for t ≥ t0 and τ ∈ [a, b] , (2.26)

and
∫

∞

t0

1

r (s)

∫

s

t0

Q(u) |f (u, ĉAσ (u))|∆u∆s = ∞, (2.27)

for all nonzero constant ĉ and Q is defined by (2.10), then inclusion (1.1) is oscilla-

tory.

Proof. Let x be a nonoscillatory solution of inclusion (1.1) on [t0,∞)
T
, Say x (t) > 0

and x (g (t, τ)) > 0 for t ≥ t0 and a ≤ τ ≤ b. A parallel argument holds when x (t) is

negative. By Lemma 2.2, either (2.2) or (2.3) holds.

The case (2.2) is similar to that of Theorem 2.2 and hence is omitted.

For the case (2.3), using (2.5), (2.6), (2.25) and (2.26), we get

f (t, xσ (g (t, τ))) ≥ f (t, xσ (t)) ≥ f (t, ĉ Aσ (t)) , for t ≥ t1 ≥ t0 and τ ∈ [a, b] .

(2.28)

Integrating (2.12) twice from t1 to t and using (2.28), we have

x (t) ≤ x (t1) + r (t1) x∆ (t1)

∫

t

t1

∆s

r (s)
−

∫

t

t1

1

r (s)

∫

s

t1

Q (u) f (u, ĉ Aσ (u))∆u∆s,

which contradicts condition (2.27) and completes the proof.

From the above results we can obtain some oscillation criteria for inclusion (1.1)

on different types of time scales. If T = R, then σ (t) = t and x∆ = x′ and (1.1)

becomes the differential inclusion

(r (t)x′ (t))
′

∈

∫

b

a

q(t, τ)F (t, x (g (t, τ))) dτ, for all t ≥ t0. (2.29)
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and for the oscillation of (2.29) we have.

Theorem 2.6. Let conditions (i)–(iv) hold, (2.6) hold and
∫

∞ ds

r (s)
< ∞. Inclusion

(2.29) is oscillatory of one of the following conditions holds:

(I) λ > 1, conditions (2.7) and (2.8) hold and for all nonzero constant ĉ,
∫

∞

t0

Q (s) |f (s, ĉA (s))| ds = ∞.

(II) 0 < λ < 1, conditions (2.20) and (2.21) hold and for all nonzero constant c̄,
∫

∞ 1

r (s)

∫

s

t0

Q (u) |f (u, c̄)| du ds = ∞.

(III) Conditions (2.25) and (2.26) hold and for all nonzero constant ĉ,
∫

∞ 1

r (s)

∫

s

t0

Q (u) |f (u, ĉA (u))| du ds = ∞,

where

Q (u) :=

∫

b

a

q (u, τ) dτ.

If T = Z, then σ (t) = t + 1 and x∆ (t) = ∆x (t) = x (t + 1) − x (t) and (1.1)

becomes the difference inclusion

∆ (r (t)∆x (t)) ∈
b−1
∑

τ=a

q (t, τ) F (t, xσ (g (t, τ))) , for all t ≥ t0, (2.30)

and for oscillation result for (2.30) we obtain.

Theorem 2.7. Let conditions (i)–(iv) hold, (2.6) hold and
∑

∞
1

r (s)
< ∞. Inclusion

(2.30) is oscillatory of one of the follwoing conditions holds:

(I) λ > 1, conditions (2.7) and (2.8) hold and for all nonzero constant ĉ,

∞
∑

Q (s) |f (s, ĉA (s + 1))| = ∞;

(II) 0 < λ < 1, conditions (2.20) and (2.21) hold and for all nonzero constant c̄,

∞
∑ 1

r (s)

s−1
∑

u=t0

Q (u) |f (u, c̄)| = ∞;

(III) Conditions (2.25) and (2.26) hold and for all nonzero constant ĉ,

∞
∑ 1

r (s)

s−1
∑

u=t0

Q (u) |f (u, ĉA (u + 1))| = ∞,

where

Q (u) :=

b−1
∑

τ=a

q (u, τ) .
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We may employ other types of time scales, e.g., T = R with h > 0, T = qN0 with

q > 1, T = N
2
0 and others, see [7]. The details are left to the readers.
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