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ABSTRACT. The present paper is devoted to investigation of lossy transmission lines with Joseph-
son junction. Such lines are described by a first order nonlinear hyperbolic system partial differential
equations. We formulate a mixed problem for this system with boundary conditions generated by a
circuit corresponding to Josephson junction. We present the mixed problem in a suitable operator
form and obtain solution on a restricted domain. Then we continue this solution on the whole

domain and call it a generalized one.
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1. INTRODUCTION

A lot of papers have been devoted to the investigation of lossless transmission lines
terminated by linear and nonlinear loads and their applications to RF-circuits (cf.
for instance [1]-[14]). The problems for superconducting lossless transmission lines
with Josephson junction have been investigated in [15]-[18]. In a recent paper [19], we
have considered the mixed problem for such a system (a nonlinear hyperbolic system)
reducing it to a fixed point problem of a suitable operator. Here we consider the same
problem for a lossy transmission line with Josephson junction. From mathematical
point of view, lossy transmission line system with Josephson junction is a nonlinear

hyperbolic system plus a relation between Josephson flux and the voltage:

ou(zx,t)  Oi(x,t) o 2nD(x,t)

C Y + e + Gu(z,t) + jo sin o, 0,
di(x,t)  Ou(x,t) , B

L 5 + o + Ri(z,t) =0, (1.1)
0P (x,t)

0 = w(z,t); (z,t) € I = {(z,t) € II*: (x,t) € [0,A] x [0,T]}.

Here u(x,t), i(x,t) and ®(x,t) are unknown functions — voltage, current and

Josephson flux; L, C, G and R are prescribed specific parameters of the line; A > 0
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is its length; v = 1/ VLC'; j, is maximal Josephson current per unit length and
K; = 1/®, is Josephson constant; ®y = h/(2¢) = 2.10" W/m? is flux induction
quant. The lossy transmission line (cf. Fig. 1) is terminated by a circuit at the right-
hand end corresponding to Josephson junction. First, we assume the resistive element
Ry (at right end) is a linear one in order to show of how to overcome the difficulty
generated by sine nonlinearity. In contrast to lossless case, above system (1.1) is
more complicated, but we are able to reduce it to lossless case and then solve it in an

analogous way.

i(x,t) +
e
% [
u(x,t) [] R1 —Co
E CI-
: TS

F1GURE 1. Lossy transmission lines with Josephson junction

For (1.1) one can formulate the following mixed (initial-boundary value) problem:

to find the unknown functions u(x,t) and i(z,t) in II satisfying initial conditions
u(z,0) = up(x), i(x,0) = ip(z), € [0,A] (1.2)
and boundary conditions

dwlih D) _onny— L ten ). (13)

E(t) — U(O, t) — R()Z(O, t) = 0, C() dt R1

Here, io(z), up(z) are prescribed initial functions — the current and voltage at the
initial instant, F(t) is a prescribed source function, Ry is its resistance, R; and Cj

are specific parameters (positive) of the elements of the circuit.

We demonstrate of how to overcome the difficulty caused by the sine-function. For
our fixed point method, sine-function is not a “bad” nonlinearity. We use an operator
presentation of the mixed problem for hyperbolic system in a diagonal form (cf. [13]).
Choosing a suitable function space, and introducing suitable weighted metrics, we
prove existence of generalized continuous solutions of (1.1)-(1.3) by a fixed point
method. In order to have a strict contractive operator, we cut the domain II. On the
new obtained domain the operator in question is already contractive and this implies

the existence of a unique solution. We obtain a sequence of subdomains whose union
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is II. To every subdomain a unique solution corresponds. The obtained sequence
is not necessary convergent. That is why, we choose a convergent subsequence by
extending some results from [20]. We propose a constructive way of defining of such

a sequence and the method can be applied to compact operators.

2. A DIAGONALIZATION OF THE OBTAINED FIRST ORDER
PARTIAL DIFFERENTIAL EQUATION SYSTEM

Rewrite system (1.1) in the form

: : t
Oou(z, 1) i 1 9i(z,1) + gu(x,t) = —‘%sin <27TKJ/ u(x,s)ds) ,
0

ot C Oz C

Oi(x,t) N 1 du(z,t) N §<
ot L or L'
and it takes the matrix form:

x,t) =0,

[% .\ 0%][2_7; . g ()][u]_[—%sin(ZﬂKJfgu(x,s)ds)]

di 1 0i ~ ‘
o 10 2 0o =2 i 0

(2.1)

‘ 0 L g 0 u u
Denoting by A = 1 (C) ) Al:[gE U = Z.]7%_(t]:[g]’

L L ot

—2% sin <27TKJ Jo u(m,s)ds)

u
&y = [ E ], = ] we rewrite (2.1) in the form

oz 0
ou ou
— +A—+ A U=T. 2.2
o o T (2:2)
. o 1/C .
To transform matrix A = UL 0 in diagonal form we have to solve the
-\ 1/C
characteristic equation: 1L /_ \ = 0 whose roots are A\ = \/%70’ Ay = —\/%—C.
We find eigen-vectors as a solution of the systems:
1 1 1 1
- + = = 07 + = =0 )
\/1[/—051 L’SZ and @51 L€2
=& ——=&&=0 — —=& =0.
Cfl m& Ofl + \/E&

Eigen-vectors are (5%”,5;”) = (\/5, \/Z), ( §2), ;2)> = (—\/U, \/Z)

Denote by H the matrix formed by the eigen-vectors H =

1
2@ Qﬁl . Then A = HAH ! =

WL VI JVIC

Introduce new variables

inverse is H~! =
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Viz,t C L "
(z,1)  H = VO VL LU = U(x ) 7= HU, (U = H2)
V(z,t) = \/Eu(x,t) + \/zi(x,t) u(m,t) _ ‘;%) . 12(\%)
or __Jo VLi and S AS =
I(z,t) = —VCu(z,t) +VLiz,t) i(a,1) = Yzl 4 Iz
- 0,t) = vy , I0) and At) = V(AL | I(At) (2.3)
Z<’)*2ﬁ+ﬁ Z<’)72ﬁ+2\/f

Substituting U = H~'Z in (2.2) we obtain
-1 -1
O 2) | (0WH"2) | A (H'Z)=T.

ot ox
Since H~! is a constant matrix we obtain:
07 07 _
H- 1E+(AH N == o + (A H ) Z=T.
After multiplication from the left by H we obtain
07 07
o + (HAH™) 5t (HA\H™") Z = HT, (2.4)
L G 1 __1
where HA|H™' = Ve VL ] [ ¢ }?] 2\1@ 2\(0 ] —
_ |2 (E+1) %(—%+%)]
| s(-e+1) 3(E+1)
and i
HT — VvC VL ' —5sm<27rKJf0 u(x sds) _
VO VL 0

- —% sin (%KJ/; Vi, S;Jf(x’s)ds)

\@ sin (27TKJ ¢ %\Flm)d!s)

Then (2.4) can be rewritten as:
av

v
ot 1 k3 1(R, Gy 1(R_G
B v L EH+E) G- | [V
0 — L 1E-9) L(E1 G I
ar VIC ar 2\L — ¢/ 2\ T C
ot oz
B \Fc sin (WKJ ! %ds)
o (z,s)—I(z,s) ’
% sin <7TK] 0 Tdé’)
or introducing the notations o = % (% + %) i h = % (% — %), we get
(for V=V (x,t),I = I(z,t)):
&+ J%%Z =—aV —hl — T sin <7TKJ QAC IR S\)@I(“ ds) (25)
2.5
a _ t V(z,s)—I(z,s
a—i — \/%a = —hV —al + - \F sin <7TKJ (Td8>
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We put V(x,t) = e W (x,t) and I(z,t) = e *J(x,t) and then system (2.5)
becomes (for W = W(x,t),J = J(x,1)):

oW | 1 oW _ o at e ((w [t e W (z,s)e 0 J(x,s)
W+ﬁ%*_hj_&_%e sin <— IN e ds),

oJ 1 oJ __ hW jo ot @Oﬂ ¢ e*aSW(x,S)—eiaSJ(w,S)d (26)
o T VIoas — W+ e sm(c?o o = s).

It is natural to look for bounded solution of the above system, that is,
W (z,t)| < Woert, |J(z,t)| < Joett, t € [0,T).
The new initial conditions we obtain from (1.2) — for z € [0, AJ:

W(z,0) = v/Cu(z,0) + VLi(x,0) = /Cug(z) + V' Lio(x) = Wy(z),

J(2,0) = —v/Cu(z,0) + VLi(x,0) = —/Cug(z) + V' Lio(z) = Jo(x). (2.7)

The new boundary conditions we obtain from substituting (2.3) into (1.3):

V(,t) I(0,t)  V(0,8)  I(0,1)

wC /e VoL oL
d (VNG TADY VA I 1 V(A 1 I(A)
0%<2\/5_2\/5>_ + + t€[0,7],

B(t) —

=0,

o/L 2L R 2/C R 2/C°
or in view of Zy = y/L/C, we obtain
V(0,t) = 2C% (1) 4 Zo=Fao (), ¢),

Zo+Ro Zo+Ro
dI(At) _ dV(AY)  Ri—2Z RitZ
dt - dt o C()1Z0RO1 V(A’ t) - C()lZOROlI(A’ t)7t € [07 T]
Substituting V (z,t) = e W (z,t), I(z,t) = e **J(x,t) in the above equations
we obtain
W(0,t) = LS p(t) et + 2=t (0, 1),
dJ(AD) _dw(A) Ri-Z Ri+Z
i —ad(A ) = T — aW (A ) — g WA ) — g2 (A1)
or
W(0,t) = 2CAp(t)ext + L=t J(0, 1),
dI(AL) _ dW(AL) Ri—Z Ri+Z,
M) — WD (Bode ) WA 1) — (£ — a) J(AD)

We present the last boundary conditions in an integral form

W(0,1) = 2C2% B(t)eet 4 Zo=Bo j(0,¢),

Zo+Ro Zo+Ro
J(A 1) = W(A, 1) — (ﬁz}%o n a) JIW (A, s)ds — (% . a) JEI(A, 5)ds.

3. AN OPERATOR FORMULATION OF THE MIXED PROBLEM

Let us formulate the mixed problem: to find a solution (W (z,t), J(z,t)) of the
system

ow 1 oW __ 0 ot o3 w [t —asW(x,s)—J(z,s)
B+ s G, = —hJ—\J/—%e tsin <<1TO Joe — ds), (3.1)

aJ 1 8J _ jo_pat qin (7 [t —as W(x,s)—J(x,s)
%~ Jices = —hW + \J/—%e sin (ao Joe Tds)
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satisfying the initial conditions
W(xz,0) = Wy(x), J(z,0) = Jo(x),x € [0, A] (3.2)

and boundary conditions
W(0,t) = wWCE(t)e + 3.J(0,1),

J(At) = W(A L) — (m + @) [y W(A, 8)ds — (yo — ) [, J(A, s)ds, (3.3)
telo, T,
Zo . _ Zop—Rp. _ Ri—Zp. _ Ri+Z
where V= Z(?—&-(;%o’ﬁ - ZE—FR?)”VI - 1‘3120690’/y2 - R1;0690'

Remark 3.1 Since we prove the existence of a continuous generalized solution,

we assume that the Conformity Condition (CC) is satisfied:
W(0,0) = vV CE(0) + 5.J(0,0), J(A,0) = W(A,0).
Indeed, the following conditions
J(0,0) =W(0,0) =0,E(0) =0, Jo(A) = Wy(A) (CC)
implies (CC).

Prior to formulating an operator corresponding to the mixed problem, we consider
the Cauchy problem for the characteristics (v = 1/v/ LC) (cf. [19]):

d_f - \/% =v, (({t)=xzV(z,t)ell = pw(r;z,t) =vr+x — v, (3.4)
d_f — _\/% =—0,&(t) =aV(z,t) el = @ (1;2,t) = —0T + 2 + vt (3.5)
The functions A\ (z,t) = v > 0 and \;(z,t) = —v < 0 are continuous and imply a

uniqueness to the left from ¢, of the solution x = @y (¢; zo, to) for dz/dt = v, z(ty) = xq
and respectively © = ¢ (t; zo, to) for dz/dt = —v, z(ty) = xo.

Denote by yw(x,t) the smallest value of 7 such that the solution
ow(T;x,t) = v +x — vt of (3.4) still belongs to II and respectively
the solution p;(7;x,t) = —vT + 2 + vt of (3.5) — by xs(z,t). If xw(z,t) > 0, then
ow(xw(z,t);z,t) = 0 or ow(xw(z,t);z,t) = A; and respectively if y,(x,t) > 0,
then ¢ (xs(x,t);2,t) =0 or p (xs(z,t);2,t) = A. In our case,

xw(z,t) = {

Y=z forvt —x >0 (2.1) vtr=h forvt +x — A >0
xa(a,t) = -
0, forvt—az <0 X7 0, forvt+x—A<0

Remark 3.2 We notice that x,, (z,t)and x,(z,t) are retarded functions in ¢:

<t

It is easy to see that @y (7;2,t) = v7 + 2 — vt = pw(0;2,t) = x — vt and
pu(Tia,t) = —vT + 2 + ot = @02, 1) = x + vt.

Introduce the sets
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Wpw ={(z,t) € Il: xw(z,t) =0} = {(z,t) € II: x — vt >0},

Oy ={(z,t) eI : xy(x,t) =0} ={(z,t) eI: x +vt — A <0},

How = { (2.2) € T: xw (@, 8) > 0, 0w Caw (&, 8); 1) = 222 43— vt = 0},
My; = {(:r,t) ell: xy(x,t) >0, ps(xs(x,t);x,t) = —UW +x+ vt = A} )
1_IOJ = {(l’,t) ell: XJ(xat) > ngpJ(XJ(xat);xat) = 0} = @7

1_-[AW - {(I,t) ell: Xw(flf,t) > 07 QOW(XW(CL’,t),CL’,t) - A} - Q)J

Prior to presenting problem (3.1) in an operator form we introduce

W()(ZE — Ut)) s (ZL‘,t) S Hin,Wa

(W7 J) (XW(Z‘,t)) ’ (xa t) € H0W7

Jo(z +0vt)), (z,t) € I,y g,

<W7 J) (Xj(xvt)) ) (l’,t) € HAJa

Oy (W, J)(z,t) = { .

O, (W, J)(x,t) = { B,

or
) Wolx —ot), (x,t) € i, w,
Ow (W, J)(z,t) = { WCE(xw)e®Xw + 8.J(0,xw), (z,t) € Mow,

Jo(z +ot)), (z,t) € I, 4,
(W, ) () = § WA X,)— (1 +a) [ WA, $)ds — (12 — ) [ J(A, 5)ds,
(x,t) € .
We assign to the above mixed problem the following system of operator equations
W = Bw (W, J), J=B;(W,J),
where
B (W, J)(@,t) := Qw (W, J) (@, 8) = h [ J(x,7)dr —
— % f;w e sin <§O I e’as—w(x’i%‘](m’s) ds) dr,
By(W, J)(z,t) :== ® (W, J)(z,t) — h f;J W (x,7)dr
+ % f;J e sin (élo fot e*as—w(z’s%‘](%s) ds) dr.
We introduce the function sets
My ={W e C) : [W(x,t)| < Woet'}, My ={J € C(I) : |J(x,t)] < JoeH'},
where Wy, Jy, p are positive constants chosen below.

It is easy to verify that the set My, x M turns out into a complete metric space
with respect to the metric: p(W, J), (W, J)) = max {p(W, W), p(J, J) }, where

p(W, W) = sup {e " |W(z,t) — W(z,t)|: (z,t) € I},

p(J,J) =sup {e | J(x,t) — J(x,t)| : (x,t) € IT}.

4. EXISTENCE-UNIQUENESS OF CONTINUOUS GENERALIZED
SOLUTION ON A SUBDOMAIN

Consider a mixed problem on the domain
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I = {(z,t) e 1*: (z,t) € [0,A — ] x [0,T]},0 <e < A.

Theorem 4.1. Let the following conditions be fulfilled for sufficiently small initial

data Wy, Joo:

4.1) |E(t)] e* < Ep,t € [0, 00); [Wo(x )| < Woo; | Jo(z )| <AJ00, z € [0,A];

4.2) max {WOO; |"}" \/6E0 + ‘ﬁl Jo} |h‘ Jo + ﬁ; < Wp;

|71+04|W0+|72—Q|J06#T_#f}+ 1 A Jo A

43) max {J()o; Wo +

2jom _ee  Imtaltlre—af w1 we | 2mjo
<lje” v + e v +—|hle <
e It 2 e
Then there exists a unique C(II.)-solution of (3.1).
Proof:

First step: We establish that the operator B maps the set My, x M into itself.

1
WH@WH

We notice that By (z,t) and B;(x,t) are continuous functions.
First we have to show |By (W, J)(z,t)| < Woert, |B;(W, J)(z,t)| < Joet.
Indeed,

B (W, J) )] < [P, O] + [ [L 1T, dr 4

+ Jom(Wo+Jo) ft
X

T _
e e [ e *etsdsdr <

w (z,t)

WOO Jo | R G| eHt jom(Wo+Jo) [t ar eh—aT_q
Seut{|7|\/5E0+|ﬁ|J0}+§|E_6‘7+WIXW(I p—c d7'<
< et Woo +L|E_g| ety jom(WorkJo) eht—ctw
- ”Y’ \/EEO—i_ |ﬁ‘ JO 2 1L Clop PoC(p—ar) o >~

sw@mﬁmwm@%+W%}—%—%f+%%%ﬁémw7
A
<t

and analogously in view of x(x,t) <

| B, (W, J)(x, 1) < {

Jo(z + vt
- o(x + vt) }+

(A Mﬂm+aumVAsmm+m—auwasms
HE
2 1L

+

sy X
=&l [y, IW(a,7)] dr +
\ijJ aTsm (@mﬁcfo _as(|W(1’7S)|+|J($,S)|)ds> dr <

< JOO +
o WoetXs + "}/1 + Oé| VV()eMXJ_1 + "}/2 — a| s

L
nt _
% R G|”re e

”XJ Jom(Wo+Jo) (t _ar [T ,—as,us
m + e fXJe foe etdsdr <

_|_

< Joo
-~ Woeﬂ(t %) _I_ |71+a|W0+|"/2—O(‘J0 }L(t—é)
1|R
+31% -

L
_ ke Wi Jo _EE
< et (maX{Joo;Woe T4 |71+0t| 0+lv2—al 0~ } +

Jom(Wo+Jo) a‘re(” )T _q
ot T e fx ——dr <

m
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1R _ G| Wo o jor(WotdJo) pt
+2‘L C| " Do Cu(p—a) < Joet.

The operator B is a strict contraction since
| Bw (W, J)(x,t) — Bw (W, J)(z, )| <
< |@w (W, J)(x, 1) — P (W, J)(x, 1) \+ n_g|

) w (3
PR g e W)~ s iy
= |5| | (0, xw (1)) — 7(O,XW(:c,t))\ X (@) gxay (@) 4
+ 3 |E =G p(1 ) [, ermdr+

2 w (@)

— J(z, T)‘ e el dr +
J(z, 3) — J(z,s)|ds) dr <

t)

e Hetsems ds+
+f07— ‘J x, S) — 7(@7 S)l 67#86#S€7a8d3) dT) <
<181 p(, Tyt 0 4 35 = ] p(J, T) ==+

jo?T(p(W,W)+p(J,j)) t
+ DoC fx

—i-q])gg (f (fo ’W;I: s)—Wi(zx,s)

e Jy erse s dsdr <
W b

< (Blem+ 41 - g ey

P [l €T ) (W, ), (W, ) <

u22oC Jxy, (z,t) p—

<e“t(\ﬁ\+ L E——|+Wi{%) ((WJ) (W, 7)) .

It follows that
p(Bw (W, J), By (W, J)) <

< (181+ 2 % = &l + 5255 ) p(W0), (W, 7)) = Kvp((W..J), (W, 7).

For the second component we obtain for z € [0; A — ¢]:
+ 1y ol [57 [W(A,s) = WA, 5)|ds + [v2 — of [§7 [J(A,5) = J(A, 5)] ds +
+1 5——‘f ‘Wa:T W(m,T){dT—I—
R UT e (W(z,s) = W(z,s)+ J(x,s) — J(x,s)) ds| dr <

®0C Jx; 0
< (WA x) = LA, ><J>} eI g+ al [ [W(A, ) = (A, 5)] e rds +
+ |’)/2 — Oé| fX |J A S 7(/\7 S)| e HS S e—0as g +
+1 5 E — —‘ f ‘W z,s) W(x,s)‘ e HSehSe= S s+

+£(%°C ;J e“(fo (‘W x,8) — W(I,S)‘ e HSeHsemas 1

+ | J(x, 5) = J(z, )| e Peersemes )ds)d¢<

< p(W,W)etXs + |71+ p(W, W) [§ eds + [yo — af p(J, ) [ et*ds +
+5 |5 = Gl oW W) [{ ervds + £§°c ( (W) + p(J, D) [} i <

< p(VV;W) Xy + ‘”}/1 +C¥’p(W W) X1 + |f)/2 — a|p<J J) MXJ 1 +
L8 G oW )L o (W) 4 p(, 7)) £ <
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) el en(tr=3t)

z—A
v

< p(W, ), (W, 7)) [en (455 4 basel o
|z -3l

R _ Gl ou(t+552) 4 out__2mio__
L Cl€ + et s aee | =

et p(W,J), (W, J)) (e‘“f | In+al+he-al -t |

m
It follows that
p(By(W, 1), By(W, 7)) < (o7 + huteltinmal =2y

I

ok Bl e 4 ) p(W1 ), (W, 7)) = Kap(W, ), (W, 7)),

and finally
P ((BW(W7 J), By (W, J)) a(BW(W7 7): BJ(Wa 7))) < max{Kyw; K}p((W, J), (W7 7))

Therefore, the unique fixed point of B (cf. [22]) is a unique generalized continuous
solution belonging to I, = {(z,t) € [0,A —¢] x [0, T]}.
Theorem 4.1 is thus proved.

5. EXISTENCE OF SOLUTION OF THE MIXED PROBLEM

Let us introduce the sets
M, ={We My : |W(z,t—W (Z,8)|<lw(|lx — Z|+ [t = t]); 2,z € [0,A],¢,£ € [0,T]},
MS={Je My:|J(x,t)— J(Z,0)| <l;(|lx —Z|+ |t —t]) ;2,7 € [0,A],t,L € [0,T]}.

For every € = 1/n in accordance of Theorem 4.1 we obtain a unique solution
(Wh, Jy) on M{/Vn x M f,n The set M&,n (resp.Mf,’n) consists of all restrictions of
functions from M}, (resp.M%)on [0; A — (1/n)] x [0;T] for every sufficiently large
n € N. We extend functions (W, J,) € My, x Mj, on the whole domain IT =
[0, A] x [0, 7] such that the extensions belong to M}, x M. For instance,

W 1) = Wz, 1), (z,t) € [0;A — (1/n)] x [0;T7,

o WA = (1/n),t), (z,1) € [A = (1/n) s A] x [0;17,
Fat) = Ju(z,t), (2,t) € [0; A — (1/n)] x [0;T],

e Jo(A = (1/n), 1), (z,t) € [A = (1/n) ;A x [0;T].

Now we are able to state the problem for existence of lim (Wn, jn) in the topol-
ogy of M}, x M!. But we are not sure that the last sequg;:oeo is convergent.

In what follows we give a constructive way to form a convergent subsequence of
(W, ).

Let us consider the conditions:

E1) 3 (1611 + 2 |2 - 9|+ &) <iw:

E2) lw + |y + a| Wy + |72 — ¢ JO+%§ZJ.
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They imply that { By (W, J)(x,t), B;(W, J)(x,t)} forms an equicontinuous family
of functions.

Indeed,
(Walz,t) = Wa(2,0)] = [Bw (Wa, Ju) (@, 1) = By (Wa, Ju)(Z,1)] <
< | Pw (W, Ju)(@, 1) — Qw (Wa, Ju)(Z,1)] +

LIR_ G Xyy (@,t)
L= G (I,TdT‘—i—zL a ey J(l‘TdT“"

Je Sln<q> s o W mS)_J$,S))dS>dT‘+

(z:t)
+\f ;W(xf) sin (cbo\FC Jo (W(z,s) = J(x,s)) ds) dT‘ <
< B0 xw (@, 1)) = O, xw (@ D)l + 5 [ £ = &1 (1t = 21+ hew (. 1) = xw (@, D) +
+76 (I = )+ Ixw(z,t) — xw(,1)]) <
<181 L baw(e,6) = xow (20| + (%

<18l (Jt—1t+ L]z —z])+

R_G
+2—

) (1t =11+ (1) =y (2, D)) <
( JT>(2|t—t|+1|x—x|)

<3 (1811 + 2|2 - &+ ) (=0 + | — 2l) <bw (£ — ] + |z — 2])

and

| Jn(2,t) — Jn(2,8)| = [By(Wa, Ju)(2,t) — By(Wh, Jn)(2,8)] <

<|¢J(Wn,Jn)( t) — <I>J(Wn,Jn)<5: £+

R G
+2 T C

(x, TdT’—i—

XW(“” ’;> Wiz, dT’ +
x,t

t X, (@,t) sin <<1> \ﬁfo (2,8) = Jn (x,s))ds> dr—
_f;J(ff) ‘ (qnof fo (z,8) = Jn (x,s))d8> d’l" <

< WA~ (1) )~ WA (1) o2 D) +
-w%+awﬂﬁ$WWA—um>>@Lﬂw—amﬂﬁg WA= (1/n)  s)ds| +

(q) ©inty (Wa(x,s) - Ju(x, ))ds> d¢(+

+\f f;fj((z,ﬂ) sin( ffo (x,s) — Jy (x,s))ds) dT’ <

< lwx,(@,t) = x, (@ )] + IvﬁalWolx (z,t) — x, (2, 0)| +

e —al o x, (@, 8) = x, (@, 0 + Z5 [t — 1] + 25 |XJ(I t)—x, (@8] <

(m+m+mm+m—a%+ w%@w Y@ D) + 5|t -1 <

7ol

Jo

(lw+|’yl+oz\Wo+\’Vz—oz|Jo+ >(|t—t|+1]:c—x|) %]t—ﬂg

< (w+ I+ alWo + g —al Jo+ 28) (=1 + |z = 2) <1y ()t — 1) + | - 2]) .
We extend every function W,, and J, on II in such a way that the obtained
extensions W, (x,t), J,(x,t) form a family of equicontinuous functions. This can be
done in the following way:

W(z, 1) = Walz,t), (z,) € [0; A = (1/n)] x [0; T,
o Wo(A = (1/n) 1), (z,£) € [A — (1/n); A] x [0; 7],
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Ju(mt) = 4 e (2,1) € [0; A = (1/m)] x [0 7],
Y Ju(h = (1/n) 1), () € [A = (1/n); A] x [0;7].

6. CHOICE OF SUBSEQUENCE

The Arzela-Ascoli theorem does not give a constructive way for defining a con-
vergent subsequence. That is why we form a convergent subsequence generalizing
some results from [20] to the case of sequences of functions. First, we briefly recall

some basic results from Chapter IV of [20].

Let {yx},—, be an infinite sequence and {a,+}, ,_, be an infinite matrix. Let us
form the sequence ¢, = > o angyx. If lim g, exists then it is called a generalized
limat.

The following theorem is valid: the necessary and sufficient conditions that v, —

y whenever y, — y are that:
(a) v lank] < M for every n > ng; (b) lim a,x = 0 for every fived k; (c)
S any = A, — 1

n—oo

Infinite matrices satisfying (a), (b), (c) are called T-matrices. A transformation
of a sequence by a T-matrix is called regular one. Let {yy},—, be a bounded divergent

sequence and let U = lim sup y,, L = lim inf y,.

Theorem 6.1 [20] Every number y between L and U is a generalized limit of

this sequence for some positive T-matrix.

The purpose of this section is to extend Theorem 6.1 for bounded sequence of

equicontinuous functions.

Let {I(x,t)},, be a family such that I;(z,t) € M.(II). In what follows we
consider the convergence with respect to the norm ||I|| = max {|I(x,t)|: (x,t) € II}.
Obviously|| /||, = max {e™* |I(z,?)| : (x,t) € I} < || In fact we need only point-
wise convergence.

Define functions Iy (z,t) = limsup Ix(x,t), I.(z,t) = liminf I} (z,t), (x,t) € I1.

If Iy(x,t) = I(x,t), then we put I(z,t) = klim Ii(z,t) = Iy(z,t) = I (z,t).

Theorem 6.2. For every function satisfying the inequalities

Ip(z,t) < I(x,t) < Iy(x,t) (6.1)
there is a positive T-matrix such that I(z,t) = Um > 7, anp(z,t) Ix(x,t).
Proof: Let us choose two subsequences of {Ij(x, )}, such that

lim ag(z,t) = Iy(z,t), klim bp(x,t) = Ip(z,t)

k—oo

and for instance

1y —ar|| < 35,1 = bl < 3,
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HIU—a2H = 22’H[L b2H = 22""7H[U ak“ = 2k>HIL_ka SQLIH

It follows that Y o, [Ty — ax|l < 00, Y ope; [ — byl < .

Let > 02 v — aill = a, > pe; |1z — bil| = b and let us put ay(z,t) = Iy(z,t) +
E(x,t), bp(x,t) = Ip(x,t) + np(x,t).

From (6.1) we obtain Iy (x,t)—I(z,t) = p(z,t) > 0,I(z,t)— IL(z,t) = q(x,t) > 0.
Obviously, p(x,t) + ¢(z,t) > 0 on II which implies p(x,t) + ¢(z,t) > ap, > 0. Then
k=1 4@ tar(z)+3 5 p@t)be(z,t) _

_ k=1 Q(I(t];((a}tj)(l_igiél)(x ) +2 =y P, ) (L () +me(@,t)

n(p(z,t)+q(z,t))
— ZZ=1 qIU+EZ=1 Q5k+zk_1 P1L+Ek_1 Pk __

n(p+q)
Zk JI=Ip)Iy+> e Uu—=DI + Do ekt Pk
n(p+q) n(p+q) -
n(I—Ip)Iy+n(Iy—D)Ig + Dorm1 Rt 1 P
n(p+q) n(p+q) -
_ I{u-1I1) Dorm1 Rt e P D k1 9kt g1 PN
o IU*IU+I£IL + == I(Cerq)k =1z t) + == nl(cerq)k =
But

Zn: Q($7t)ak(z7t)+zn: p(l‘,t)bk(l‘,t)
= n(p(xt>+q<'“ztl>> —I(z,t)| <

< 2[0a+210b

- n(p(:c t)"‘q(“C t)) — Napq

Pher d(@ak (@) +> 0 p(x )b (x,t)

‘ 1 ”(P(I7t)+q(x,t1)) I(z,1)

. T gz t)ap(z,t)+> 7 p(x,t)bp(z,t
Consequently nh_{Iolo 2 k=1 9@t ak( n()erzq:)kqp( )bi (1) — I(l’,t).

— 0.
n—oo

Therefore,

It remains to construct a T-matrix. We define the n-th row of {anx(z,t)},_;
by taking a,, = 0 if k is the subscript of a function [Ij(x,t) not occurring in
ar(x,t), ag(z,t), ...,;an(x,t) or in by (z,t), ba(x,t), ..., by (z, ).

If Ii(z,t) is one of ay(x,t),as(x,t), ..., an(x,t) we take

i (z,t) = m and if Ix(z,t) is one of by(x,t),bo(x,1),...,b,(x,t) we take

o p(z,t)
ank(7,) = SomiaGD)

Then Y 77 ank(x,t) = 1 for every n, and lim a,x(z,t) = 0 for every fixed k
n—oo
uniformly in (z,t).
Consequently {a,x(z,t)},",_, is a positive T-matrix.

Theorem 6.1 is thus proved.

7. CONCLUSION

Here we collect all inequalities from the proof of Theorem 4.1. For sufficiently

small Wyo,Joo and sufficiently large n we have:

R G JO j0W<W0+J0)
E 4= JOT A0 T J0) .
| VCEy + 18| J0+2 7, Dol (1 — ) < Wo;
Woe—#jL‘71+04|W0+|’Y2—04’J06_% ‘E G‘Wo Jjom (Wo + Jo) < Jy:
1 2| C| p " Cu(p—a) =
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2j07T

1 |R G
Kw = — === <1
v |5|+2M‘L C‘+u(u—a)<1>00 ’
s mtoltle-ol o« 1|R_G| . 27 jo
K - nv _ = — nov <1
TmenT Iz ‘ ST Vel RS Y el
Jo R G Jo 2]0
) — ) <lw:l — == <
<|5\J+2 T C'+\/6>_W7W+|71+O‘|WO+|72 04|J0+\/6 J-

Let us consider a Josephson transmission line (cf. [15]-[18]) with

L =2510""H/m,C =1,310"°F/m, G = 480 mho/m, length A = 3.107*m,
VO =1,14.1073,

Then v = 1/VLC = 1/4/2,5.10-°.1,3.10-6 = 1,75.107 and
T=AJv=310"4/(1, 75.107) ~1,7.10"1 sec

=+/L/C = /(2,5.1079) / (1,3.10-6) ~ 0,044,

CIDO = 2.107W/m?; jo = 1,9A/m.

Assume that a Heaviside condition is satisfied: % — % =0=R= Lg ~ 0, 95.

Then o« = % (%—i—%) = % = % ~ 3,8.10%.

Let us take Ry = 0,6Q, Cyp = 107'"°Fand Ry = R, = Z, = 0,044Q. Then

27, Zy — Ry R -7 Ry + Z

1T Z0F Ry = Zo + Ro TR Z0Cy 2T R Z:Cy

= 45,5.10";

|71+ a] = 3,8.10%; |y — a] = 45,5.10'° — 0,38.107 =~ 3,84.10'.

Choose pu = 102, jor = 5,97. If we choose the accuracy ¢ = 107°, then

¢~ (1012107°) /175,007 ) —0,571 oy 0,564 and the above inequalities for sufficiently small

initial date become:

L, 14‘10_3E0 + 2.10—1??,73.10—6 1012(1‘8/102—té?8.108) < Wo;

0,564 (WD + 3’8'108W01j5132’8441011<]0> + 2.10*1??,73.10*6 1012(1%02té?8.108) =< Jo
Kw = 2.10—155’72,73.10—6 1012(1012273,8.108) <1

K;=0,564 + 3’8'108%{?’284'10110 564 + 1012(10122 38 108) 210 155’72,73.10—6 <1

m < ly;lw + 3,8.103W, + 3,84.10M Jy + 11410 —e <y
or for By = Wy = Jy ~ 1078 it follows
11(};l +221(??? <1 (07 564 + 2133 + 103) + (% + 103) <1
Ky = ﬁ <1;K;=0,786 < 1;5.10° < ly;
Iy +3,8.108.10~% + 3,84.10'.10~% + 3,3.10° < 1.
Finally we note that
W ()| < WoerT = Wyel0* L7107 — 107817 = 1078.2,4.107 ~ 0, 24 and
|J(z,t)| < JoetT = 1078e!7 ~ 0, 24.
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It should be noted that the actual physical quantities must be calculated by the

formulas

u(z,t) = e W (z,t)/ (2\/5) FeotJ(z,t)/ (2\/5 ,
i(z,1) = e W (z, 1)/ (zﬁ) — e J(z, 1)/ (2\/6 .

The above example shows that we obtain a solution on the whole rectangle [0, A] x

[0, T, that is, not for sufficiently small T'.
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