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ABSTRACT. Intervals of the parameters λ and µ are determined for which there exist positive so-

lutions of the system of four-point nonlinear boundary value problems, u′′(t)+λa(t)f(v) = 0, v′′(t)+

µb(t)g(u) = 0, for 0 < t < 1, and satisfying, u(0) = αu(ξ), u(1) = βu(η), v(0) = αv(ξ), v(1) = βv(η).

A Guo-Krasnosel’skii fixed point theorem is applied.

AMS (MOS) Subject Classification. 34B18, 34A34.

1. INTRODUCTION

We are concerned with determining values of λ and µ (eigenvalues) for which

there exist positive solutions for the system of four-point boundary value problems,

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1,
(1.1)

u(0) = αu(ξ), u(1) = βu(η),

v(0) = αv(ξ), v(1) = βv(η),
(1.2)

where 0 < ξ < η < 1, 0 ≤ α, β < 1, and

(A) f, g ∈ C([0,∞), [0,∞));

(B) a, b ∈ C([0, 1], [0,∞)), and each does not vanish identically on any subinterval;

(C) All of

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
,

f∞ := lim
x→∞

f(x)

x
and g∞ := lim

x→∞

g(x)

x
,
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exist as positive real numbers.

There continues to be high research activity in the study of positive solutions for

a variety of boundary value problems. Questions are of both theoretical and applied

nature as found in [1, 5, 6, 7, 10, 13, 19, 14, 15]. A good deal of this interest has been

directed toward scalar problems, but more recent concentration has been on positive

solutions for systems of boundary value problems [11, 12, 16, 18, 20]. The existence

of positive solutions for three-point boundary value problems also has been studied

extensively in recent years. For some appropriate references we suggest [16] and [17].

Recently in [2], the existence of positive solutions was studied for the scalar second

order four-point boundary value problem,

x′′(t) + λh(t)f(t, x(t)) = 0, 0 < t < T (1.3)

x(0) = αx(ξ), x(1) = βx(η) (1.4)

Moreover, Benchohra et al. [4] and Henderson and Ntouyas [8] studied the existence

of positive solutions of systems of nonlinear eigenvalue problems. Also, Henderson

and Ntouyas [9] dealt with the existence of positive solutions of systems of nonlinear

eigenvalue problems for three-point boundary conditions. In this paper, we employ

the methods used in some of the previous papers to extend those results to eigenvalue

problems for systems of four-point boundary value problems (1.1), (1.2).

Again, a main tool in this paper involves application of the Guo-Krasnosel’skii

fixed point theorem for operators leaving a Banach space cone invariant [7]. A Green’s

function plays a fundamental role in defining an appropriate operator on a suitable

cone.

2. SOME PRELIMINARIES

In this section, we state some preliminary lemmas and the well-known Guo-

Krasnosel’skii fixed point theorem.

Lemma 2.1. [3] Let

δ := αξ(1 − β) + (1 − α)(1 − βη) 6= 0.

The Green’s function for the boundary value problem

−u′′(t) = 0, 0 < t < 1 (2.1)

u(0) = αu(ξ), u(1) = βu(η), (2.2)
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is given by

G(t, s) =





s ∈ [0, ξ] :





s
δ
[(1 − βη) + (β − 1)t], s ≤ t;

t
δ
[(1 − βη) + (β − 1)s+ (δ−1+βη)(s−t)

δ
, t ≤ s;

s ∈ [ξ, η] :





1
δ
[(1 − βη) + (β − 1)t](αξ − αs+ s), s ≤ t;

1
δ
[(1 − βη) + (β − 1)s](αξ − αt+ t), t ≤ s;

s ∈ [η, 1] :





1−s
δ

(t− αt+ αξ) + (s− t), s ≤ t;

1−s
δ

(αξ − αt+ t), t ≤ s.

(2.3)

Lemma 2.2. [3] Let 0 ≤ α < 1/(1 − ξ), 0 ≤ β < 1/η. Then the Green’s function

G(t, s) satisfies

G(t, s) > 0, for 0 < s, t < 1, (2.4)

min
t∈[ξ,η]

G(t, s) ≥ γ max
0≤t≤1

G(t, s) for ξ ≤ t ≤ η, 0 < s < 1, (2.5)

where γ is defined by

γ =





min
{

1−η

1−βη
, αξ+(1−α)η

αξ
, 1−βη

β(1−η)
, ξ

1−α+αξ

}
, αβ 6= 0;

min
{

1−η

1−βη
, 1−βη

β(1−η)
, ξ

}
, α = 0, β 6= 0;

min
{

1 − η, αξ+(1−α)η
αξ

, ξ

1−α+αξ

}
, α 6= 0, β = 0;

min{1 − η, ξ}, α = β = 0.

(2.6)

We note that a pair (u(t), v(t)) is a solution of eigenvalue problem (1.1), (1.2) if,

and only if,

u(t) = λ

∫ 1

0

G(t, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds, 0 ≤ t ≤ 1,

where

v(t) = µ

∫ 1

0

G(t, s)b(s)g(u(s))ds, 0 ≤ t ≤ 1.

Values of λ for which there are positive solutions (positive with respect to a cone)

of (1.1), (1.2) will be determined via applications of the following fixed point theorem.

Theorem 2.3. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume Ω1

and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω1, and ||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω2, or

(ii) ||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω1, and ||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).
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3. POSITIVE SOLUTIONS IN A CONE

In this section, we apply Theorem 2.3 to obtain solutions in a cone (that is,

positive solutions) of (1.1), (1.2). For our construction, let B = C[0, 1] with supremum

norm, ‖ · ‖, and define a cone P ⊂ B by

P =

{
x ∈ B | x(t) ≥ 0 on [0, 1], and min

t∈[ξ,η,]
x(t) ≥ γ‖x‖

}
.

For our first result, define positive numbers L1 and L2 by

L1 := max

{[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)a(r)f∞dr

]−1

,

[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)g∞dr

]−1
}
,

and

L2 := min

{[∫ 1

0

max
0≤t≤1

G(t, r)a(r)f0dr

]−1

,

[∫ 1

0

max
0≤t≤1

G(t, r)b(r)g0dr

]−1
}
.

Theorem 3.1. Assume conditions (A), (B) and (C) are satisfied. Then, for each

λ, µ satisfying

L1 < λ, µ < L2, (3.1)

there exists a pair (u, v) satisfying (1.1), (1.2) such that u(t) > 0 and v(t) > 0 on

(0, 1).

Proof. Let λ, µ as in (3.1) and let ε > 0 be chosen such that

max

{[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)a(r)(f∞ − ε)dr

]−1

,

[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)(g∞ − ε)dr

]−1
}

≤ λ, µ

and

λ, µ ≤ min

{[∫ 1

0

max
0≤t≤1

G(t, r)a(r)(f0 + ε)dr

]−1

,

[∫ 1

0

max
0≤t≤1

G(t, r)b(r)(g0 + ε)dr

]−1
}
.

Define an integral operator T : P → B by

Tu(t) := λ

∫ 1

0

G(t, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds, u ∈ P. (3.2)

We seek suitable fixed points of T in the cone P.

By Lemma 2.2, TP ⊂ P. In addition, standard arguments show that T is com-

pletely continuous.

Now, from the definitions of f0 and g0, there exists an H1 > 0 such that

f(x) ≤ (f0 + ε)x and g(x) ≤ (g0 + ε)x, 0 < x ≤ H1.
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Let u ∈ P with ‖u‖ = H1. We first have

µ max
0≤s≤1

∫ 1

0

G(s, r)b(r)g(u(r))dr ≤ µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)g(u(r))dr

≤ µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)(g0 + ε)u(r)dr

≤ µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)dr(g0 + ε)‖u‖

≤ ‖u‖

= H1.

As a consequence, we next have

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)(f0 + ε)µ

∫ 1

0

G(s, r)b(r)g(u(r))drds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)(f0 + ε)H1ds

≤ H1

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖. If we set

Ω1 = {x ∈ B | ‖x‖ < H1},

then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.3)

Next, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f(x) ≥ (f∞ − ε)x and g(x) ≥ (g∞ − ε)x, x ≥ H2.

Set

H2 = max

{
2H1,

H2

γ

}
.

and let u ∈ P with ‖u‖ = H2. Then,

min
t∈[ξ,η]

u(t) ≥ γ‖u‖ ≥ H2.

Consequently we have for s ∈ [0, 1]

µ

∫ 1

0

G(s, r)b(r)g(u(r))dr ≥ µ

∫ η

ξ

G(s, r)b(r)g(u(r))dr

≥ µ

∫ η

ξ

G(s, r)b(r)(g∞ − ε)u(r)dr
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≥ µ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)(g∞ − ε)drγ‖u‖

≥ ‖u‖

= H2.

Therefore,

Tu(ξ) = λ

∫ 1

0

G(ξ, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≥ λ

∫ η

ξ

G(ξ, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≥ λ

∫ η

ξ

G(ξ, s)a(s)(f∞ − ε)µ

∫ 1

0

G(s, r)b(r)g(u(r))drds

≥ λ
1

γ

∫ η

ξ

min
0≤s≤1

G(s, τ)a(τ)(f∞ − ε)γH2dτ

≥ H2

= ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖ for u ∈ P with ‖u‖ = H2. So, if we set

Ω2 = {x ∈ B | ‖x‖ < H2},

then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.4)

Applying Theorem 2.3 to (3.3) and (3.4), we obtain that T has a fixed point

u ∈ P ∩ (Ω2 \ Ω1). As such, and with v defined by

v(t) = µ

∫ 1

0

G(t, s)b(s)g(u(s))ds,

the pair (u, v) is a desired solution of (1.1), (1.2) for the given λ and µ. The proof is

complete. �

Prior to our next result, we define positive numbers L3 and L4 by

L3 := max

{[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)a(r)f0dr

]−1

,

[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)g0dr

]−1
}
,

and

L4 := min

{[∫ 1

0

max
0≤t≤1

G(t, r)a(r)f∞dr

]−1

,

[∫ 1

0

max
0≤t≤1

G(t, r)b(r)g∞dr

]−1
}
.

Theorem 3.2. Assume conditions (A)–(C) are satisfied. Then, for each λ, µ satis-

fying

L3 < λ, µ < L4, (3.5)

there exists a pair (u, v) satisfying (1.1), (1.2) such that u(t) > 0 and v(t) > 0 on

(0, 1).
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Proof. Let λ, µ be as in (3.5) and let ε > 0 be chosen such that

max

{[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)a(r)(f0 − ε)dr

]−1

,

[
γ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)(g0 − ε)dr

]−1
}

≤ λ, µ

and

λ, µ ≤ min

{[∫ 1

0

max
0≤t≤1

G(t, r)a(r)(f∞ + ε)dr

]−1

,

[∫ 1

0

max
0≤t≤1

G(t, r)b(r)(g∞ + ε)dr

]−1
}
.

Let T be the cone preserving, completely continuous operator that was defined

by (3.2).

From the definitions of f0 and g0, there exists H3 > 0 such that

f(x) ≥ (f0 − ε)x and g(x) ≥ (g0 − ε)x, 0 < x ≤ H3.

Also, from the continuity of g at 0 it follows that g(0) = 0 and we may consider an

H3 ∈ (0, H3) such that

µg(x) ≤
H3∫ 1

0
max0≤s≤1G(s, r)b(r)dr

, 0 ≤ x ≤ H3.

Choose u ∈ P with ‖u‖ = H3. Then

µ

∫ 1

0

G(s, r)b(r)g(u(r))dr ≤ µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)g(u(r))dr

≤

∫ 1

0
max0≤s≤1G(s, r)b(r)H3dr∫ 1

0
max0≤s≤1G(s, r)b(r)dr

≤ H3.

Hence,

Tu(ξ) = λ

∫ 1

0

G(ξ, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≥ λ

∫ η

ξ

G(ξ, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≥ λ

∫ η

ξ

G(ξ, s)a(s)(f0 − ε)µ

∫ 1

0

G(s, r)b(r)g(u(r))drds

≥ λ

∫ η

ξ

G(ξ, s)a(s)(f0 − ε)µγ

∫ η

ξ

min
0≤s≤1

G(s, r)b(r)(g0 − ε)‖u‖drds

≥ λ
1

γ

∫ η

ξ

min
0≤s≤1

G(s, τ)a(s)(f0 − ε)γ‖u‖dτ
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≥ ‖u‖,

and so, ‖Tu‖ ≥ ‖u‖ for u ∈ P with ‖u‖ = H3. If we put

Ω3 = {x ∈ B | ‖x‖ < H3},

then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3. (3.6)

Next, in view of the definitions of f∞ and g∞, there exists H4 > 0 such that

f(x) ≤ (f∞ + ε)x and g(x) ≤ (g∞ + ε)x, x ≥ H4.

Clearly, since g∞ is assumed to be a positive real number, it follows that g is un-

bounded at ∞, and so, there exists H̃4 > max{2H3, H4} such that g(x) ≤ g(H̃4), for

0 < x ≤ H̃4.

Set

f ∗(t) = sup
0≤s≤t

f(s), g∗(t) = sup
0≤s≤t

g(s), for t ≥ 0.

Clearly f ∗ anf g∗ are nondecreasing real valued function for which it holds

lim
x→∞

f ∗(x)

x
= f∞, lim

x→∞

g∗(x)

x
= g∞.

Hence, there exists H4 > H4 such that f ∗(x) ≤ f ∗(H4), g
∗(x) ≤ g∗(H4) for

0 < x ≤ H4.

Choosing u ∈ P with ‖u‖ = H4, we have

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f

(
µ

∫ 1

0

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f ∗

(
µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)g(u(r))dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f ∗

(
µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)g∗(u(r))dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f ∗

(
µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)g∗(H4)dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f ∗

(
µ

∫ 1

0

max
0≤s≤1

G(s, r)b(r)(g∞ + ε)H4dr

)
ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)f ∗(H4)ds

≤ λ

∫ 1

0

max
0≤t≤1

G(t, s)a(s)ds(f∞ + ε)H4

≤ H4

= ‖u‖,
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and so ‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω4 = {x ∈ B | ‖x‖ < H4},

then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4. (3.7)

Application of part (ii) of Theorem 2.3 yields a fixed point u of T belonging to

P ∩ (Ω4 \ Ω3), which in turn yields a pair (u, v) satisfying (1.1), (1.2) for the chosen

value of λ and µ. The proof is complete. �

4. APPLICATIONS AND EXAMPLES

Consider the BVP consisting of the fourth order ordinary differential equation

u(4)(t) + 2φ(t)u′′′(t) − {φ′(t) − φ(t)}u′′(t) − ρψ(t)g [u(t)] = 0 (4.1)

along with the boundary conditions

u(0) = αu(ξ), u(1) = βu(η),

u′′(0) = Au′′(ξ), u′′(1) = Bu′′(η),
(4.2)

where 0 < ξ < η < 1, 0 ≤ α, β < 1, A = αe−
R ξ

0
φ(s)ds and B = βe−

R 1

η
φ(s)ds.

We assume that 0 < α < 1/(1 − ξ), 0 ≤ β < 1/η and that

(A1) g ∈ C([0,∞), [0,∞));

(B1) a0 > 0, φ ∈ C([0, 1], ), ψ ∈ C([0, 1], [0,∞)), and ψ does not vanish identically on

any subinterval of [0, 1];

(C1) the limits

g0 := lim
x→0+

g(x)

x
and g∞ := lim

x→∞

g(x)

x

exist as positive real numbers.

Set

a(t) = a0 exp

[∫ t

0

φ(s)ds

]
, t ∈ [0, 1]

b(t) =
1

pa0
ψ(t) exp

[
−

∫ t

0

φ(s)ds

]
, t ∈ [0, 1]

and let

v(t) = −
u′′(t)

λpa(t)
, t ∈ [0, 1] ,

where λ ∈ (0, 1).

It is not difficult to verify that the BVP (4.1), (4.2) may be written in the form

u′′(t) + λpa(t)v(t) = 0, 0 < t < 1,

v′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1,
(4.3)
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u(0) = αu(ξ), u(1) = βu(η),

v(0) = αv(ξ), v(1) = βv(η).
(4.4)

where we have set µ = ρ

λ
with µ ∈ (0, 1). Moreover, it is easy to see that if (A1), (B1)

and (C1) hold, then (A), (B) and (C) are satisfied with f(u) = pu. Thus, we may

apply Theorem 3.2 to the BVP (4.1), (4.2) to obtain the following result.

Theorem 4.1. Assume conditions (A1), (B1), and (C1) are satisfied. Let L̂1 and L̂2

be defined by

L̂1 := max

{[
pa0

∫ η

ξ

min
0≤s≤1

G(s, r)e
R r

0
φ(s)dsdr

]−1

,

[
g∞
pa0

∫ η

ξ

min
0≤s≤1

Gs, r)ψ(r)e−
R r

0
φ(s)dsdr

]−1
}
,

L̂2 := min

{[
pa0

∫ 1

0

G(r, r)e
R r

0
φ(s)dsdr

]−1

,

[
g0

pa0

∫ 1

0

G(r, r)ψ(r)e−
R r

0
φ(s)dsdr

]−1
}
,

and set L̂∗
2 = min

{
1, L̂2

}
. If

1 < min

{
pa0

∫ η

ξ

min
0≤s≤1

G(s, r)e
R r

0
φ(s)dsdr,

g∞
pa0

∫ η

ξ

min
0≤s≤1

G(s, r)ψ(r)e−
R r

0
φ(s)dsdr

}
,

then there exists a pair (u, v) satisfying (4.1), (4.2) such that u(t) > 0 and v(t) > 0

on (0, 1).

Example 4.2. As an example of Theorem 4.1 we may take φ(t) = q and consider

the fourth order equation

u(4)(t) + 2qu′′′(t) + qu′′(t) − ρψ(t)g [u(t)] = 0, (4.5)

where the function g ∈ C([0,∞), [0,∞)) satisfies (C1).

We set

a(t) = a0e
qt, t ∈ [0, 1],

b(t) =
1

pa0

ψ(t)e−qt, t ≥ 0.

We have the following result.

Corollary 4.3. Assume that a0 > 0, ψ ∈ C([0, 1], [0,∞)), and ψ does not vanish

identically on any subinterval of [0, 1]. Let L1 and L2 be defined by

L1 := max

{[
pa0

∫ η

ξ

min
0≤s≤1

G(s, r)eqrdr

]−1

,

[
g∞
pa0

∫ η

ξ

min
0≤s≤1

G(s, r)ψ(r)e−qrdr

]−1
}
,

and

L2 := min

{[
pa0

∫ 1

0

G(r, r)eqrdr

]−1

,

[
g0

pa0

∫ 1

0

G(r, r)ψ(r)e−qrdr

]−1
}
.
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Then there exists a pair (u, v) satisfying the BVP (4.5), (4.2) such that u(t) > 0 and

v(t) > 0 on (0, 1).

Remark 4.4. Some interesting applications of Theorems 3.1 and 3.2 may be given

for systems where the functions f and/or g are linear combinations of sin u, u, ue−u,

i.e.

f(u) = p1 sin u+ q1u+ k1ue
−u

g(u) = p2 sin u+ q2u+ k2ue
−u

where pi, qi, ki for i = 1, 2 are suitable real constants or bounded real valued contin-

uous functions.

Example 4.5. Let us now present an example illustrating the first of our main

results, Theorem 3.1. For the sake of simplicity we consider the BVP (1.1), (1.2) with

a(t) = t = b(t), α = β = 1
2

and ξ = 1
3
, η = 2

3
, i.e., the BVP

u′′(t) + λtf(v(t)) = 0, 0 < t < 1,

v′′(t) + µtg(u(t)) = 0, 0 < t < 1,
(4.6)

u(0) = 1
2
u

(
1
3

)
, u(1) = 1

2
u

(
2
3

)
,

v(0) = 1
2
v

(
1
3

)
, v(1) = 1

2
v

(
2
3

)
,

(4.7)

where f, g ∈ C([0,∞), [0,∞)) satisfy condition (C).

By simple calculations we find

γ =
1

2
,

δ =
5

12
,

∫ η

ξ

min
0≤s≤1

G(s, r)a(r)f∞dr =
1

40
f∞,

∫ 1

0

max
0≤t≤1

G(t, r)a(r)f0dr = f0
79

54
,

L1 = 80
1

min{f∞, g∞}
,

L2 =
54

79

1

max{f0, g0}
.

Taking into consideration the above calculations, asssuming that

80 max {f0, g0} <
54

79
min {f∞, g∞} ,

from Theorem 3.1 we obtain that for each (λ, µ) satisfying L1 < λ, µ < L2 there exists

a pair (u, v) satisfying (4.6), (4.7) such that u(t) > 0 and v(t) > 0 on (0, 1).
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