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ABSTRACT. In this paper, we consider the eigenvalue problems for second order dynamic equa-

tions on time scales with sign changing nonlinearities. By using topological degree theory and

constructing suitable operator, we give the eigenvalue intervals in which there exist one or two pos-

itive solutions of the problem. An example is also given to illustrate the main results. The results

improve and generalize some known results.
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1. INTRODUCTION

The theory of dynamic equations on time scales was introduced by Stefan Hilger

in his PhD thesis [9], motivating the subject is that dynamic equations on time

scales can build bridges between continuous and discrete equations. It has found a

considerable amount of interest and attract many researchers attention. Further, the

study of time scales has led to several important applications, for example, in the

study of insect population models, phytoremediation of metals, wound healing, and

epidemic models [10, 11, 16]. Before introducing the problems of interest for this

paper, we present some basic definitions of time scales [4, 5].

A time scale T is an arbitrary nonempty closed subset of R. For notation, we

shall use the convention that, for each interval J of R, JT = J ∩ T.

The forward jump operator σ and backward jump operator ρ from T to T are

defined by

σ(t) = inf{s ∈ T : s > t} ∈ T and ρ(t) = sup{s ∈ T : s < t} ∈ T,
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for all t ∈ T with t < sup T and t > inf T. In this definition, inf ∅ := sup T, sup ∅ :=

inf T. The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if

ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

A function f : T → R is ld-continuous provided f is continuous at left-dense

points in T and its right-sided limit exists (finite) for right-dense points in T. It is

known that if f is ld-continuous, then there exists a function F such that F∇(t) =

f(t), in this case, we define
∫ b

a
f(τ)∇τ = F (b) − F (a).

Very recently, there has been increasing attention pay to the question of positive

solutions for multipoint boundary value problems on time scales, see [1, 2, 3, 6, 12,

14, 15] and the references cited therein. Most results so far have been obtained

by applying the fixed point theorems in cones, such as Krasnoselskii’s fixed point

theorem [8], Leggett-williams fixed point theorem [13] and so on. In order to use

the concavity of solutions in the proofs, all the existing works were done under the

assumption that the nonlinearity is nonnegative. However, little work has been done

on the existence of positive solutions for multipoint boundary value problems with

sign-changing nonlinearity on time scales.

In particular, in [2], Anderson considered the following problem

−u∆∇(t) = ηa(t)f(u(t)), t ∈ (t1, tn) ⊂ T,

u∆(t1) = 0, u(tn) =

n−1∑

i=2

αiu(ti) or u∆(tn) = 0, u(t1) =

n−1∑

i=2

αiu(ti),

where t1 < t2 < · · · < tn are points in a time scale T, η > 0 and αi ≥ 0 for

i ∈ {2, 3, . . . , n−1} with 0 <
∑n−1

i=1 αi < 1. By using a functional-type cone expansion-

compression fixed point theorem, the author established the existence of one positive

solution under the assumptions that both a(t) and f(u) are nonnegative.

Dong and Ge [7] studied the existence of two positive solutions to the problem

u′′(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =

m−2∑

i=1

αiu(ξi),

where f is allowed to change sign. The main tool is a new fixed point theorem in

cones.

Motivated by the above results, in this paper, we consider the eigenvalue problems

for a second order dynamic equations on time scales

u∆∇(t) + λa(t)f (t, u(t)) = 0, t ∈ [0, T ]T, (1.1)

with solutions satisfying

u∆(0) = 0, u(T ) =
m−2∑

i=1

αiu(ξi), (1.2)
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where λ is a positive parameter, the nonlinear term f is allowed to change sign, and

0, T ∈ T, αi ≥ 0 for i = 1, 2, . . . , m − 2, 0 = ξ0 < ξ1 < · · · < ξm−2 < ξm−1 = T ,

d̃ := 1 −
∑m−2

i=1 αi. By using topological degree theory and constructing suitable

operator, we give the eigenvalue intervals in which there exist one or two positive

solutions of the problem. An example is also given to illustrate the main results. The

results improve and generalize those of in [2, 12].

The rest of this paper is organized as follows. In Section 2, we state some lemmas

which will be needed in proving our main results. Section 3 is devoted to the existence

of at least one positive solution for the problem (1.1), (1.2) by using the topological

degree theory and constructing available operator. In the final section, we establish

the existence of at least two positive solutions of the problem (1.1), (1.2), and an

example is also given to illustrate the results.

For the sake of convenience, we list the following hypotheses:

(H1) d̃ > 0;

(H2) a : [0, T ]T → [0,∞) is ld-continuous with a(t0) > 0 for at least one t0 ∈ (0, T )T;

(H2) f : [0, T ]T × [0,∞) → (−∞,∞) is continuous.

2. PRELIMINARIES

Lemma 2.1. If d̃ 6= 0, then for h ∈ Cld ([0, T ]T), the boundary value problem

u∆∇(t) + h(t) = 0, t ∈ [0, T ]T, (2.1)

u∆(0) = 0, u(T ) =
m−2∑

i=1

αiu(ξi), (2.2)

has a unique solution

u(t) = (T − t)

∫ t

0

h(s)∇s +

∫ T

t

(T − s)h(s)∇s

+
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)h(s)∇s +

∫ T

ξi

(T − s)h(s)∇s

)
. (2.3)

Proof. Let u(t) be as in (2.3). Using Theorem 2.10 (iii) in [3]

(∫ t

a

g(t, s)∇s

)∆

= g(σ(t), σ(t)) +

∫ t

a

g∆(t, s)∇s,

and the formula

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t),

if we take the delta derivative of (2.3), then we get

u∆(t) = −

∫ t

0

h(s)∇s.
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Taking the ∇-derivative of this expression yields u∆∇(t) = −h(t), and routine calcu-

lation verify that u(t) satisfies the boundary conditions in (2.2), so that u(t) given in

(2.3) is one solution of the problem (2.1), (2.2).

It is easy to see that boundary value problem x∆∇(t) = 0, x∆(0) = 0, x(T ) =∑m−2
i=1 αix(ξi) has only the trivial solution if d̃ 6= 0. Thus u(t) in (2.3) is the unique

solution of the problem (2.1), (2.2).

Lemma 2.2. Assume (H1) holds. If h ∈ Cld ([0, T ]T) and h ≥ 0, then the unique

solution u(t) of the problem (2.1), (2.2) satisfies

u(t) ≥ 0, t ∈ [0, T ]T.

Proof. From the fact that u∆∇(t) = −h(t) ≤ 0, we know that u∆(t) is nonincreasing

in [0, T ]T, which together with u∆(0) = 0, we have u∆(t) ≤ 0 for t∈ [0, T ]T, so we

only prove that u(T ) ≥ 0. Observe that

u(T ) =
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)h(s)∇s +

∫ T

ξi

(T − s)h(s)∇s

)
≥ 0.

The proof is complete.

Similar to the proof of Lemma 5 [1], we can obtain the following lemma.

Lemma 2.3. Suppose that d̃ < 0. If h ∈ Cld ([0, T ]T) and h ≥ 0, then the problem

(2.1), (2.2) has no positive solution.

Lemma 2.4. Assume (H1) holds. If h ∈ Cld ([0, T ]T) and h ≥ 0, then the unique

solution u(t) of the problem (2.1), (2.2) satisfies

min
t∈[0,T ]T

u(t) ≥ γ ‖u‖ ,

where γ =
P

m−2

i=1
αi(T−ξi)

T−
P

m−2

i=1
αiξi

and ‖u‖ = supt∈[0,T ]T
|u(t)|.

Proof. From u∆∇(t) = −h(t) ≤ 0 and the boundary condition u∆(0) = 0, we have

u(0) = ‖u‖, u(T ) = mint∈[0,T ]T u(t). So

u(T ) − u(ξi)

T − ξi

≤
u(T ) − u(0)

T
, i = 1, 2, . . . , m − 2,

that is

u(ξi) −
ξiu(T )

T
≥

(
1 −

ξi

T

)
u(0).

Then
m−2∑

i=1

aiu(ξi) −
m−2∑

i=1

aiξiu(T )

T
≥

m−2∑

i=1

ai

(
1 −

ξi

T

)
u(0).

Hence by (2.2), we get

u(T ) ≥

∑m−2
i=1 αi(T − ξi)

T −
∑m−2

i=1 αiξi

u(0).
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This completes the proof.

Let the Banach space X = Cld ([0, T ]T) be endowed with the sup norm. By

Lemma 2.1, it is easy to see that the boundary value problem (1.1), (1.2) has a

solution u(t) if and only if u is a fixed point of the operator equation

(Au)(t) = λ(T − t)

∫ t

0

a(s)f(s, u(s))∇s + λ

∫ T

t

(T − s)a(s)f(s, u(s))∇s (2.4)

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f(s, u(s))∇s

)
.

Denote

K = {u ∈ X : u(t) ≥ 0 for t ∈ [0, T ]T},

and

K ′ = {u ∈ K : u∆∇(t) ≤ 0 for t ∈ [0, T ]T, u∆(0) = 0 and min
t∈[0,T ]T

u(t) ≥ γ ‖u‖},

where γ is defined in Lemma 2.4. It is obvious that K, K ′ are cones in X and K ′ ⊂ K.

For convenience, we give the following operators and lemma which will be used

later.

For any u ∈ X, we define the integral operators B : X → X, C : X → X,

respectively,

(Bu)(t) =

[
λ(T − t)

∫ t

0

a(s)f(s, u(s))∇s + λ

∫ T

t

(T − s)a(s)f(s, u(s))∇s (2.5)

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f(s, u(s))∇s

)]+

,

(Cu)(t) = λ(T − t)

∫ t

0

a(s)f+(s, u(s))∇s + λ

∫ T

t

(T − s)a(s)f+(s, u(s))∇s (2.6)

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f+(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f+(s, u(s))∇s

)
,

where t ∈ [0, T ]T, ϕ+ = max{ϕ, 0}.

3. ONE POSITIVE SOLUTION

For convenience, we denote

M =

∫ T

0

(T − s)a(s)∇s +
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)∇s +

∫ T

ξi

(T − s)a(s)∇s

)
.

Now we give our results on the existence of one positive solution of the problem (1.1),

(1.2).
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Theorem 3.1. Assume (H1) − (H3) hold. Suppose that f(t, 0) ≥ 0 for t ∈ [0, T ]T

and a(t)f(t, 0) 6≡ 0 on any subinterval of [0, T ]T. If there exists c > 0 such that

λ ≤ b =
c

M supt∈[0,T ]T,u∈[0,c] f(t, u)
, (3.1)

then the boundary value problem (1.1), (1.2) has at least one positive solution u(t)

satisfying 0 < ‖u‖ ≤ c.

Proof. First of all, by the definition of the operator B, it is easy to see that B(K) ⊂

K. Moreover, by the continuity of f and a typical application of the Arzela-Ascoli

theorem on time scale, it is easy to see that the operator A : K → X is completely

continuous. So, similar as Lemma 2.2 in [6], we get B is completely continuous.

Denote Kr = {u ∈ K : ‖u‖ < r}, ∂Kr = {u ∈ K : ‖u‖ = r}, for any r > 0. Now

we show that the operator B has a fixed point u ∈ K with 0 < ‖u‖ ≤ c. For λ ∈ (0, b],

by (2.5) and Lemma 2.2, we have

‖Bu‖ = sup
t∈[0,T ]T

max

{
λ(T − t)

∫ t

0

a(s)f(s, u(s))∇s + λ

∫ T

t

(T − s)a(s)f(s, u(s))∇s

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f(s, u(s))∇s

)
, 0

}

≤ λ sup
t∈[0,T ]T,u∈[0,c]

f(t, u)

[
(T − t)

∫ t

0

a(s)∇s +

∫ T

t

(T − s)a(s)∇s

+
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)∇s +

∫ T

ξi

(T − s)a(s)f(s, u(s))∇s

)]

≤ λ sup
t∈[0,T ]T,u∈[0,c]

f(t, u)

[∫ T

0

(T − s)a(s)∇s

+
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)∇s +

∫ T

ξi

(T − s)a(s)∇s

)]

≤ bM sup
t∈[0,T ]T,u∈[0,c]

f(t, u) = c.

If there is u ∈ ∂Kc such that Bu = u, then the operator B has a fixed point in

Kc. If not, for any u ∈ ∂Kc, Bu 6= u, the above implies that

degK{I − B, Kc, 0} = 1,

where degK denotes the topological degree on cone K. Then the operator B has a

fixed point in Kc. So in both case the operator B has a fixed point in Kc.

Next, we claim that u is also a fixed point of the operator A in Kc. Suppose this

is not true, then there exists t0 ∈ [0, T ]T, such that

(Au)(t0) 6= u(t0) = (Bu)(t0) = max {(Au)(t0), 0} .
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So this forces

(Au)(t0) < 0 = u(t0).

Let I be the maximal interval that contains t0 such that (Au)(t) < 0 for all t ∈ I.

Note that

u(t) = (Bu)(t) = max{(Au)(t), 0} = 0, t ∈ I.

We claim that I 6= [0, T ]T, otherwise, we would have u(t) = 0 for t ∈ [0, T ]T, which

contradicts to the assumption that a(t)f(t, 0) 6≡ 0 on any subinterval of [0, T ]T. So

we should show either T /∈ I or 0 /∈ I.

If T /∈ I, let β = mint∈I {s ∈ [0, T ]T : s > t}, then (Au)(β) ≥ 0. Since (Au)(t) < 0

for t ∈ I, we have (Au)∆(β) ≥ 0. Hence (Au)(t) < 0 and is bounded away from 0

everywhere in I, this forces 0 ∈ I, we have u(t) = 0 for t ∈ I. Taking into account

(Au)∆∇(t) = −a(t)f(t, 0) ≤ 0 for all t ∈ I, we see that (Au)∆(t) is decreasing on

I, and so (Au)∆(t) > 0 for t ∈ I = [0, β)T. In particular, (Au)∆(0) > 0, which

contradicts with the first condition of (1.2).

If 0 /∈ I, let γ = maxt∈I {s ∈ [0, T ]T : s < t}, then (Au)(γ) ≥ 0. Since (Au)(t) < 0

for t ∈ I, we have (Au)∆(γ) ≤ 0, and (Au)∆(t) is decreasing on I, since (Au)∆∇(t) =

−a(t)f(t, 0) ≤ 0 for all t ∈ I. (Au)∆(t) ≥ (Au)∆(T ) and (Au)(t) < 0 imply that

(Au)(T ) < 0, that is T ∈ I. If (Au)(ξi) ≥ 0, for any i ∈ {1, 2, . . . , m − 2}, which

contradicts with the second condition in (1.2), on the other hand, if (Au)(ξj) < 0, we

must have ξj ∈ I. Therefore (Au)(ξi) > (Au)(T ) for i ∈ {1, 2, . . . , m − 2} and so

(Au)(T ) =
m−2∑

i=1

αi(Au)(ξi) ≥
m−2∑

i=1

αi(Au)(T ),

which is also impossible, since
∑m−2

i=1 αi < 1 and (Au)(T ) < 0. Combining with these

cases, we conclude that u is also a fixed point of A. Therefore, u(t) is one positive

solution of the problem (1.1), (1.2) with 0 < ‖u‖ ≤ c.

Corollary 3.2. Assume (H1) − (H3) hold. Suppose that f(t, 0) ≥ 0 for t ∈ [0, T ]T

and a(t)f(t, 0) 6≡ 0 for t ∈ [0, T ]T. If

lim
u→∞

supt∈[0,T ]T
f(t, u)

u
= 0,

then for any λ ∈ (0,∞), the boundary value problem (1.1), (1.2) has at least one

positive solution u(t) with 0 < ‖u‖ < ∞.

4. MULTIPLE POSITIVE SOLUTIONS

Theorem 4.1. Assume (H1) − (H3) hold. Suppose that f(t, 0) ≥ 0 for t ∈ [0, T ]T,

a(t)f(t, 0) 6≡ 0 for t ∈ [0, T ]T, and there exist numbers b, c and d such that 0 < b
γ

<
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c < γd < d, f(t, u) ≥ 0 for (t, u) ∈ [0, T ]T × [b, d]. If λ satisfies

d

M mint∈[0,T ]T ,u∈[γd,d] f(t, u)
≤ λ ≤

c

M maxt∈[0,T ]T,u∈[0,c] f(t, u)
, (4.1)

then the boundary value problem (1.1), (1.2) has at least two positive solutions u1(t)

and u2(t) with 0 < ‖u1‖ ≤ c ≤ ‖u2‖ ≤ d.

Proof. First of all, in view of the second inequality and Theorem 3.1, we obtain that

the problems (1.1), (1.2) has a positive solution u1 with 0 < ‖u1‖ ≤ c.

Next we show that the existence of another positive solution of the problem (1.1),

(1.2). By the continuity of f and the definition of the operator C, it is easy to see

that C : K ′ → K ′ is completely continuous. For u ∈ ∂K ′
c, from the definition of C

and the first inequality of (4.1) we have

‖Cu‖ = Cu(0) = λ

∫ T

0

(T − s)a(s)f+(s, u(s))∇s

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f+(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f+(s, u(s))∇s

)

≤
c

M

[∫ T

0

(T − s)a(s)∇s +
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)∇s +

∫ T

ξi

(T − s)a(s)∇s

)]

= c.

For u ∈ ∂K ′
d, we have ‖u‖ = d and in view of Lemma 2.4, we have

min
t∈[0,T ]T

u(t) = u(t) ≥ γ ‖u‖ = γd,

so u(t) ∈ [γd, d] for t ∈ [0, T ]T. By (2.6) and (4.1) we obtain

‖Cu‖ = λ

∫ T

0

(T − s)a(s)f+(s, u(s))∇s

+
λ

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)f+(s, u(s))∇s +

∫ T

ξi

(T − s)a(s)f+(s, u(s))∇s

)

≥
d

M

[∫ T

0

(T − s)a(s)∇s +
1

d̃

m−2∑

i=1

αi

(∫ ξi

0

(T − ξi)a(s)∇s +

∫ T

ξi

(T − s)a(s)∇s

)]

= d.

It follows that

degK′ {I − C, K ′

c, 0} = 1, degK′ {I − C, K ′

d, 0} = 0.

Thus

degK′

{
I − C, K ′

d \ K ′
c, 0

}
= −1,

and C has a fixed point u2 in K ′
d \ K ′

c.
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Finally we claim that u2 is also a fixed point of A in K ′
d \ K ′

c. In fact, for

u2 ∈
(
K ′

d \ K ′
c

)
∩ {u : Cu = u}, it is clear that ‖u2‖ > c, and by Lemma 2.4

u2(T ) = min
t∈[0,T ]T

u2(t) ≥ γ |u2| ≥ γc > b,

so b ≤ u2(t) ≤ d for t ∈ [0, T ]T. By assumption we know that f+(t, u) = f(t, u) for

(t, u) ∈ [0, T ]T×[b, d]. This implies that Au2 = Cu2 for u2 ∈
(
K ′

d \ K ′
c

)
∩{u : Cu = u}.

so u2 is a fixed point of the operator A on K. Therefore, the problem (1.1), (1.2) has

at least two positive solutions u1 and u2 with 0 < ‖u1‖ ≤ c ≤ ‖u2‖ ≤ d.

Example 4.2. Let T ={1 − ( 1
2
)N0} ∪ {1}. Taking T = 1, α1 = 1

2
, α2 = 1

3
, ξ1 = 1

2
,

ξ2 = 7
8
, we have γ = 7

11
. If we let a(t) ≡ 1, then by some simple calculation, we get

M = 13
8
.

Suppose

f(u) = (1 − u) sin u.

Clearly f is sign changing in [0,∞).

If we choose c = 3.25, d = 5.93, γd = 3.77 it is easy to get that

min
t∈[0,T ]T ,u∈[γd,d]

f(t, u) = min
u∈[3.77,5.93]

(1 − u) sinu ≈ 1.66,

max
t∈[0,T ]T,u∈[0,c]

f(t, u) = max
u∈[0,3.25]

(1 − u) sin u ≈ 0.24.

So
d

M mint∈[0,T ]T ,u∈[γd,d] f(t, u)
≈ 2.20,

c

M maxt∈[0,T ]T,u∈[0,c] f(t, u)
≈ 8.33.

Thus, if 2.20 < λ < 8.33, then the problem

u∆∇(t) + λ(1 − u(t)) sin u(t) = 0,

u∆(0) = 0, u(1) =
1

2
u

(
1

2

)
+

1

3
u

(
7

8

)

has at least two positive solutions u1 and u2 in K with 0 < ‖u1‖ ≤ 3.25 ≤ ‖u2‖ ≤ 5.93

by Theorem 4.1.
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