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ABSTRACT. In this paper, we discuss stability criteria in terms of two measures for setvalued

perturbed delay differential equations with fixed moments of impulsive effects via a comparison result

which connects the solutions of perturbed system and the unperturbed one through the solutions of

a comparison system. The main tool of study is the variational Lyapunov method.
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1. INTRODUCTION

The study of setvalued differential equations, initiated as an independent sub-

ject, has been addressed by many authors, for instance, see [1–5] and the references

therein. The interesting feature of the setvalued differential equations is that the

results obtained in this new framework become the corresponding results of ordinary

differential equations as the Hukuhara derivative and the integral used in formulating

the set differential equations reduce to the ordinary vector derivative and integral

when the set under consideration is a single valued mapping. Also, the differential

equations with delay provide a better approach for mathematical formulation of a

physical phenomenon involving a time lag between the cause and the effect, see [6,7].

Stability is one of the major problems encountered in applications and has at-

tracted considerable attention in recent years. In the perturbation theory of nonlin-

ear differential systems, a flexible mechanism known as variation of Lyapunov second

method (variational Lyapunov method), was introduced in [8]. This technique essen-

tially connects the solutions of perturbed system and the unperturbed one through

the solutions of a comparison system using a comparison principle. The concept of
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stability in terms of two measures [9-10] which unifies a number of stability concepts

such as Lyapunov stability, partial stability, conditional stability, etc. has become an

important area of investigation in the qualitative analysis. Lakshmikantham et. al.

[11] discussed the stability in terms of two measures for setvalued differential equa-

tions. However, there are many aspects of setvalued differential equations that need

to be explored. In this paper, we consider setvalued perturbed delay differential equa-

tions with fixed moments of impulse and develop the stability criteria in terms of two

measures by employing the variational Lyapunov method and a comparison result

which connects the solutions of perturbed system and the unperturbed one through

the solutions of a comparison system.

The importance of impulsive differential equations is well known for its rich po-

tential in application. In fact, impulsive hybrid dynamical systems form a class of

hybrid systems in which continuous time states are reset discontinuously when the

discrete event states change. Recently, a number of research papers has dealt with

dynamical systems with impulsive effect as a class of general hybrid systems.

2. PRELIMINARIES AND COMPARISON RESULT

Let Kc(R
n) denote the collection of nonempty, compact and convex subsets of

Rn. We define the Hausdorff metric as

D[X, Y ] = max[sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )], (1)

where d(y,X) = inf[d(y, x) : x ∈ X] and X, Y are bounded subsets of Rn. Notice

that Kc(R
n) with the metric defined by (1) is a complete metric space. Moreover,

Kc(R
n) equipped with the natural algebraic operations of addition and nonnegative

scalar multiplication becomes a semilinear metric space which can be embedded as a

complete cone into a corresponding Banach space [12, 13]. The Hausdorff metric (1)

satisfies the following properties:

D[X + Z, Y + Z] = D[X, Y ] and D[X, Y ] = D[Y,X], (2)

D[µX, µY ] = µD[X, Y ], (3)

D[X, Y ] ≤ D[X,Z] +D[Z, Y ], (4)

∀ X, Y, Z ∈ Kc(R
n) and µ ∈ R+ = [0,∞).

Definition 2.1. The set Z ∈ Kc(R
n) satisfying X = Y +Z is known as the Hukuhara

difference of the sets X and Y in Kc(R
n) and is denoted as X − Y .

Definition 2.2. For any interval I ∈ R, the mapping F : I → Kc(R
n) has a

Hukuhara derivative DHF (t0) at a point t0 ∈ I if there exists an element DHF (t0) ∈

Kc(R
n) such that the limits

lim
h→0+

F (t0 + h) − F (t0)

h
and lim

h→0+

F (t0) − F (t0 − h)

h
, (5)
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exist in the topology of Kc(R
n) and each one is equal to DHF (t0).

By embedding Kc(R
n) as a complete cone in a corresponding Banach space and

taking into account the result on differentiation of Bochner integral, it is found that

if

F (t) = X0 +

∫ t

0

Ω(η)dη, X0 ∈ Kc(R
n), (6)

where Ω : I → Kc(R
n) is integrable in the sense of Bochner, then DHF (t) exists and

DHF (t) = Ω(t) a.e. on I. (7)

Moreover, if F : [t0, T ] → Kc(R
n) is integrable, then

∫ t2

t0

F (σ)dσ =

∫ t1

t0

F (σ)dσ +

∫ t2

t1

F (σ)dσ, t0 ≤ t1 ≤ t2 ≤ T, (8)

∫ T

t0

ζF (σ)dσ = ζ

∫ T

t0

F (σ)dσ, ζ ∈ R+. (9)

Also, if F,G : [t0, T ] → Kc(R
n) are integrable, then D[F (·), G(·)] : [t0, T ] → R is

integrable and

D

[
∫ t

t0

F (σ)dσ,

∫ t

t0

G(σ)dσ

]

≤

∫ t

t0

D[F (σ), G(σ)]dσ. (10)

For convenience, we define the following classes of functions:

K = {ν : [0, ρ) → R+ is continuous, strictly increasing and ν(0) = 0, ρ > 0};

PC = {µ : R+ → R+ is continuous on (tk−1, tk] and µ→ µ(t+k ) exists as t→ t+k };

PCK = {φ : R+ × [0, ρ) → R+, φ(·, m) ∈ PC for each m ∈ [0, ρ), φ(t, ·) ∈ K for each

t ∈ R+};

Γ = {h : R+ ×Kc(R
n) → R+, infU∈Kc(Rn) h(t, U) = 0, h(·, U) ∈ PC for each

U ∈ Kc(R
n), and h(t, ·) ∈ C(Kc(R

n), R+) for each t ∈ R+};

S(h, ρ) = {(t, U) ∈ R+ ×Kc(R
n) : h(t, U) < ρ, h ∈ Γ};

C = PC([−τ, 0], Kc(R
n)), τ > 0;

S(ρ) = {U ∈ Kc(R
n) : (t, U) ∈ S(h, ρ) for each t ∈ R+}.

Consider the following perturbed setvalued delay differential equations with fixed

moments of impulse










DHU(t) = F (t, Ut), t 6= tk,

Ut+
k

= Utk + Ik(Utk), k = 1, 2, 3, . . . ,

Ut0 = Φ0,

(11)

together with the unperturbed ones










DHV (t) = G(t, Vt), t 6= tk,

Vt+
k

= Vtk + Ik(Vtk), k = 1, 2, 3, . . . ,

Vt0 = Φ0,

(12)
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where F,G : R+×C → Kc(R
n) are continuous on (tk−1, tk]×C with G smooth enough

or containing the linear terms of system (11), Φ0 ∈ C, Ik, Jk ∈ C(Kc(R
n), Kc(R

n))

and {tk} is a sequence of points such that 0 ≤ t0 < t1 < · · · tk < · · · with limk→∞ tk =

∞ and Ut ∈ C be defined by Ut(s) = U(t + s), −τ ≤ s ≤ 0. The linear space

PC([−τ, 0], Kc(R
n)) is equipped with the norm ‖.‖τ defined by ‖ψ‖τ = sup−τ≤s≤0 ψ(s)

and [−τ, 0] = (−τ, 0] when τ = ∞.

We denote the solution of (11) by U(t) = U(t0,Φ0)(t) with Ut0 = Φ0 and that

of (12) by V (t) = V (t0,Φ0)(t) with Vt0 = Φ0. By a solution of (11) (and that of

(12)), we mean a piecewise continuous function U(t0,Φ0)(t) on [t0,∞) which is left

continuous in every subinterval (tk, tk+1], k = 0, 1, 2, 3, . . . .

Definition 2.3. Let W : R+ × Kc(R
n) → R+. Then W is said to belong to

a class W0 if W (t, X) is continuous in each (tk−1, tk] × Kc(R
n) and for each X ∈

Kc(R
n), lim(t,Y )→(t+

k
,X)W (t, Y ) = W (t+k , X) exists for k = 1, 2, . . . and W (t, X) is

locally Lipscitzian in X.

Definition 2.4. Let W ∈ W0 and V (t, η, U) be any solution of (12). Then for any

fixed t > t0, (η, U) ∈ (tk−1, tk) × S(ρ), t0 ≤ η < t, we define

D+W (η, V (t, η, U))

= lim sup
h→0+

1

h
[W (η + h, V (t, η + h, U + hF (η, Uη))) −W (η, V (t, η, U))],

where V (t, η, U) is any solution of (12) such that V (η, η, U) = U .

We further assume that

F (t, Ut) = G(t, Ut) +R(t, Ut),

and the solution of (9) is differentiable with respect to initial value. Then we have
{

∂V
∂Φ0

(t, t0,Φ0) = Ψ(t, t0,Φ0),
∂V
∂t0

(t, t0,Φ0) = −Ψ(t, t0,Φ0).G(t0,Φ0), t ≥ t0,

where Ψ(t, t0,Φ0) is the fundamental matrix solution of the corresponding variational

equation. Setting W (η, V ) = ‖V ‖2, we get

D+W (η, V (t, η, U)) = 2V T (t, η, U) · Ψ(t, η, U) ·R(η, Uη),

which shows how the perturbation terms affect the stability of the perturbed system.

Definition 2.5. Let h, h0 ∈ Γ. We say that

(i) h0 is finer than h if there exists a λ > 0 and a function φ ∈ PCK such that

h0(t, U) < λ implies h(t, U) ≤ φ(t, h0(t, U));

(ii) h0 is uniformly finer than h if (i) holds for φ ∈ K.

Definition 2.6. Let h, h0 ∈ Γ and W ∈ W0. Then W (t, U) is said to be
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(i) h-positive definite if there exists a λ > 0 and a function b ∈ K such that

h(t, U) < λ implies b(h(t, U)) ≤ W (t, U);

(ii) weakly h0-decrescent if there exists a λ1 > 0 and a function a ∈ PCK such that

h0(t, U) < λ1 implies W (t, U) ≤ a(t, h0(t, U));

(iii) h0-decrescent if (ii) holds with a ∈ K.

Definition 2.7. For h0 ∈ Γ, τ > 0, Φ0 ∈ C, we define

h̃0(t,Φ0) = sup
−τ≤s≤0

{h0(t + s,Φ0(s))}.

Definition 2.8. Let h, h0 ∈ Γ and U(t) = U(t0,Φ0)(t) be any solution of (11), then

the system (11) is said to be

(I) (h̃0, h)-stable if for each ε > 0, there exists a δ = δ(t0, ε) > 0 such that

h̃0(t0,Φ0) < δ implies h(t, U(t)) < ε, t ≥ t0;

(II) (h̃0, h)-uniformly stable if (I) holds with δ independent of t0;

(III) (h̃0, h)-attractive if there exists a δ = δ(t0) > 0 and for each ε > 0, there exists

T = T (t0, ε) > 0 such that

h̃0(t0,Φ0) < δ0 implies h(t, U(t)) < ε, t ≥ t0 + T ;

(IV) (h̃0, h)-uniformly attractive if (III) holds with δ and T independent of t0;

(V) (h̃0, h)-asymptotically stable if it is (h̃0, h)-stable and (h̃0, h)-attractive;

(VI) (h̃0, h)-uniformly asymptotically stable if it is (h̃0, h)-uniformly stable and (h̃0, h)-

uniformly attractive.

Now, we prove a comparison result which is needed for the sequel.

Lemma 2.1. Assume that

(A1) The solution V (t) = V (t, t0,Φ0) of (12) existing for all t ≥ t0 is unique, continu-

ous with respect to the initial values, locally Lipschitzian in Φ0 and V (t0) = Φ0;

(A2) W ∈ C[R+ × K(Rn), R+] satisfies |W (t, X) −W (t, Y )| ≤ ND[X, Y ], where N

is the local Lipschitz constant, X, Y ∈ K(Rn), t ∈ R+;

(A3) For (η, U) ∈ S(h, ρ), t0 ≤ η < t, W ∈ W0 satisfies the inequality


















D+W (η, V (t, η, U)) ≤ g1(η,W (η, V (t, η, U))), t 6= tk,

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk))), k = 1, 2, . . . ,

W (t+0 , V (t, t+0 , U0)) ≤ x0,

where g1(t, x) ∈ PC for each x ∈ R+ and ψk : R+ → R+ are nondecreasing

functions for all k = 1, 2, . . . ;
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(A4) The maximal solution r(t) = r(t, t0, x0) of the following scalar impulsive differ-

ential equation exists on [t0,∞)


















x′ = g1(t, x), t 6= tk,

x(t+k ) = ψk(x(tk)), k = 1, 2, . . . ,

x(t+0 ) = x0 ≥ 0.

(13)

Then W (t, U(t, t0,Φ0)) ≤ r(t, t0, x0).

Proof. Let U(t) = U(t, t0,Φ0) be any solutions of (11) with (t0,Φ0) ∈ S(h, ρ). We

set m(η) = W (η, V (t, η, U(η)), η ∈ [t0, t] and limη→t−0 m(η) = m(t). For small h > 0,

we consider

m(η + h) −m(η) = W (η + h, V (t, η + h, U(η + h))) −W (η, V (t, η, U(η))

= W (η + h, V (t, η + h, U(η + h))) −W (η + h, V (t, η + h, U(η) + hF (η, Uη)))

+W (η + h, V (t, η + h, U(η) + hF (η, Uη)))) −W (η, V (t, η, U(η)))

≤ ND[V (t, η + h, U(η + h)), V (t, η + h, U(η) + hF (η, Uη)))]

+W (η + h, V (t, η + h, U(η) + hF (η, Uη)))) −W (η, V (t, η, U(η))),

where we have used the assumption (A2). Thus,

D+m(t) = lim sup
h→0+

1

h
[m(t + h) −m(t)]

≤ D+W (η, V (t, η, U(η)) +N 2 lim sup
h→0+

1

h
D[U(η + h), U(η) + hF (η, Uη))].

Letting U(η + h) = U(η) + Z(η), where Z(η) is the Hukuhara difference of U(η + h)

and U(η) for small h > 0 and is assumed to exist. Hence, employing the properties

of D[·, ·], it follows that

D[U(η + h), U(η) + hF (η, Uη))] = D[U(η) + Z(η), U(η) + hF (η, Uη))]

= D[Z(η), hF (η, Uη))]

= D[U(η + h) − U(η), hF (η, Uη))].

Consequently, we find that

1

h
D[U(η + h), U(η) + hF (η, Uη))] = D

[

U(η + h) − U(η)

h
, F (η, Uη))

]

,

which, in view of the fact that U(t) is a solution of (11), yields

lim sup
h→0+

1

h
D[U(η + h), U(η) + hF (η, Uη))]

= lim sup
h→0+

D

[

U(η + h) − U(η)

h
, F (η, Uη))

]

= D[U ′
H(η), F (η, Uη))] = 0.
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Hence, we have

D+m(η) ≤ g1(η,m(η)), t 6= tk.

Also

m(t+k ) ≤ ψk(m(tk)), k = 1, 2, . . . ,

m(t0) ≤ x0.

Now, by Theorem 1.4.3 [14], it follows that m(η) ≤ r(η, t0, x0), η ∈ [t0, t], that is,

W (η, V (t, η, U(η)) ≤ r(η, t0, x0), η ∈ [t0, t]. Since V (t, t, U(t)) = U(t). therefore we

have

W (t, U(t, t0,Φ0)) = W (t, V (t, t, U(t))) ≤ r(t, t0, x0).

This proves the assertion of the lemma.

3. MAIN RESULTS

Theorem 3.1. Assume that

(B1) The solution V (t) = V (t, t0,Φ0) = V (t0,Φ0)(t) of (12) existing for all t ≥ t0 is

unique, continuous with respect to the initial values, locally Lipschitzian in Φ0

and V (t0) = Φ0.

(B2) Ki(t, s, 0) = 0 so that G(t, 0, 0) = G(t, 0) = 0, g1(t, 0) = 0 and Jk(0) = 0,

ψk(0) = 0, k = 1, 2, . . . ;

(B3) h0, h
∗, h ∈ Γ such that h∗ is finer than h and h∗(t, U) is nondecreasing in t;

(B4) W ∈ W0 be such that W (t, U) is h-positive definite and weakly h∗-decrescent

for (t, U) ∈ S(h, ρ), and satisfies the inequality










D+W (η, V (t, η, U)) ≤ g1(η,W (η, V (t, η, U))), η 6= tk,

(η, U) ∈ S(h, ρ), η ∈ [t0, t),

W (t+k , V (t, t+k , U(t+k ))) ≤ ψk(W (tk, V (t, tk, U(tk))), k = 1, 2, . . . ;

(B5) There exists a ρ0 ∈ (0, ρ] such that

h(tk, U(tk)) < ρ0 implies that h(t+k , U(t+k )) < ρ, k = 1, 2, . . .

Then (h0, h
∗)-stability of the system (12) and the asymptotical stability of the trivial

solution of (13) imply the (h̃0, h)-asymptotical stability of (11).

Proof. Let U = U(t0,Φ0)(t), V = V (t0,Φ0)(t) and x(t) = x(t, t0, x0) be any solutions

of (11), (12) and (13) respectively. Since W (t, U) is h-positive definite on S(h, ρ),

there exists b ∈ K such that

h(t, U) < ρ implies b(h(t, U)) ≤ W (t, U). (14)

Also W (t, U) is weakly h∗-decrescent and h∗ is finer than h, so there exists a λ0 > 0

and a ∈ PCK, φ ∈ PCK such that

h(t, U) ≤ φ(t, h∗(t, U)) and W (t, U) ≤ a(t, h∗(t, U)), (15)
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when h∗(t, U) < λ0 and φ(t+0 , λ0) < ρ. Since the trivial solution of (13) is stable,

therefore, for given b(ε) > 0, we can find a δ1 = δ1(t0, ε) > 0 such that

0 ≤ x0 < δ1 implies that x(t, t0, x0) < b(ε), t ≥ t0, (16)

where 0 < ε < ρ0 and t0 ∈ R+. Since the system (12) is (h0, h
∗)-stable, so there exists

a δ2 = δ2(t0, ε) > 0 corresponding to δ1 such that

h0(t
+
0 ,Φ0) < δ2 implies h∗(t+0 , V (t)) < a−1(t0, δ1), t ≥ t0. (17)

Select δ = δ(t0, ε) > 0 satisfying δ < min{λ0, δ2}. Now if h̃0(t
+
0 ,Φ0) < δ, then it

follows from (14)–(17) that

b(h(t+0 ,Φ0)) ≤ W (t+0 ,Φ0) ≤ a(t+0 , h
∗(t+0 ,Φ0)) < a(t+0 , δ2) ≤ δ1 ≤ b(ε),

which implies that h(t+0 ,Φ0)) < ε.

Now we claim that

h(t, U(t)) < ε whenever h̃0(t
+
0 ,Φ0) < δ. (18)

For the sake of contradiction, let us assume that (18) is false and there exists t∗ > t0

such that h(t∗, U(t∗)) ≥ ε. For h ∈ Γ, there are two cases: (i) t0 < t∗ ≤ t1; (ii) tk <

t∗ ≤ tk+1 for some k = 1, 2, . . .

(i) Without loss of generality, let t∗ = inf{t : h(t, U(t)) ≥ ε} and h(t∗, U(t∗)) = ε.

Using Lemma 2.1 and (14)–(15) together with the fact that r(t, t0, x1) ≤ r(t, t0, x2)

for x1 ≤ x2, we obtain

W (t∗, U(t∗)) ≤ r(t∗, t0,W (t+0 , V (t∗, t0,Φ0)))

≤ r(t∗, t0, a(t0, h
∗(t+0 , V (t∗, t0,Φ0))) ≤ r(t∗, t0, δ1) < b(ε). (19)

On the other hand, it follows from (14) that

W (t∗, U(t∗)) ≥ b(h(t∗, U(t∗))) = b(ε),

which contradicts (18).

(ii) In view of the impulse effect, we have

h(t∗, U(t∗)) ≥ ε and h(t, U(t)) < ε, t ∈ [t0, tk].

Since 0 < ε < ρ0, it follows from assumption (B5) that

h(t+k , U(t+k )) = h(t+k , U(tk) + Ik(U(tk))) < ρ.

Consequently, there exists a t∗∗ ∈ (tk, t
∗] such that

ε ≤ h∗(t∗∗, U(t∗∗)) < ρ and h(t, U(t)) < ρ, t ∈ [t0, t1) (20)
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Now, by virtue of Lemma 2.1 and (14)–(15), we obtain

W (t∗∗, U(t∗∗)) ≤ r(t∗∗, t0,W (t+0 , V (t∗∗, t0, U0))) ≤ r(t∗∗, t0, a(t0, h(t
+
0 , V (t∗∗, t0, U0)))

≤ r(t∗∗, t0, δ1) < b(ε),

whereas (14) and (20) yields

W (t∗∗, U(t∗∗)) ≥ b(h(t∗∗, U(t∗∗))) ≥ b(ε),

which is again a contradiction. Thus h(t, U(t)) < ε whenever h̃0(t
+
0 ,Φ0) < δ, t ≥ t0.

Hence the system (11) is (h̃0, h)-stable.

Next, it is assumed that the trivial solution of (13) is asymptotically stable. In

view of (h̃0, h)− stability of the system (11), we set ε = ρ0 and δ = δ3 = δ3(t0, ρ0) > 0

in (18) and obtain

h(t, U(t)) < ρ0 < ρ whenever h̃0(t
+
0 ,Φ0)) < δ3, t ≥ t0.

In order to prove the (h̃0, h)− attractive of system (11), let the trivial solution of (13)

be attractive, that is, for t0 ∈ R+, there exists a δ∗0 = δ∗0(t0) > 0 such that

x0 < δ∗0 implies lim
t→∞

x(t, t0, x0) = 0.

Now, for this δ∗0, there is a δ∗1 = δ∗1(t0, δ
∗
0) > 0 such that

h̃0(t
+
0 ,Φ0) < δ∗1 implies h∗(t+0 , V (t)) < a−1(t0, δ

∗
0).

Taking δ0 = δ0(t0) (independent of ε) such that 0 < δ0 < min{δ∗, δ∗0, δ
∗
1} and applying

the earlier arguments, we find that

b(h(t, U(t))) ≤ W (t, U(t)) ≤ r(t, t0,W (t+0 , V (t, t0,Φ0))) ≤ r(t, t0, δ
∗
0) → 0,

as t → ∞ when h̃0(t
+
0 ,Φ0)) < δ0. This implies that limt→∞ h(t, U(t)) = 0 when

h̃0(t
+
0 ,Φ0)) < δ0, that is, the system (11) is (h̃0, h)-attractive. Hence system (11) is

(h̃0, h)-asymptotically stable.

Theorem 3.2. Assume that all the assumptions of Theorem 3.1 hold except (B3)

and (B4) which are modified as

(B∗
3
) h∗ is uniformly finer than h instead of finer in (B3);

(B∗
4
) W is h∗− decrescent instead of weakly h∗-decrescent in (B4).

Then the (h0, h
∗)-uniform stability of the trivial solution of (12) and the uniform

asymptotical stability of the trivial solution of (13) imply the (h̃0, h)-uniform asymp-

totical stability of (11).

Proof. From (B∗
3) and (B∗

4), it follows that there exists a λ0 > 0 and a, φ ∈ K such

that

h(t, U) ≤ φ(h∗(t, U)) and W (t, U) ≤ a(h∗(t, U)), (21)
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when h∗(t, U) < λ0 with φ(λ0) < ρ. The trivial solution of (13) is uniformly stable,

therefore, for given b(ε) > 0, we can find a δ1 = δ1(ε) > 0 independent of t0 such that

0 ≤ x0 < δ1 implies x(t, t0, x0) < b(ε), t ≥ t0, (22)

where 0 < ε < ρ0 and t0 ∈ R+. From the hypothesis that the trivial solution of (12) is

(h0, h
∗)-uniformly stable, for the above δ1, there exists a δ2 = δ2(ε) > 0 independent

of t0 such that

h0(t
+
0 ,Φ0) < δ2 implies h∗(t+0 , V (t)) < a−1(δ1). (23)

Now, applying the arguments similar to the ones used in the proof of Theorem 3.1

and recalling that U(t) = U(t0,Φ0)(t) is any solution of (11), we conclude that

h̃0(t
+
0 ,Φ0) < δ implies h(t, U(t)) < ε, t ≥ t0,

where δ is independent of t0 and satisfies 0 < δ = δ(ε) < min{λ0, δ2}. Thus, the

system (11) is (h0, h)-uniformly stable.

Next, from the hypothesis that the trivial solution of (13) is uniformly asymptot-

ically stable, we can find a δ∗0 > 0 independent of t0 and any ε satisfying 0 < ε < ρ0

such that there exists a τ = τ(ε) so that

0 < x0 < δ∗0 implies x(t, t0, x0) < b(ε), t ≥ t0 + τ(ε), t0 ∈ R+. (24)

In view of the fact that (12) is uniformly stable, there is a δ∗1 independent of t0

corresponding to δ∗0 such that

h0(t
+
0 ,Φ0) < δ∗1 implies h∗(t, V (t)) < a−1(δ∗0), t ≥ t0.

Since uniform asymptotical stability of (13) implies its asymptotically stability, so

system (11) is (h̃0, h)-uniformly stable. For ε = ρ0, there exists a δ∗ = δ∗(ρ0) such

that

h̃0(t
+
0 ,Φ0) < δ∗ implies h(t, U(t)) < ρ0 < ρ, t ≥ t0.

Choosing δ0 such that 0 < δ0 < min{δ∗, δ∗0, δ
∗
1} and using the arguments employed in

Theorem 3.1, we find that h(t, U(t))) ≤ ε, t ≥ t0 + τ , when h̃0(t
+
0 ,Φ0)) < δ0, where

δ0 and τ are independent of t0. This implies that the system (11) is (h̃0, h)-uniformly

attractive. Hence the system (11) is (h̃0, h)-uniformly asymptotically stable.

Remark. The (h0, h)-equatability of (11) can be established on the same pattern if

we require δ = δ(t0, ε) in Definition 2.8 to be a continuous function in t0 for each ε.
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