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ABSTRACT. The Six Functionals Fixed Point Theorem is a generalization of the Five Functionals

Fixed Point Theorem as well as the original triple fixed point theorem of Leggett-Williams. In the

Six Functionals Fixed Point Theorem, none of the functional boundaries are required to map above

or below the boundary in the functional sense. As an application, the existence of at least three

positive solutions to a second order right focal boundary value problem is considered by applying both

standard and non-standard choices of functionals. An extension to multivalued maps is provided for

completeness.

AMS (MOS) Subject Classification. 47H10.

1. INTRODUCTION

A few years ago, Avery [3] generalized the Leggett-Williams Triple Fixed Point

Theorem [10], and that generalization is now commonly called the Five Functionals

Fixed Point Theorem. Very recently, Avery, Henderson and O’Regan [6] produced

another fixed point theorem (called the Four Functionals Fixed Point Theorem), that

also generalized the Leggett-Williams Theorem.

In this paper we apply the techniques of the Four Functionals Fixed Point The-

orem to generalize the Five Functionals Fixed Point Theorem. This is a major gen-

eralization as none of the functional boundaries are required to map above or below

the boundary in the functional sense. That is, β(Ax) ≤ β(x) or β(Ax) ≥ β(x),

where A is the operator and β is the functional. The use of a second functional at

each boundary replaces these assumptions, and moreover, the choice of the second
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functional can substantially simplify the inequality work in existence of solutions ar-

guments. We conclude with an application and an example of the application that

demonstrate how functionals can be chosen in verifying the existence of at least three

positive solutions to a second order right focal boundary value problem. In the appli-

cation of this new Six Functionals Fixed Point Theorem, we utilize both standard and

non-standard choices of functionals. Many of the techniques that have been utilized

while applying multiple fixed point theorems involving functionals ([2, 3, 4, 5, 7, 10]

to mention a few) to verify the existence of solutions can be modified, or applied

without modification, when utilizing the Six Functionals Fixed Point Theorem. We

will demonstrate the standard choice of functionals (“max” and “min” over an inter-

val) on one of the functional boundaries and nonstandard choices on the remaining

functional boundaries in our application. An extension, in which the techniques of

Agarwal and O’Regan [1] are applied, is provided for completeness of the theory to

generalize this new fixed point theorem to maps which obey an axiomatic index the-

ory; so, in particular, the results apply to all multivalued maps in the literature which

have a well-defined fixed point index; see [1, 11, 12] and the references therein.

2. PRELIMINARIES

In this section, we will state the definitions that are used in the remainder of the

paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. An operator is called completely continuous if it is continuous and

maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space E if

α : P → [0,∞)

is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly, we say the map β is a nonnegative continuous

convex functional on a cone P of a real Banach space E if

β : P → [0,∞)
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is continuous and

β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

Let α be a nonnegative continuous concave functional on P , and let β be a nonnegative

continuous convex functional on P ; then, for positive real numbers r and R we define

the sets:

Q(β,R) = {x ∈ P : β(x) ≤ R}, (2.1)

and

Q(α, β, r, R) = {x ∈ P : r ≤ α(x) and β(x) ≤ R}. (2.2)

Definition 2.4. Let D be a subset of a real Banach space E. If r : E → D is

continuous with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is a

retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) =

{

n
∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],

n
∑

i=1

λi = 1, and n ∈ N

}

.

The following theorem is due to Dugundji and a proof can be found in [8, p. 44].

Theorem 2.5. For Banach spaces X and Y , let D ⊂ X be closed and let

F : D → Y

be continuous. Then F has a continuous extension

F̃ : X → Y

such that

F̃ (X) ⊂ conv(F (D)).

Corollary 2.6. Every closed convex set of a Banach space is a retract of the Banach

space.

Note that any cone P of a Banach space E is a retract of E.

3. FIXED POINT INDEX

The following theorem, which establishes the existence and uniqueness of the fixed

point index, is from [9, pp. 82–86]; an elementary proof can be found in [8, pp. 58 &

238]. The proof of our main result in the next section will invoke the properties of

the fixed point index.

Theorem 3.1. Let X be a retract of a real Banach space E. Then, for every bounded

relatively open subset U of X and every completely continuous operator A : U → X

which has no fixed points on ∂U (relative to X), there exists an integer i(A,U,X)

satisfying the following conditions:
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(G1) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;

(G2) Additivity: i(A,U,X) = i(A,U1, X) + i(A,U2, X) whenever U1 and U2 are dis-

joint open subsets of U such that A has no fixed points on U − (U1 ∪ U2);

(G3) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever

H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any (t, x) ∈

[0, 1] × ∂U ;

(G4) Permanence: i(A,U,X) = i(A,U ∩Y, Y ) if Y is a retract of X and A(U) ⊂ Y ;

(G5) Excision: i(A,U,X) = i(A,U0, X) whenever U0 is an open subset of U such that

A has no fixed points in U − U0;

(G6) Solution: If i(A,U,X) 6= 0, then A has at least one fixed point in U .

Moreover, i(A,U,X) is uniquely defined.

4. MAIN RESULT

Theorem 4.1. Suppose P is a cone in a real Banach space E, α, ψ and ζ are non-

negative continuous concave functionals on P , β, θ, and η are nonnegative continuous

convex functionals on P , and there exist nonnegative numbers l, l′, r, r′, R and R′

such that

A : Q(β,R) → P

is a completely continuous operator and

(a) Q(β,R) is a bounded set,

(b) Q(η, l) and Q(α, β, r, R) are disjoint subsets of Q(β,R),

(c) {x ∈ P : θ(x) < r′, r < α(x), R′ < ψ(x), and β(x) < R} 6= ∅,

(d) {x ∈ P : l′ < ζ(x) and η(x) < l} 6= ∅, and

(e) {x ∈ P : l < η(x) and α(x) < r} 6= ∅.

Let the following properties be satisfied:

(i) α(Ax) > r, for all x ∈ P with α(x) = r, β(x) ≤ R, and r′ < θ(Ax),

(ii) α(Ax) > r, for all x ∈ P with α(x) = r, β(x) ≤ R, and θ(x) ≤ r′,

(iii) β(Ax) < R, for all x ∈ P with r ≤ α(x), β(x) = R, and ψ(Ax) < R′,

(iv) β(Ax) < R, for all x ∈ P with r ≤ α(x), β(x) = R, and R′ ≤ ψ(x),

(v) η(Ax) < l, for all x ∈ P with η(x) = l and ζ(Ax) < l′, and

(vi) η(Ax) < l, for all x ∈ P with η(x) = l and l′ ≤ ζ(x),

then A has at least three fixed points x1, x2 and x3 in Q(β,R) such that

η(x1) ≤ l, r ≤ α(x2) with β(x2) ≤ R, and l < η(x3) with α(x3) < r.

Proof. Let

W = {x ∈ P : r < α(x) and β(x) < R},

X = {x ∈ P : η(x) < l},
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Y = {x ∈ P : β(x) < R},

and

Z = {x ∈ P : l < η(x) and α(x) < r}.

Then X, W and Z are open subsets contained in the open set Y of the retract P

and we have assumed that X,W are disjoint sets. Thus, the sets X, W , and Z are

pairwise disjoint, nonempty, open subsets.

Let x∗ ∈ {x ∈ W : θ(x) < r′ and R′ < ψ(x)} (see condition (c)), and let

H : [0, 1] ×W → P

be defined by

H(t, x) = (1 − t)Ax + tx∗.

Clearly, H is continuous and H
(

[0, 1] ×W
)

is relatively compact.

Claim 1: H(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂W .

Suppose not; that is, suppose there exists (t1, x1) ∈ [0, 1] × ∂W such that

H(t1, x1) = x1. Since x1 ∈ ∂W , we have that β(x1) = R or α(x1) = r.

Case 1 : β(x1) = R.

Either R′ ≤ ψ(Ax1) or ψ(Ax1) < R′. If ψ(Ax1) < R′, then by condition (iii), we

have

β(x1) = β((1 − t1)Ax1 + t1x
∗)

≤ (1 − t1)β(Ax1) + t1β(x∗)

< R,

which is a contradiction. If R′ ≤ ψ(Ax1), then R′ ≤ ψ(x1), since

ψ(x1) = ψ((1 − t1)Ax1 + t1x
∗)

≥ (1 − t1)ψ(Ax1) + t1ψ(x∗)

≥ R′,

and hence, by condition (iv), we have

β(x1) = β((1 − t1)Ax1 + t1x
∗)

≤ (1 − t1)β(Ax1) + t1β(x∗)

< R,

which is a contradiction. Thus, β(x1) 6= R.

Case 2 : α(x1) = r.

Either θ(Ax1) ≤ r′ or r′ < θ(Ax1). If r′ < θ(Ax1), then by condition (i), we have

α(x1) = α((1 − t1)Ax1 + t1x
∗)

≥ (1 − t1)α(Ax1) + t1α(x∗)
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> r,

which is a contradiction. If θ(Ax1) ≤ r′, then α(x1) > r′, since

θ(x1) = θ((1 − t1)Ax1 + t1x
∗)

≤ (1 − t1)θ(Ax1) + t1θ(x
∗)

≤ r′,

and hence, by condition (ii), we have

α(x1) = α((1 − t1)Ax1 + t1x
∗)

≥ (1 − t1)α(Ax1) + t1α(x∗)

> r,

which is a contradiction. Thus, α(x1) 6= r.

Therefore, we have shown that H(t, x) 6= x, for all (t, x) ∈ [0, 1] × ∂W , and thus by

the homotopy invariance property (G3) and by the normality property (G1) of the

fixed point index,

i(A,W, P ) = i(x∗,W, P ) = 1.

Also, if we let

J : [0, 1] × Y → P

be defined by

J(t, x) = (1 − t)Ax + tx∗,

then clearly, J is continuous and J
(

[0, 1] × Y
)

is relatively compact. Thus, by claim

1, J is free of fixed points on the boundary of Y for all t ∈ [0, 1]. Hence, by the

homotopy invariance property (G3) and by the normality property (G1) of the fixed

point index,

i(A, Y, P ) = i(x∗, Y, P ) = 1.

Let x∗∗ ∈ {x ∈ X : l′ < ζ(x) and η(x) < l} (see condition (d)), and let

K : [0, 1] ×X → P

be defined by

K(t, x) = (1 − t)Ax + tx∗∗.

Clearly, K is continuous and K
(

[0, 1] ×X
)

is relatively compact.

Claim 2: K(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂X.

Suppose not; that is, suppose there exists (t2, x2) ∈ [0, 1]×∂X such thatK(t2, x2) =

x2. Since x2 ∈ ∂X, we have that η(x2) = l. Either l′ ≤ ζ(Ax2) or ζ(Ax2) < l′. If

ζ(Ax2) < l′, then by condition (iv), we have

η(x2) = η((1 − t2)Ax2 + t2x
∗∗)

≤ (1 − t2)η(Ax2) + t2η(x
∗∗)
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< l,

which is a contradiction. If l′ ≤ ζ(Ax2), then l′ ≤ ζ(x2), since

ζ(x2) = ζ((1 − t2)Ax2 + t2x
∗∗)

≥ (1 − t2)ζ(Ax2) + t2ζ(x
∗∗)

≥ l′,

and hence, by condition (vi), we have

η(x2) = η((1 − t2)Ax2 + t2x
∗∗)

≤ (1 − t2)η(Ax2) + t2η(x
∗∗)

< l,

which is a contradiction. Thus, η(x2) 6= l. Therefore, we have shown that K(t, x) 6= x,

for all (t, x) ∈ [0, 1]× ∂X, and so by the homotopy invariance property (G3) and the

normality property (G1) of the fixed point index,

i(A,X, P ) = i(x∗, X, P ) = 1.

Also, if x ∈ Y − (W ∪ X ∪ Z), then either η(x) = l or α(x) = r or β(x) = R and

for all such points we have shown in claims 1 and 2 that Ax 6= x. Therefore, by the

additivity property (G2) of the fixed point index we have

i(A, Y, P ) = i(A,W, P ) + i(A,X, P ) + i(A,Z, P )

and hence i(A,Z, P ) = −1. Therefore, by the solution property (G6) of the fixed

point index, the operator A has at least three fixed points

x1 ∈ X, x2 ∈ Z, and x3 ∈ W.

5. MULTI-VALUED GENERALIZATION

In this section, we provide some background material from fixed point theory

related to multi-valued maps.

Let X be a closed, convex subset of some Banach space E = (E, ‖ · ‖). Suppose,

for every open subset U of X and every upper semicontinuous map A : UX → 2X

(here 2X denotes the family of nonempty subsets of X), which satisfies property (B)

(to be specified later), with x /∈ Ax for x ∈ ∂X U (here UX and ∂X U denote the

closure and boundary of U in X , respectively), there exists an integer, denoted by

iX(A,U), satisfying the following properties:

(P1). If x0 ∈ U , then iX(x̂0, U) = 1 (here x̂0 denotes the map whose constant

value is x0);
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(P2). For every pair of disjoint open subsets U1, U2 of U , such that A has no fixed

points on UX \ (U1 ∪ U2),

iX(A,U) = iX(A,U1) + iX(A,U2);

(P3). For every upper semicontinuous map H : [0, 1] × UX → 2X , which satisfies

property (B), and x /∈ H(t, x) for (t, x) ∈ [0, 1] × ∂X U ,

iX(H(1, · ), U) = iX(H(0, · ), U);

(P4). If Y is a closed convex subset of X and A(UX) ⊆ Y , then

iX(A,U) = iY (A,U ∩ Y ).

Also, assume the family










iX(A,U) :

X a closed, convex subset of a Banach space E,

U open in X, and A : UX → 2X is an upper semicontinuous

map that satisfies property (B) with x /∈ Ax on ∂X U











is uniquely determined by the properties (P1)–(P4).

We note that property (B) is any property on the map so that the fixed point

index is well-defined. Usually in applications, property (B) will mean that the map

is compact with convex compact values. Other examples of maps with a well defined

fixed point index (e.g., property (B) could mean that the map is countably condensing

with convex compact values) can be found in the literature.

If the above hold, notice also that

(P5). For every open subset V of U , such that A has no fixed points on UX \V ,

iX(A,U) = iX(A, V );

and

(P6). If iX(A,U) 6= 0 , then A has at least one fixed point in U .

The proof of the following generalization of Theorem 4.1 to multi-valued maps is

essentially the same as the proof of Theorem 4.1 following the techniques applied in

[2] and is therefore omitted.

Theorem 5.1. Let E = (E, ‖ · ‖) be a Banach space and X a closed, convex subset

of E. Suppose for every open subset U of X and every upper semicontinuous map

A : UX → 2X , which satisfies property (B) with x /∈ Ax , for x ∈ ∂X U , there exists

an integer iX(A,U) satisfying (P1)–(P4). In addition, assume the family










iX(A,U) :

X a closed, convex subset of a Banach space E,

U open in X, and A : UX → 2X is an upper semicontinuous

map that satisfies property (B) with x /∈ Ax on ∂X U










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is uniquely determined by the properties (P1)–(P4). Let P ⊂ E be a cone in E and

suppose that α, ψ and ζ are nonnegative continuous concave functionals on P , β, θ

and η are nonnegative continuous convex functionals on P , and there exist nonnega-

tive numbers l, l′,r, r′, R and R′ such that

F : Q(β,R) → 2P

is an upper semicontinuous map which satisfies property (B) and

(a) Q(β,R) is a bounded set,

(b) Q(η, l) and Q(α, β, r, R) are disjoint subsets of Q(β,R),

(c) there exists x∗ ∈ {x ∈ P : θ(x) < r′, r < α(x), R′ < ψ(x), and β(x) < R}, such

that the mapping H : [0, 1]×Q(β,R) → 2P , given by H(t, x) = (1−t)F x + tx∗,

satisfies property (B),

(d) there exists x∗∗ ∈ {x ∈ P : l′ < ζ(x) and η(x) < l}, such that the mapping

K : [0, 1]×Q(β,R) → 2P , given by K(t, x) = (1−t)F x+ tx∗∗, satisfies property

(B), and

(e) {x ∈ P : l < η(x) and α(x) < r} 6= ∅.

Let the following properties be satisfied:

(H1). If x ∈ P with α(x) = r , β(x) ≤ R , and r′ < θ(y) for some y ∈ F x , then

α(y) > r;

(H2). If x ∈ P with α(x) = r , β(x) ≤ R , and θ(x) ≤ r′, then α(y) > r for all

y ∈ F x;

(H3). If x ∈ P with r ≤ α(x) , β(x) = R and ψ(y) < R′ for some y ∈ F x , then

β(y) < R;

(H4). If x ∈ P with r ≤ α(x) , β(x) = R and R′ ≤ ψ(x) then β(y) < R for all

y ∈ F x.

(H5). If x ∈ P with η(x) = l and ζ(y) < l′ for some y ∈ F x , then η(y) < l;

(H6). If x ∈ P with η(x) = l and l′ ≤ ζ(x) then η(y) < l for all y ∈ F x.

Then F has at least three fixed points x1, x2, and x3 in Q(β,R).

6. APPLICATION

A standard technique to verify the existence of solutions, by applying a fixed point

theorem to a boundary value problem, is to assume the nonlinearity is bounded by

a constant on intervals in order to verify certain inequalities, in which case, choosing

the minimum of a function over an interval (concave functional) and the maximum of

a function over an interval (convex functional) often simplify the arguments. In this

application, we will not only demonstrate the standard technique, but we will also

choose alternative functionals involving integrals with an upper bound that is linear.
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Consider the second-order nonlinear focal boundary-value problem

x′′(t) + f(x(t)) = 0, t ∈ (0, 1), (6.1)

x(0) = 0 = x′(1), (6.2)

where f : R → [0,∞) is continuous. If x is a fixed point of the operator A defined by

Ax(t) :=

∫ 1

0

G(t, s)f(x(s))ds,

where

G(t, s) =







t : t ≤ s,

s : s ≤ t,

is the Green’s function for the operator L defined by

Lx(t) := −x′′,

with right-focal boundary conditions

x(0) = 0 = x′(1),

then it is well known that x is a solution of the boundary value problem (6.1), (6.2).

Throughout this section of the paper we will use the facts that G(t, s) is nonnegative,

and for each fixed s ∈ [0, 1], the Green’s function is nondecreasing in t.

Define the cone P ⊂ E = C[0, 1] by

P := {x ∈ E : x is nonnegative, nondecreasing and concave} .

Define the concave functionals α and ψ by

α(x) := min
t∈[1/4,1]

x(t) = x(1/4),

ψ(x) :=

∫ 1

1/4

s2

2
x(s)ds

and the convex functionals θ and β by

θ(x) := max
t∈[0,1]

x(t) = x(1),

β(x) :=

∫ 1

0

x(s)ds.

In the following theorem, we demonstrate how to apply the Six Functionals Fixed

Point Theorem, Theorem 4.1, to prove the existence of at least three positive solutions

to (6.1), (6.2).

Theorem 6.1. Suppose there exist positive real numbers M0, B0, M , B, r and R,

with 320B
3(128−131M)

≤ R, 320B0

(128−131M0)
≤ r, 16r

3
≤ Mr + B and r < 3R

128
< 4r, and a

continuous function f : [0, 2R] → [0,∞), such that,

(a) f(z) < M0z +B0 for all z ∈ [0, 2r/3],
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(b) f(z) < Mz +B for all z ∈ [0, 2R], and

(c) f(z) > 16r
3

for all z ∈ [r, 4r].

Then, the operator A has at least three positive solutions x1, x2 and x3 in Q(β,R).

Proof. Let R′ = 3R
128

, r′ = 4r, l = r
3

and l′ = 3l
128

. By the properties of G and f we

have that

A : Q(β,R) → P

is completely continuous. Applying a standard calculus argument, we have that the

set Q(β,R) is bounded, since if x ∈ Q(β,R), then x is concave, and hence

x(1) − x(0)

2
≤

∫ 1

0

x(s)ds ≤ R.

Also, it can easily be shown that

R′ + 4r

2
∈ {x ∈ P : θ(x) < r′, r < α(x), R′ < ψ(x), and β(x) < R},

l

4
∈ {x ∈ P : l′ < ζ(x) and η(x) < l}, and

r + l

2
∈ {x ∈ P : l < η(x) and α(x) < r},

and hence the sets are nonempty. Moreover, if x ∈ Q(η, l), then we have

x(1) − x(0)

2
≤

∫ 1

0

x(s)ds ≤ l,

and hence

α(x) = x(1/4) ≤ x(1) ≤ 2l < r;

thus, x 6∈ Q(α, β, r, R). Therefore, the set conditions (a), (b), (c), (d) and (e) of

Theorem 4.1 are met. Now we verify the functional conditions.

Claim 1: α(Ax) > r for all x ∈ Q(α, β, r, R) with α(x) = r and r′ < θ(Ax).

Let x ∈ Q(α, β, r, R), with α(x) = r and r′ < θ(Ax). Then since 4G(1/4, s) ≥ G(1, s),

for all s ∈ [0, 1], we have

α(Ax) =

∫ 1

0

G(1/4, s)x(s)ds ≥

∫ 1

0
G(1, s)x(s)ds

4
= θ(Ax) >

r′

4
= r.

Claim 2: α(Ax) > r, for all x ∈ {x ∈ Q(α, β, r, R) : θ(x) ≤ r′} with α(x) = r.

Let x ∈ {x ∈ Q(α, β, r, R) : θ(x) ≤ r′}, with α(x) = r. Thus, r ≤ x(s) ≤ 4r, for

s ∈ [1/4, 1], and hence f(x(s)) ≥ 16r
3

, for s ∈ [1/4, 1]. Therefore,

α(Ax) =

∫ 1

0

G(1/4, s) f(x(s)) ds

≥

∫ 1

1/4

G(1/4, s) f(x(s)) ds
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>

∫ 1

1/4

G(1/4, s)

(

16r

3

)

ds = r.

Claim 3: β(Ax) < R, for all x ∈ Q(α, β, r, R), with β(x) = R and ψ(Ax) < R′.

Since

R′ > ψ(Ax) =

∫ 1

1/4

s2

2
Ax(s)ds ≥

1

32

∫ 1

1/4

Ax(s)ds

and

3

∫ 1/4

0

Ax(s)ds ≤

∫ 1

1/4

Ax(s)ds,

we have

32R′ >

∫ 1

1/4

Ax(s)ds

and
32

3
R′ >

(

1

3

)
∫ 1

1/4

Ax(s)ds ≥

∫ 1/4

0

Ax(s)ds.

Therefore,

R =
128R′

3
>

∫ 1/4

0

Ax(s)ds +

∫ 1

1/4

Ax(s)ds =

∫ 1

0

Ax(s)ds = β(Ax).

Let η = β and ζ = ψ, then the same argument as in claim 3 can be used to verify

that η(Ax) < l, for all x ∈ Q(η, l), with η(x) = l and ζ(Ax) < l′ by simply replacing

R by l and R′ by l′ in the arguments.

Claim 4: β(Ax) < R, for all x ∈ {x ∈ Q(α, β, r, R) : R′ ≤ ψ(x)}, with β(x) = R.

Let x ∈ {x ∈ Q(α, β, r, R) : R′ ≤ ψ(x)} with β(x) = R. Thus, ψ(x) ≥ R′ = 3R
128

,

and hence

β(Ax) =

∫ 1

0

∫ 1

0

G(t, s) f(x(s)) ds dt

=

∫ 1

0

∫ t

0

s f(x(s)) ds dt+

∫ 1

0

∫ 1

t

t f(x(s)) ds dt

=

∫ 1

0

∫ 1

s

s f(x(s)) dt ds+

∫ 1

0

∫ s

0

t f(x(s)) dt ds

=

∫ 1

0

(

1 −
s2

2

)

f(x(s)) ds

<

∫ 1

0

(

1 −
s2

2

)

(Mx(s) +B) ds

=
5B

6
+Mβ(x) −Mψ(x)

≤
5B

6
+MR −MR′ ≤ R.

Note, the same argument as in claim 4 can be used to verify that η(Ax) < l, for all

x ∈ {x ∈ Q(η, l) : l′ ≤ ζ(x)}, with η(x) = l by simply replacing R by l, R′ by l′,
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M by M0 and B by B0 in the arguments. Therefore, the hypotheses of Theorem 4.1

have been satisfied; thus the operator A has at least three positive solutions.

Example 6.2. The boundary value problem

x′′ +
13 + 10 ln(x4 + 1)

3 + 5e−20(x−.5)3
= 0, (6.3)

x(0) = 0 = x′(1), (6.4)

has at least three positive solutions which can easily be verified using a computer

algebra system by invoking Theorem 6.1, with

r = 1, R = 100,M =
48

131
,M0 =

8

131
, B0 =

8

3
and B = 75.
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