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1. INTRODUCTION

The investigation of stability and instability of nonlinear difference equations

with delays has attracted a lot of attention from many researchers [1–6, 10–15] and

references sited therein. In [8], Halanay proved an asymptotic formula for the solu-

tions of a differential inequality involving the “maximum” functional and applied it

in the stability theory of linear systems with delay. Such an inequality was called

Halanay inequality in several works [6, 9–12, 14–16], in which some generalizations

as well as new applications can be found. In particular, in [5, 12, 14, 16], the au-

thors considered discrete Halanay-type inequalities to study some discrete version of

functional differential equations.

In the following results of Liz and Ferreiro [11], authors showed that some discrete

versions of these (max) inequalities can be applied to study the global asymptotic

stability of generalized difference equations.
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Theorem A Let r > 0 be a natural number, and let {xn}n≥r be a sequence of real

numbers satisfying the inequality

4xn ≤ −axn + b max{xn, xn−1, . . . , xn−r}, n ≥ 0, (1.1)

where 4xn = xn+1 − xn. If 0 < b < a ≤ 1, then there exists a constant λ0 ∈ (0, 1)

such that

xn ≤ max{0, x0, x−1, . . . , x−r}λ
n
0 , n ≥ 0,

Moreover, λ0 can be chosen as the root in the interval (0, 1) of the equation

λr+1 + (a − 1)λr − b = 0. (1.2)

By a simple use of Theorem A, authors also demonstrated the validity of the

following statement, viz. Theorem B.

Theorem B Assume that 0 < a ≤ 1 and that there exists a positive constant b < a

such that

|f(n, xn, . . . , xn−r)| ≤ b‖(xn, . . . , xn−r)‖∞, ∀(xn, . . . , xn−r) ∈ R
r+1. (1.3)

Then there exists λ0 ∈ (0, 1) such that

|xn| ≤ (max{|xi|})λ
n
0 , n ≥ 0,

for every solution {xn} of

4xn = −axn + f(n, xn, xn−1, . . . , xn−r), a > 0, (1.4)

where λ0 can be calculated in the form established in Theorem A.

The main aim of the present paper is to establish some nonlinear retarded in-

equalities, which extend the foregoing Theorem A. We shall also derive new global

stability conditions for nonlinear difference equations.

2. HALANAY TYPE DISCRETE INEQUALITIES

Let R denote the set of all real numbers, R
+ the set of positive real numbers,

R
0 the set of nonnegative real numbers, Z the set of integers, Z

+ the set of positive

integers, and Z
−r = {z ∈ Z : z ≥ −r}. Consider the following nonlinear difference

equation

4xn = f(n, xn, xn−1, . . . , xn−r), n ∈ Z
+, (2.1)

where 4xn = xn+1 − xn and f : N × R
r+1 → R. The equation (2.1) is a general-

ized difference equation (see [2; Section 21, 11]). The initial value problem for this

equation requires the knowledge of the initial data {x−r, x−r+1, . . . , x0}. This vector
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is called the initial string in [5]. For every initial string, there exists a unique solution

{xn}n≥Z−r of (2.1) that can be calculated using the explicit recurrence formula

xn+1 = xn + f(n, xn, xn−1, . . . , xn−r), n ∈ Z
0. (2.2)

In this section, we introduce new discrete inequalities which will be used to derive

global stability conditions in the next section.

Theorem 2.1. Let ai, qi ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1; ar, qr ∈ R
+, hr ∈ Z

+,

where 0 = h0 < h1 < · · · < hr and
∑r

i=0 qi <
∑r

i=0 ai ≤ 1. Also, let {xn}n∈Z−hr be a

sequence of real numbers satisfying the inequality

4xn ≤

r
∑

i=0

(qix
p

n−hi
− aixn), n ∈ Z

0, (2.3)

where p ≤ 1 is a constant. Then there exists a constantλ0 ∈ (0, 1) such that

xn ≤ max{1, x0, x−h1
, . . . , x−hr

}λn
0 , n ∈ Z

0. (2.4)

Moreover, λ0 can be chosen as the root in the interval (0, 1) of the equation

λp(hr−n)+n+1 + (a − 1)λp(hr−n)+n −
[

max
0≤i≤r

{1, x−hi
}
]p−1

r
∑

i=0

qiλ
p(hr−hi) = 0, (2.5)

where n ∈ Z
0, a =

∑r

i=0 ai.

Proof. Let {yn} be a solution of the difference equation

4yn =
r

∑

i=0

(qiy
p

n−hi
− aiyn), n ∈ Z

0. (2.6)

Since (1 −
∑r

i=0 ai) ≥ 0, qi ∈ R
0, it is easy to prove that if {xn} satisfies (2.3) and

xn ≤ yn for n = −hr, . . . , 0, then xn ≤ yn for all n ∈ Z
0.

Now, if K ≥ 1, λ ∈ (0, 1), the sequence {yn} defined by yn = Kλn is a solution

of equation (2.6) if and only if λ is a solution of (2.5). Define a function F by

F (λ) = λp(hr−n)+n+1 + (a − 1)λp(hr−n)+n − Kp−1

r
∑

i=0

qiλ
p(hr−hi), (2.7)

where n ∈ Z
0, a =

∑r

i=0 ai. F is continuous on (0, 1], limλ→0+ F (λ) = −qrK
p−1 < 0,

and F (1) = a−Kp−1
∑r

i=1 qi > 0. Hence, there exists λ0 ∈ (0, 1) such that F (λ0) = 0.

Thus, for this λ0, {Kλn
0} is a solution of (2.6) for every K ≥ 1. Finally, let

K = max0≤i≤r{1, x−hi
}. Clearly, xn ≤ yn for all n = −hr, . . . , 0. Hence, using the

first part of the proof, we can conclude that xn ≤ yn = {Kλn
0} for all n ∈ Z0.

By the similar argument used in Theorem 2.1 we obtain the following result.
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Theorem 2.2. Let ai, qi ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1; ar, qr ∈ R
+, hr ∈ Z

+,

where 0 = h0 < h1 < · · · < hr. Let αi, βi ∈ R
+,

∑r

i=0 αi = 1, and [(1 − δ)
∏r

i=0 βi +

δ
∑r

i=0 qi] <
∑r

i=0 ai ≤ 1, where 0 ≤ δ ≤ 1 is a constant. Also, let {xn}n∈Z−hr be a

sequence of nonnegative real numbers satisfying the inequality

4xn ≤

r
∑

i=0

(δqixn−hi
− aixn) + (1 − δ)

r
∏

i=0

βix
αi

n−hi
, n ∈ Z

0. (2.8)

Then there exists a constant λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−h1
, . . . , x−hr

}λn
0 , n ∈ Z

0. (2.9)

Moreover, λ0 can be chosen as the root in the interval (0, 1) of the equation

λ + (a − 1) − (1 − δ)

( r
∏

i=0

βi

)

λ−
Pr

i=0
αihi − δ

r
∑

i=0

qiλ
−hi = 0, (2.10)

where a =
∑r

i=0 ai.

Proof. Let {yn} be a solution of the difference equation

4yn =

r
∑

i=0

(δqiyn−hi
− aiyn) + (1 − δ)

r
∏

i=0

βiy
αi

n−hi
, n ∈ Z

0. (2.11)

Since (1 −
∑r

i=0 ai) ≥ 0, qi ∈ R
0, βi ∈ R

+, it is easy to prove that if {xn} satisfies

(2.8) and xn ≤ yn for n = −hr, . . . , 0, then xn ≤ yn for all n ∈ Z
0.

Now, if K ≥ 0, λ ∈ (0, 1), the sequence {yn} defined by yn = Kλn is a solution

of equation (2.11) if and only if λ is a solution of (2.10). Define a function F by

F (λ) = λ + (a − 1) − (1 − δ)

( r
∏

i=0

βi

)

λ−
Pr

i=0
αihi − δ

r
∑

i=0

qiλ
−hi, (2.12)

where a =
∑r

i=0 ai. F is continuous on (0, 1],

lim
λ→0+

F (λ) = a − 1(1 − δ)

( r
∏

i=0

βi

)

lim
λ→0+

λ−
Pr

i=0
αihi − δ

r
∑

i=0

qi lim
λ→0+

λ−hi < 0,

and F (1) = a − [(1 − δ)
∏r

i=0 βi + δ
∑r

i=0 qi] > 0. Hence, there exists λ0 ∈ (0, 1) such

that F (λ0) = 0.

Thus, for this λ0, {Kλn
0} is a solution of (2.11) for every K ≥ 0. Finally, let

K = max0≤i≤r{0, x−hi
}. Clearly, xn ≤ yn for all n = −hr, . . . , 0. Hence, using the

first part of the proof, we can conclude that xn ≤ yn = {Kλn
0} for all n ∈ Z0.

Remark 2.1. In [11], a discrete Halanay-type inequality was given as in Theorem 2.2

where the inequality (2.8) was replaced by

4xn ≤ −axn + q max{xn, xn−1, . . . , xn−r}, n ∈ Z
0. (2.13)

where 0 < q < p ≤ 1. Note that if a sequence {xn}n∈Z−r of positive real numbers

satises (2.13), then it also satisfies (2.8). On the other hand, let r = 1; a = 6/7,
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q = q0 = q1 = 1/7, α0 = α1 = 1
2
, β0 = 3

7
, β1 = 1√

2
, then we might easily show that

the sequence { 1
2n }n∈Z−1 satisfies (2.8) but not (2.13). Indeed,

4xn =
1

2n+1
−

1

2n
= −

1

2n+1
,

< −
6

7

1

2n
+ (1 − δ)

3

7

1

2n
+ δ

3

7

1

2n
= −

3

7

1

2n
,

with (1 − δ)
∏1

i−0 βi + δ
∑1

i=0 qi < 6
7
. On the other hand,

4xn = −
1

2n+1
> −

6

7

1

2n
+

1

7
max

{

1

2n
,

1

2n−1

}

= −
4

7

1

2n
. (2.14)

Therefore, in the case of positive sequences, the discrete inequality (2.8) is less con-

servative than the discrete Halanay-type inequality given by (2.13).

3. GLOBAL STABILITY OF DIFFERENCE EQUATIONS

We consider the generalized difference equation

4xn = −axn + f(n, xn, xn−h1
, . . . , xn−hr

), (3.1)

where n, hi ∈ Z
+, i = 1, . . . , r, a > 0.

Although for every initial string {x−hr
, x−hr+1, . . . , x0}, the solution {xn} of (3.1)

can be explicitly calculated by a recurrence formula similar to (2.2), it is in general

difficult to investigate the asymptotic behavior of the solutions using that formula.

The next result gives an asymptotic estimate by a simple use of the discrete Halanay

inequality.

Theorem 3.1. Let 0 < a ≤ 1 and there exist qi ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1;

qr ∈ R
+, hr ∈ Z

+, where 0 = h0 < h1 < · · · < hr and
∑r

i=0 qi < a ≤ 1 such that

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤

r
∑

i=0

qi|xn−hi
|p, (3.2)

for all (n, xn, xn−h1
, . . . , xn−hr

) ∈ Z
0 × R

r+1. Then there exists λ0 ∈ (0, 1) such that,

for every solution {xn} of the equation (3.1),

|xn| ≤
(

max
−hr≤i≤0

{1, |xi|}
)

λn
0 , n ∈ Z

0, (3.3)

where λ0 can be calculated in the form established in Theorem 2.1. As a consequence,

the trivial solution of the equation (3.1) is globally asymptotically stable.

Proof. Let {xn} be a solution of the equation (3.1). From [2, Section 11],we know

that

xn = x0(1 − a)n +
n−1
∑

i=0

(1 − a)n−i−1f(i, xi, xi−h1
, . . . , xi−hr

), n ∈ Z
0. (3.4)
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Thus, using the inequality (3.2), we obtain

|xn| ≤ |x0|(1 − a)n +

n−1
∑

i=0

r
∑

j=0

(1 − a)n−i−1qj|xi−hj
|p, n ∈ Z

0. (3.5)

Denote vn = |xn| for n = −hr, . . . , 0, and

vn = |x0|(1 − a)n +
n−1
∑

i=0

r
∑

j=0

(1 − a)n−i−1qj|xi−hj
|p, n ∈ Z

+. (3.6)

Then we have |xn| ≤ vn and hence,

4vn = −avn +

r
∑

i=0

qi|xn−hi
|p ≤ avn +

r
∑

i=0

qiv
p

n−hi
, n ∈ Z

0. (3.7)

Consequently, Theorem 2.1 ensures the validity of the following inequality

|xn| ≤ vn ≤
(

max
−hr≤i≤0

{1, vi}
)

λn
0 =

(

max
−hr≤i≤0

{1, |xi|}
)

λn
0 , n ∈ Z

0, (3.8)

where λ0 is chosen as in Theorem 2.1. This completes the proof of the theorem.

Similarly, by using Theorem 2.2 instead of Theorem 2.1, we obtain the following

result.

Theorem 3.2. Assume that 0 < a ≤ 1. Let qi ∈ R
+
0 , hi ∈ Z

0, i = 0, . . . , r − 1;

ar, qr ∈ R
+, hr ∈ Z

+, where 0 = h0 < h1 < . . . < hr. Let αi, βi ∈ R
+,

∑r

i=0 αi = 1

and [(1 − δ)
∏r

i=0 βi + δ
∑r

i=0 qi] < a ≤ 1, where 0 ≤ δ ≤ 1 is a constant. If

|f(n, xn, xn−h1
, . . . , xn−hr

)| ≤

r
∑

i=0

δqi|xn−hi
| + (1 − δ)

r
∏

i=0

βi|xn−hi
|αi, (3.9)

for all (n, xn, xn−h1
, . . . , xn−hr

) ∈ Z
0 × R

r+1 then there exists λ0 ∈ (0, 1) such that,

for every solution {xn} of equation (3.1),

|xn| ≤
(

max
−hr≤i≤0

{|xi|}
)

λn
0 , n ∈ Z

0, (3.10)

where λ0 can be calculated in the form established in Theorem 2.2. As a consequence,

the trivial solution of the equation (3.1) is globally asymptotically stable.

Remark 3.2. The equation (3.1) covers a variety of difference equations. For in-

stance, we can mention the equation

4xn = −axn + f(xn−k), a > 0 (3.11)

investigated recently in [7, 11]. Theorem 3.2 ensures that if there exists q, β ∈ R
+, 0 ≤

δ ≤ 1 such that |f(x)| ≤ (δq|x| + (1 − δ)β|x|) for all x, and [δq + (1 − δ)β] < a < 1,

then all solutions of (3.11) converge to zero.
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On the other hand, the condition (3.9) is satisfied by some linear and nonlinear

generalized difference equations. We can mention the equation

xn+1 =

n
∑

i=n−r

δqixi + (1 − δ)

n
∏

i=n−r

βix
αi

i , qi, βi ∈ R (3.12)

for which Theorem 3.2 gives the global asymptotic stability of the equilibrium if

sup
n∈N

( n
∑

i=n−r

δ|qi| + (1 − δ)
n

∏

i=n−r

|βi|

)

< 1, (3.13)

since the equation (3.12) can be rewritten in the form

4xn = −xn + f(xn, . . . , xn−r), (3.14)

with f(xn, . . . , xn−r) =
∑n

i=n−r δqixi +(1− δ)
∏n

i=n−r βix
αi

i . For example, if p > r+1,

then the inequality (3.13) is satisfied by the equation xn+1 = (1/p)(xn + · · · + xn−r)

with δ = 1.

For more general results on the asymptotic behavior of generalized difference

systems, refer [2, Section 9].
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