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ABSTRACT. In this paper, the oscillation of a class of fourth order nonlinear neutral functional

dynamic equations of the form

(

r(t)
(

(y(t) + p(t)y(α(t)))∆
2
))∆

2

+ q(t)f(y(β(t))) = 0

is studied on an arbitrary time scale T, under the assumption
∫

∞

t0

t

r(t)
∆t = ∞, t0 > 0,

for various ranges of p(t).
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1. INTRODUCTION

The study of Functional differential and difference equations is growing due to the

development in science and technology and the varied applications in many areas. For

examples, equations involving delay and those involving advance and a combination

of both arise in nerve conduction (Life Sciences), organizational behaviour (Social sci-

ences), signal processing pantograph equations (mechanical engineering), to mention

a few (see for e.g [3, 6, 9, 15]). Study of such equations has been an active area of

research for many researchers and recently an importance is given to the unification

of continuous and discrete aspects of analysis on time scales.

It was Stefan Hilger [10], who has developed the time scales in his Ph.D work

and recently has received a lot of attention for the researchers. The purpose of the

time scales was not only to unify the study of continuous and discrete aspects of

mathematics but also some cases in between. Many results concerning differential

equations carry over quite easily to corresponding results for difference equations,

while other results seem to be completely different from their continuous counterparts.

The study of dynamic equations on time scales reveals such discrepancies, and allows
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us to avoid proving results twice, once for differential equations and once again for

difference equations. The general idea is to prove a result for a dynamic equation

where the domain of the unknown function is a time scale T, which is a non-empty

closed subset of the real numbers R. In this way the results in this paper not only

apply to the set of real numbers or set of integers, but also to more general time scales

such as T = hN, T = qN0 = {t : t = qk, k ∈ N0} with q > 1 (which has important

applications in quantum theory [11]), T = N
2
0 = {t2 : t ∈ N0}, T = {√n : n ∈ N0}

etc. For basic notations on time scale calculus, we refer the reader to the monographs

[4, 5], the survey paper [1], and the references cited therein.

In this work, an attempt is made to study the oscillatory behaviour of solutions

of nonlinear delay dynamic equations of the form
(

r(t)(y(t) + p(t)y(α(t)))∆2

)∆2

+ q(t)f(y(β(t))) = 0, (1.1)

where q, r ∈ Crd(T, R+), α, β ∈ Crd(T, T) such that α(t) ≤ t, β(t) ≤ t, and

limt→∞ α(t) = ∞ = limt→∞ β(t), f ∈ C(R, R) is a continuous function with the

property uf(u) > 0 for u 6= 0, and p ∈ Crd(T, R), under the assumption

(H0)
∞
∫

t0

t
r(t)

∆t = ∞, t0 > 0.

If T = R and T = Z, then (1.1) reduces to

(r(t)((y(t) + p(t)y(α(t)))′′)
′′
+ q(t)f(y(β(t))) = 0 (1.2)

and

∆2
(

r(n)(∆2(y(n) + p(n)y(α(n)))
)

+ q(n)f(y(β(n))) = 0 (1.3)

respectively.

In the sequel, we assume the following hypotheses on f, α and β:

(H1) f(uv) = f(u)f(v), for u, v ∈ R and u, v > 0,

(H2) f(−u) = −f(u), for u ∈ R,

(H3) there exist λ > 0, such that f(u) + f(v) ≥ λf(u + v), for u, v ∈ R and u, v > 0,

(H4) α and β are bijective functions satisfying the properties:

α(β(t)) = β(α(t)), β−1(α−1(t)) = α−1(β−1(t)), β(α−1(t)) = α−1(β(t)),

α−1(t) ≥ t, β−1(t) ≥ t, for every right-scattered point t ∈ [t0,∞)T, t0 ≥ 0.

Remark 1.1. (H1) and (H2) implies that f(−1) = −f(1).

In [14, 17], Parhi and Tripathy have considered the equations (1.2) and (1.3) when

α(t) = t−α and β(t) = t−β, and established the sufficient results for oscillation and

asymptotic behaviour of solutions, under the assumptions
∞

∫

0

t

r(t)
dt = ∞,
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and its discrete analogue
∞

∑

n=0

n

r(n)
= ∞

respectively. It is interesting to see the unification of continuous and discrete aspects

(1.2) and (1.3) through the dynamic equations on time scales in [13]. But, the problem

lies there in the works [13], [14] and [17] concerning an all solution oscillatory.

The objective of this work is to establish the sufficient conditions for oscillation

of all solutions of (1.1) under the assumption (H0) on an arbitrary time scale T.

Since we are interested in the oscillatory behaviour of solutions near infinity, we

assume that sup T = ∞, and define the time scale interval [t0,∞)T = [t0,∞)∩T. Let

t−1 = inft∈[t0,∞)T
{α(t), β(t)}.

By a solution of (1.1) we mean a nontrivial real valued function y on [Ty,∞)T such

that (y(t) + p(t)y(α(t)) ∈ C2
rd(T, R),

(

r(t)(y(t) + p(t)y(α(t)))∆2

)

∈ C2
rd(T, R) and

satisfies (1.1), for Ty ≥ t−1 > t0 > 0. In this paper, we do not consider the solutions

that eventually vanish identically. A solution y of (1.1) is said to be oscillatory if it is

neither eventually positive nor eventually negative and it is nonoscillatory otherwise.

We may note that, (1.1) includes a class of differential or difference equations

with delay argument of neutral type. In recent years, there has been an increasing

interest in obtaining sufficient conditions for oscillation and nonoscillation of solutions

of different classes of neutral dynamic equations. We refer the reader to some of the

works [2, 7, 8, 12, 18, 19, 20], and the references cited therein.

2. PRELIMINARY RESULTS

We define the quasi-operators as follows:

L0z(t) = z(t), L1z(t) = L∆
0 z(t),

L2z(t) = r(t)L∆
1 z(t), L3z(t) = L∆

2 z(t),

L4z(t) = L∆
3 z(t),

where z(t) = y(t) + p(t)y(α(t)). We need the following results for our use in the

sequel:

Lemma 2.1 ([13]). Let (H0) hold. Let u be a real valued function on [t0,∞)T such

that L4u(t) ≤ 0 for large t. If u(t) > 0 ultimately, then one of cases (a) and (b) holds

for large t, and if u(t) < 0 ultimately, then one of cases (b), (c), (d) and (e) holds

for large t, where

(a) L1u(t) > 0, L2u(t) > 0 and L3u(t) > 0,

(b) L1u(t) > 0, L2u(t) < 0 and L3u(t) > 0,

(c) L1u(t) < 0, L2u(t) < 0 and L3u(t) > 0,
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(d) L1u(t) < 0, L2u(t) < 0 and L3u(t) < 0,

(e) L1u(t) < 0, L2u(t) > 0 and L3u(t) > 0.

Lemma 2.2 ([13]). Let the conditions of Lemma 2.1 hold. If u(t) > 0 ultimately,

then u(t) > RT (t)(r(t)u∆2

(t))∆ = RT (t)L3u(t), t ≥ T ≥ t0, where

RT (t) =

∫ ρ(t)

T

(s − T )(t − σ(s))

r(s)
∆s.

Lemma 2.3 ([16]). Assume that p(t) > 0, for t ∈ [t0,∞)T. If

lim sup
t→∞

∫ σ(t)

τ(t)

p(s)∆s > 1,

then the inequality

x∆ + p(t)x(τ(t)) ≤ 0(≥ 0)

doesn’t admit any eventually positive (negative) solution.

Proof. The proof of the lemma follows from the proof of Theorem 2.4 [16]. Hence the

details are omitted.

3. NEW OSCILLATION CRITERIA

This section deals with the new oscillation criteria for (1.1). Before stating our

main results, we assume the following hypotheses for our use in the next discussion:

A[s, v] =

∫ s

v

(s − σ(t))
(t − v)

r(t)
∆t, s > σ(t) > t > v,

B[v, u] =

∫ v

u

(σ(u) − u)
(u − t)

r(t)
∆t, v > σ(t) > t > u,

C[v, u] =

∫ v

u

(σ(t) − u)
(u − t)

r(t)
∆t, v > σ(t) > t > u;

(H5) Q(t) = min{q(t), q(α(t))}, for t ≥ t0,

(H6)
f(u)

u
≥ M1 > 0, for u 6= 0,

(H7) lim sups→∞

∫ s

α(s)
Q(θ)f [A(β(θ), β(s))]∆θ >

1+f(a)
λM1

, a > 0,

(H8) lim supθ→∞

∫ θ

α(θ)
Q(v)f [C(β(v), β(θ))]∆v >

1+f(a)
λM1

, a > 0,

(H9) lim sups→∞

∫ s

α(s)
q(θ)f [A(β(θ), β(s))]∆θ > 1

f(1−a)M1

, 0 < a < 1,

(H10) lim supθ→∞

∫ θ

α(θ)
q(v)f [C(β(v), β(θ))]∆v > 1

f(1−a)M1
, 0 < a < 1,

(H11) lim sups→∞

∫ s

α(s)
q(θ)f [A(β(θ), β(s))]∆θ > 1

M1

,

(H12) lim supθ→∞

∫ θ

α(θ)
q(v)f [C(β(v), β(θ))]∆v > 1

M1
,

(H13) τn(t) = τ(τn−1(t)), limn→∞ τn(t) < ∞,

(H14) lim supv→∞

∫ α−1(v)

α−1(β(v))
q(u)f(B[α−1(β(v)), α−1(β(u))])∆u > 1

M1f( 1

b
)
, b > 0,

(H15)
∫

∞

t0
q(t)∆t = +∞, t0 > 0,

(H16) lim sups→∞

∫ α−1(β(s))

β(s)
q(θ)f(A[α−1(β(θ)), α−1(β(s))])∆θ > 1

M1f( 1

b
)
,
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(H17) lim sups→∞

∫ s

α(s)
Q(t)f(RT (β(t)))∆t >

1+f(a)
λM1

, a > 0,

(H18) lim sups→∞

∫ s

α(s)
q(t)f(RT (β(t)))∆t > 1

M1
,

(H19) lim supt→∞

∫ σ(t)

β(α−1(t)
(σ(s) − s)3 q(s)

r(s)
∆s > 1

M1f(b−1)
.

Theorem 3.1. Let 0 ≤ p(t) ≤ a < ∞ and β(t) ≤ α2(t), for t ∈ [t0,∞)T. If

(H0)–(H8) hold, then (1.1) is oscillatory.

Proof. Suppose on the contrary that y(t) is a non-oscillatory solution of (1.1) on

[t0,∞)T. Without loss of generality, there exists a t1 ∈ [t0,∞)T, sufficiently large

such that y(t) > 0, y(α(t)), y(β(t)) > 0 on [t1,∞)T. From (1.1), we have

L4z(t) = −q(t)f(y(β(t))) ≤ 0. (3.1)

Hence, we can find a t2 ∈ [t1,∞)T such that Liz(t), i = 1, 2, 3 are eventually of one

sign on [t2,∞)T. In what follows, we consider Cases (a) and (b) of Lemma 2.1.

Case (a) For u ≥ v > t2,

L2z(u) − L2z(v) =

∫ u

v

L3z(s)∆s ≥ (u − v)L3z(u),

that is, L2z(u) ≥ (u − v)L3z(u). Hence,

z∆2

(u) ≥ (u − v)

r(u)
L3z(u). (3.2)

For s > σ(t) > t > t2, it is easy to verify that
∫ s

t2

(s − σ(t))z∆2

(t)∆t = z(s) − z(t2) − (s − t2)z
∆(t2).

Therefore,

z(s) >

∫ s

t2

(s − σ(t))z∆2

(t)∆t (3.3)

implies that

z(s) >

∫ s

t2

(s − σ(t))
(t − v)

r(t)
L3z(t)∆t

≥ L3z(s)

∫ s

v

(s − σ(t))
(t − v)

r(t)
∆t

= L3z(s)A[s, v], for s > v ≥ t2

due to (3.2). Letting s = β(θ) and v = β(s), we get

z(β(θ)) ≥ L3z(β(θ))A[β(θ), β(s)], (3.4)

for β(θ) > β(s) ≥ t2. Using (1.1), it is easy to verify that

0 = L4z(t) + q(t)f(y(β(t))) + f(a)L4z(α(t)) + f(a)q(α(t))f(y(β(α(t))))

≥ L4z(t) + f(a)L4z(α(t)) + Q(t)[f(y(β(t))) + f(a)f(y(α(β(t))))]

≥ L4z(t) + f(a)L4z(α(t)) + λQ(t)f(z(β(t)))
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due to (H1), (H3), (H4), and (H5), where we have used the fact that z(t) ≤ y(t) +

ay(α(t)). Using (3.4), the last inequality becomes

0 ≥ L4z(θ) + f(a)L4z(α(θ)) + λQ(θ)f(L3z(β(θ))A[β(θ), β(s)])

≥ L4z(θ) + f(a)L4z(α(θ)) + λQ(θ)f(L3z(β(θ)))f(A[β(θ), β(s)]).

Integrating the above inequality from α(s) to s, we obtain

λ

∫ s

α(s)

Q(θ)f(L3z(β(θ)))f [A(β(θ), β(s))]∆θ ≤ L3z(α(s)) + f(a)L3z(α(α(s)))

≤ (1 + f(a))L3z(α2(s)),

where we have used the fact that α2(s)) ≤ α(s). As a result,

λf(L3z(β(s)))

∫ s

α(s)

Q(θ)f [A(β(θ), β(s))]∆θ ≤ (1 + f(a))L3z(α2(s)),

that is,
∫ s

α(s)

Q(θ)f [A(β(θ), β(s))]∆θ ≤ (1 + f(a))L3z(α2(s))

λf(L3z(α2(s)))
≤ (1 + f(a))

λM1
,

a contradiction to our hypothesis (H7) due to (H6).

Case (b) For v > σ(t) > t > u ≥ t2, it is easy to verify that

−z(v) = −z(u) − (v − u)z∆(v) +

∫ v

u

(σ(t) − u)z∆2

(t)∆t

≤
∫ v

u

(σ(t) − u)z∆2

(t)∆t.

Following to Case (a) we find that −L2z(v) ≥ (u − v)L3z(u), that is, −z∆2

(v) ≥
(u−v)
r(v)

L3z(u). Consequently,

z(v) ≥
∫ v

u

(σ(t) − u)
(u − t)

r(t)
L3z(u)∆t

= L3z(u)C[v, u], for v ≥ s > σ(t) > t > u ≥ t2.

Letting v and u by β(v) and β(θ) respectively in the last inequality, we get

z(β(v)) > L3z(β(θ)))C[β(v), β(θ)], for β(v) ≥ s > σ(t) > t > β(θ) ≥ t2.

Proceeding as in Case (a), we obtain

L4z(v) + f(a)L4z(α(v)) + λQ(v)[f(z(β(v))) ≤ 0

and then integrating it from α(θ) to θ, we get a contradiction to (H8).

If y(t) < 0 for sufficiently large t on [t0,∞)T, then −y(t) is also a solution of (1.1)

due to Remark 1.1. Hence the details are omitted. This completes the proof of the

theorem.

Theorem 3.2. Let 0 ≤ p(t) ≤ a < 1 and β(t) ≤ α(t), for t ∈ [t0,∞)T. Assume that

(H0)–(H2), (H6), (H9) and (H10) hold. Then every solution of (1.1) oscillates.
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Proof. Proceeding as in the proof of Theorem 3.1, we get contradictions to (H9) and

(H10). In this case, we may note that for each of Cases (a) and (b)

(1 − p(t))z(t) ≤ z(t) − p(t)z(α(t))

= y(t) + p(t)y(α(t)) − p(t)y(α(t)) − p(t)p(α(t))y(α(α(t)))

= y(t) − p(t)p(α(t))y(α(α(t))) < y(t).

Hence, the theorem is proved.

Theorem 3.3. Let −1 ≤ −b ≤ p(t) ≤ 0, b > 0 and β(t) ≤ α(t), for t ∈ [t0,∞)T. If

(H0)−(H2), (H4), (H6) and (H11)−(H14) hold, then every solution of (1.1) oscillates.

Proof. Suppose on the contrary that y(t) is a nonoscillatory solution of (1.1) on

[t1,∞)T. The case y(t) < 0 can similarly be dealt with. In what follows, we apply

Lemma 2.1, for t ∈ [t2,∞)T with (3.1). Because z(t) is monotonic, then we consider

the cases when z(t) > 0 and z(t) < 0. Suppose there exists a t3 ∈ [t2,∞)T such that

z(t) > 0, for t ≥ t3. Then z(t) ≤ y(t), for t ∈ [t3,∞]T and

L4z(t) + q(t)f(z(β(t))) ≤ 0. (3.5)

Upon applying Lemma 2.1 to (3.5) and then proceeding as in the proof of Theorem 3.2,

we get contradictions to (H11) and (H12).

Next, we suppose that z(t) < 0, for t ∈ [t3,∞)T. Clearly, z(t) ≥ −by(α(t)), for

t ≥ t3 implies that there exists a t4 ∈ [t3,∞)T such that y(t) ≥ (−1
b
)z(α−1(t)), for

t ∈ [t4,∞)T due to (H4). By Lemma 2.1, any one of Cases (b)–(e) holds on [t4,∞)T.

In each of Cases (c) and (d), limt→∞ z(t) = −∞. However, z(t) < 0 for t ≥ t4

implies that y(t) < y(τ(t)) and hence

y(t) < y(τ(t)) < y(τ 2(t)) < · · · < y(τn(t)) < · · · ,

that is, y(t) is bounded due to (H13) and so also z(t), a contradiction.

For Case (e), L2z(t) is nondecreasing on [t3,∞)T. Therefore, there exist a con-

stant C > 0 and t4 > t3 such that tz∆2

(t) ≥ Ct
r(t)

, for t ≥ t4 and applying integration

by parts formula we obtain

tz∆(t) ≥ t4z
∆(t4) + z(σ(t)) − z(σ(t4)) +

∫ t

t4

Cs

r(s)
∆s,

that is, tz∆(t) > 0 for large t due to bounded z(t), a contradiction.

As in Case (b) of Theorem 3.1, we have −z∆2

(v) ≥ (u−v)
r(v)

L3z(u) which on inte-

gration from u to v, it follows that

z∆(u) ≥ L3z(u)

∫ v

u

(u − t)

r(t)
∆t,
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that is,

−z(u) ≥ −z(σ(u)) + (σ(u) − u)L3z(u)

∫ v

u

(u − t)

r(t)
∆t

= L3z(u)B[v, u] ≥ L3z(v)B[v, u].

Therefore,

−z(α−1(β(u))) ≥ L3z(α−1(β(v)))B[α−1(β(v)), α−1(β(u))]. (3.6)

Since, (1.1) can be viewed as

L4z(u) + q(u)f(−1

b
)f(z(α−1(β(u)))) ≤ 0, (3.7)

then using (3.6) and (H1), (3.7) yields

L4z(u) + q(u)f(
1

b
)f(L3z(α−1(β(v))))f(B[α−1(β(v)), α−1(β(u))]) ≤ 0.

Integrating the last inequality from α−1(β(v)) to α−1(v), it follows that

f

(

1

b

)

f(L3z(α−1(β(v))))

∫ α−1(v)

α−1(β(v))

q(u)f(B[α−1(β(v)), α−1(β(u))])∆u

≤ L3z(α−1(β(v)))).

Consequently,

∫ α−1(v)

α−1(β(v))

q(u)f(B[α−1(β(v)), α−1(β(u))])∆u ≤ 1

M1f(1
b
)

due to (H6), a contradiction to our hypothesis (H14). This completes the proof of the

theorem.

Theorem 3.4. Let −∞ < −b ≤ p(t) ≤ −1, b > 0 and β(t) ≤ α(t), for t ∈ [t0,∞)T,

b > 0. If (H0)–(H2), (H4), (H6), (H11), (H12), and (H14)–(H16) hold, then (1.1) is

oscillatory.

Proof. The proof of the theorem follows from the proof of Theorem 3.3. We consider

Cases (c) and (d) of Lemma 2.1 only when z(t) < 0, for t ∈ [t3,∞)T, that is, there

exists a t4 ∈ [t3,∞)T such that y(t) ≥ (−1
b
)z(α−1(t)), for t ∈ [t4,∞)T due to (H4)

and hence we have obtained (3.7). In Case (c), z(t) is nonincreasing. So, we can find

t5 > t4 and L > 0 such that z(t) ≤ −L, for t ≥ t5. Using (H1) and therefore, (3.7)

yields

L4z(t) + f(
1

b
)f(L)q(t) ≤ 0, t ≥ t5.

Integrating the above inequality from t5 to ∞, we obtain a contradiction to (H15).
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Assume that Case (d) of Lemma 2.1 holds. Proceeding as in Case (a) of Theo-

rem 3.1, we obtain

z∆2

(u) ≤ (u − v)

r(u)
L3z(v), (3.8)

for u > v > t4. For s > σ(t) > t > t4, it is easy to verify that

z(s) = z(t4) + (s − t4)z
∆(t2) +

∫ s

t4

(s − σ(t))z∆2

(t)∆t.

Therefore, for s > v ≥ t4

z(s) ≤
∫ s

t4

(s − σ(t))z∆2

(t)∆t

≤
∫ s

t4

(s − σ(t))
(t − v)

r(t)
L3z(v)∆t

≤ L3z(v)

∫ s

v

(s − σ(t))
(t − v)

r(t)
∆t = A[s, v]L3z(v)

due to (3.8). Consequently,

z(α−1(β(θ))) ≤ L3z(α−1(β(s)))A[α−1(β(θ)), α−1(β(s))]. (3.9)

Using (3.9) in (3.7), it follows that

L4z(θ) + q(θ)f

(

−1

b

)

f(L3z(α−1(β(s))))f(A[α−1(β(θ)), α−1(β(s))]) ≤ 0

due to (H1). Integrating the last inequality from β(s) to α−1(β(s)), we obtain that

f

(

1

b

)

f(−L3z(α−1(β(s))))

∫ α−1(β(s))

β(s)

q(θ)f(A[α−1(β(θ)), α−1(β(s))])∆θ

≤ −L3z(α−1(β(s))),

that is,
∫ α−1(β(s))

β(s)

q(θ)f(A[α−1(β(θ)), α−1(β(s))])∆θ ≤ −L3z(α−1(β(s)))

f(1
b
)f(−L3z(α−1(β(s))))

≤ 1

M1f(1
b
)
,

a contradiction to (H16). This completes the proof of the theorem.

Theorem 3.5. Let 0 ≤ p(t) ≤ a < ∞ and β(t) ≤ α2(t), for t ∈ [t0,∞)T. If

(H0)–(H6) and (H17) hold, then (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we consider Cases (a) and (b) of

Lemma 2.1. For both the cases,

L4z(t) + f(a)L4z(α(t)) + λQ(t)f(z(β(t))) ≤ 0

holds true. To the last inequality, we apply Lemma 2.2 and therefore,

L4z(t) + f(a)L4z(α(t)) + λQ(t)f(RT (β(t)))f(L3z(β(t))) ≤ 0 (3.10)
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due to (H1). Integrating (3.10) from α(s) to s and using the same type of reasoning

as in Theorem 3.1, we get a contradiction to (H17). Hence the theorem is proved.

Theorem 3.6. Let −1 ≤ −b ≤ p(t) ≤ 0, b > 0 and β(t) ≤ α(t), for t ∈ [t0,∞)T.

If (H0)–(H2), (H4), (H6), (H13), (H18) and (H19) hold, then every solution of (1.1)

oscillates.

Proof. On the contrary, we proceed as in Theorem 3.3 to obtain (3.5), for t ≥ t3. The

rest of this case follows from the proof of Theorem 3.5.

When z(t) < 0, for t ≥ t3, we consider Case (b) of Lemma 2.1 only. Using (H4)

in (3.7), it follows that

f(−1

b
)q(t)f(z(β(α−1(t)))) ≤ −L∆

3 z(t)

=
−L3z(σ(t)) + L3z(t)

σ(t) − t

≤ L3z(t)

(σ(t) − t)
=

L∆
2 z(t)

(σ(t) − t)

≤ −L2z(t)

(σ(t) − t)2
,

for t ≥ t4 > t3. Consequently,

f

(

−1

b

)

(σ(t) − t)2q(t)

r(t)
f(z(β(α−1(t)))) ≤ −z∆2

(t) ≤ z∆(t)

(σ(t) − t)

implies that

z∆(t) + f

(

1

b

)

(σ(t) − t)3q(t)

r(t)
f(z(β(α−1(t)))) ≥ 0,

and because of (H6), the above inequality reduces to

z∆(t) + M1f

(

1

b

)

(σ(t) − t)3q(t)

r(t)
z(β(α−1(t))) ≥ 0 (3.11)

which in turn concludes that (3.11) can not have an eventually negative solution

(because of Lemma 2.3) due to (H19), a contradiction. The rest of the proof follows

from the proof of Theorem 3.3. This completes the proof of the theorem.

Theorem 3.7. Let −∞ ≤ −b ≤ p(t) ≤ −1, b > 0 and β(t) ≤ α(t), for t ∈ [t0,∞)T.

If (H0)–(H2), (H4), (H6), (H15), (H18) and (H19) hold, then every bounded solution

of (1.1) oscillates.

Proof. If possible, let y(t) be a bounded nonoscillatory solution of (1.1) on [t0,∞)T.

Clearly, z(t) is bounded. The rest of the proof follows from the proof of Theorems 3.4

and 3.6 and hence the details are omitted. Thus the proof of the theorem is complete.
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4. DISCUSSION and EXAMPLES

Often, it is more challenging to study an all solution oscillatory problem (lin-

ear/nonlinear) than a problem (linear/nonlinear) dealing with asymptotic solutions.

The later problem may get usual procedure to study than the former one. Even-

though, (1.1) is highly nonlinear, still all our results are hold true for linear, sublinear

and as well as superlinear.

This work deserves a different approach to that of [13] as long as oscillation

results are concerned. However, existence of nonoscillation results we take into ac-

count. It would be interesting to work out the results of this work for (1.2) and (1.3)

respectively. In the following examples, we illustrate our main result:

Example 4.1. Let T = Z. Consider

△2

(

n

2
△2

(

y(n) +
1

3
(1 + (−1)n)y(n − 2)

))

+ 8(n + 1)y3(n − 5) = 0, (4.1)

where 0 ≤ p(n) = 1
3
(1 + (−1)n) ≤ 2

3
, r(n) = n

2
and G(u) = u3. Clearly, all the

conditions of Theorem 3.2 are satisfied. Hence (4.1) is oscillatory. Indeed, y(n) =

(−1)n is one of the oscillatory solutions of (4.1).

Example 4.2. On T = R, consider

(y(t) + 2y(t− π))′′′′ + y(t− 4π) = 0, (4.2)

where r(t) = 1, p(t) = 2, α(t) = t−π, β(t) = t−3π, q(t) = 1. Clearly, all the conditions

of Theorem 3.2 are satisfied for (4.2) when T = R. Hence, (4.2) is oscillatory. Indeed,

y(t) = sint is an oscillatory solution of (4.2).

Acknowledgement: The author is thankful to the referee for his helpful sug-
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