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ABSTRACT. The purpose of this paper is to develop monotone iteration scheme using the notion of
upper and lower solutions for system of nonlinear finite difference equations, which correspond to the
weakly coupled system of nonlinear reaction-diffusion equations with nonlinear boundary conditions.
Two monotone sequences are constructed for the finite difference equations when both reaction
function and boundary function are mixed quasimonotone. It is shown that these sequences converge
monotonically to a solution of the finite difference system, which leads to existence-comparison result

for the solution of the problem.

1. INTRODUCTION

Various real problems in different fields from science and technology are governed
by a weakly coupled system of nonlinear reaction-diffusion equations. The weakly
coupled systems are well studied by many researchers for both continuous problems
[2, 6, 7] as well as discrete problems [1, 3, 8, 9]. Recently Dhaigude, Kiwne and
Dhaigude, [3], have studied such a system by introducing the notion of upper and
lower solutions together with associated monotone iterations. Here the system is
coupled through reaction and boundary functions. Such systems are also studied
by Pao [7], Chandra etc. [2], for continuous problems. Our aim is to extend the
results in [3] by developing monotone scheme for system of nonlinear finite difference
equations which corresponds to the weakly coupled system of nonlinear reaction-
diffusion equations with nonlinear boundary conditions, when both reaction function

and boundary function are mixed quasimonotone.
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We organize the paper as follows. Section 2 is devoted for the formation of a
system of finite difference equations from corresponding continuous system. In sec-
tion 3, the notion of upper and lower solutions for discrete problem is introduced.
Section 4 deals with development of monotone iterative scheme under mixed quasi-
monotone property of functions. It helps us to construct two monotone sequences.

The existence-comparison theorem is proved in the last section.

2. THE FINITE DIFFERENCE EQUATIONS

In this section we obtain the discrete version of the inintial boundary value prob-
lem (IBVP) for weakly coupled system of nonlinear reaction-diffusion equations with

nonlinear boundary conditions :

uy — DOV + bIVu = fO (2, t,u,v) in Dp
2.1
vy — DAV + b3V = f@(z,t,u,v) in Dp 21)
O 2% 1+ 30 () = oD -
o (:L")ay + Y (x)u = g (x, t, u,v) in St
(2.2)
a(z)(x)% + 8 (z)v = ¢P(z,t,u,v) in St
u(x,0) =W (z) in Q2 23)
2.3
v(z,0) = P (z) in Q2

where € is a bounded domain in R”(p = 1,2,...) with boundary 0Q, Dy = Q x
(0,7],Sr = 00 x (0,T), T > 0. Assume that the functions ¥, ¢® and ¥® for
[ = 1,2 are Holder continuous on their respective domains of their definitions. The
boundary function (¢, ¢®) is in general nonlinear, C" function in (u,v) and may
depend explicitly on (x,t). The reaction function (™), f)) is nonlinear in u and
v respectively. Note that DU (x,t) > 0 and b (z,t) for | = 1,2 are diffusion and

convection coefficients respectively.

We convert the above continuous IBVP (2.1)-(2.3) into finite difference weakly
coupled reaction-diffusion system.Therefore, introduce the following notations. Let
i = (41,192, .. .1p) be amultiple index withi = 0,1,2,..., My,+1and ; = (24, sy, ..., T;,)
the arbitrary mesh point in €2, where M, is the total number of interior mesh points in
the x;, coordinate direction. Denote by €, 2, 9Q,, A, and S, the sets of mesh points
in Q,9Q,00,Q x (0,7] and 9Q x (0, T] respectively and A, denote the set of all mesh
points in Q x (0, 7] where 2 is closure of 2. Assume that the domain Q, = Q, + 0%,

is connected, where 0S,, is the set of boundary mesh points. Suppose (i, n) represent
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the mesh point (z;,t,).
Set Uim = W(Ti, 1) Vi = (T4, 1)
Dl(lzl = D(l)(:ci, tn); b% = b(l)(:ci, tn)

f(l) (Wi, Vi) = f(l) (i, ty, ul(xy, ), v(xs, ty))

9D (Wi, vin) = 9O (i, t, ul(zi, ), v(wi, ) (24)
PP = O () 1=1,2.
uio = u(x;, 0),v;0 = v(x;,0)
Let k,, = t, — t,_1 be n'* time increment for n = 1,2,..., N and h,,, be the spatial
increment in the x;, coordinate direction. Let e, = (0,...,1,0,...,0) be the unit

vector in R” where 1 appears in the v** component and is zero elswhere.
Then the standard first and second order difference operators 6¢) and A®) re-
spectively [1, 4, 5] are given by
(s, t,) = 2k u(z; + hoey, tn) — u(z; — hyey, tn)]

(2.5)
A(”)u(a:i, tn) = h;z[u(zi + hyey, tn) — 2u(xy, t,) + u(x; — hyey, t,)]

and usual backward difference approximation for u; by k! (w;, — win_1).

The implicit finite difference approximation for the equations in parabolic prob-
lem (2.1)—(2.3) is given by

p

k;1<ui,n - ui,n—l) - Z(DZ(’ITBA(V)UZ,TL + bﬁz(s(”)um) = f(l) (Uim, Ui,n)
v=1
p
kgl(vi,n - Ui,n—l) - Z(Dz(?rzA(y)uz,n + bz(izfs(y)uz,n> = f(2) (ui,m Ui,n)v (7'7 n) < AP
v=1
(2.6)
B(l) [uz,n] = g(l) (ui,m Ui,n);
(2.7)
BPWi ) = ¢® (uin, vin),  (i,n) €S,
Ui 0 = ,lvbzla Vio = z'2a (RS Qp (28)
where
BV ) = oM (@) s — |~ ulws, tn) — u(i, )] + B (wi)ule:, ) (2.9)
2.9

BDv;,] = aP () |z — & M olwi, tn) — v(d@i, )] + B8P (2:)v(z4, 1)

In the above boundary approximation, #; is a suitable point in €2, and |z; — Z;|
is the distance between x; and Z;. Here boundary surface is assumed to be parallel
to the co-ordinate planes.

In problems (2.6)-(2.8) the reaction function (), f®) and the boundary func-

tion (g, ¢g?) are assumed to be mixed quasimonotone. We define mixed quasi
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monotone property of reaction function (f), f) and boundary function (g, g®)

as follows:

Definition 2.1. A C! functions (fO, f®); (¢M,¢®) are said to be mixed quasi-

monotone in J C R? if

of) of®2
g <0, g > (0 or vice versa
v U
DD g for (u,v) € J
g <0, g >0 or vice versa
v U

3. UPPER-LOWER SOLUTIONS
We define upper-lower solutions of the system (2.6)—(2.8).

Definition 3.1. Two functions (@, ¥;,) and (@, in) in A, with (@, 9;,) >
(Ui, ;) are called ordered upper-lower solutions of the system (2.6)-(2.8) if they

satisfy the following inequalities

o (i — i) = LW i) > fY (@50 — Bin)

fo Nt — Ui1) — LWO(ts0) < FO (G0 — i) (3,n) € A,

by (Ti — Bime1) — LO(0i0] = f (10 — Tin) (3.1)

k(B = Bin1) = LO[bin) < f (@0 — Bin)

ﬂzo>¢fl)2ﬂzo 5102¢2)Z@10 1€,
and
B(”[ln] > 9( )(@i,n,@z‘,n)
BWla ) > g (ibi 0, 0in)
B®[5;] > ¢ (130, Vi) 52
BP00;] > ¢@ (i, 03n)  (i,n) €S,
Where
LOw,,] = i (DY AW, + 00 5w, ), 1=1,2.
v=1

Now we define the sector denoted by S;, for the pairs (@, ;) and (i, 0;,) of

ordered upper-lower solutions of (2.6)—(2.8) as follows:

Definition 3.2. Let (@, 5, ¥; ) and (@ ., 9;.,) be any two functions in A, with (& ,,, 0;,) >

(Ui p, Uin) then we define the sector S;,, as
Si,n == {(ui,TL’Ui,n) S Kp : (ﬂi,na @z,n) S (ui,navi,n) S (ai,nvr&i,n)} (33)

where the inequalities are both component wise as well as point wise.
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Suppose there exist nonnegative functions 71-(7172, 71(%2 such that the function (f®, )
satisfies the following one sided Lipschitz condition:

m,n

O i, vin) = O (s 0in) 2 = (Ui = 10,) - Whenwi > i, -
7 ’ 3.4
FO (Ui, vig) — fP (ui,n, V) = = (v — v),,)  whenwi, > v,

for any (w;n, vin), (u},,v;,) in the sector S; .

,n) “1,n

Suppose there exist nonnegative functions oM 5@ such that for any (Ui, Vin),

LM’ 7 L,n

(U}, v} ,,) in the sector S;,, the function (¢, g) satisfies the following one sided

Lipschitz condition:

g(l)(um, Vin) — g(l)(u;m, Vin) > —Uﬁ?(%m — ;) whenu;, > u,
9D (Ui Vi) = ¢ (Ui, v],) > =000 (Vi — vL,)  Whenw, >0l 39
Let
FO (w0, v30) = %(Qum + F D (Ui, Vi)
FO (i, vi0) = Yimvin + £ (10, 030)
G(l)(uz ny Vi) = Uz'(,lrgui,n + 9(1)(uz‘,n7 Vin) 39
G® (Ui, Vi) = O-z'(?ravi,n + g (Uz ns Vin)
Now we prove monotone property of F, GO for [ =1, 2.
Lemma 3.3. Suppose that (win,vin) and (uj,,v;,) are any two functions in the

!/ /
zn’ zn

sector S; n such that (u;,, vin) > (u;
(3.4) and (3.5) hold; then

) and suppose that the Lipschitz conditions

(1) FO (0, 0!

(Wi, Vi) = F (], Vi)

F(Q)(um, Vin) > F® (U 1, V5 )

(i1) G(l)(ui,n, v;n) > G(l)(ug,n, Vin)
el (Wi, Vip) > G (u;n, vz’n)

PROOF: We prove

FO (ugp,vf,) = FO (U 0;)

Using (3.6), we have
F(l) (uim? 'Uz{,n) - F(l) (u;,n’ U;,n) = 71(,171) (uim - u;,n) + .f(l) (ui,na U;,n) - f(l) (u;,n - UL”)
= Iy (i — ) + fD (i, v),) — O, — v],)]
+ [f(l) (uz no v; n) f(l ( - 'Ui,n)]

Inequality follows from Lipschitz condition (3.4) and mixed quasimonotone property
for the function f(.
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Similarly, we can prove

F(2) (Uim, Ui,n) Z F(z) (u/ U/ )

,n) Yin

using Lipschitz condition (3.4) and mixed quasimonotone property for the function
f®. This proves (i).

Now we prove (ii). Using (3.6), we have

G (i, vi) = GO (07 ) = 010 (00 = 0]) + 9P (Wi vin) = 9@ (il = 0],)
The result follows from Lipschitz condition (3.5) and mixed quasimonotone property
for the function ¢®.

Similarly, we can prove G (u;,,v},) > GW(u},,, vy ),using Lipschitz condition
(3.5) and mixed quasimonotone property for the function g(. The proof of the

Lemma is completed.
Lemma 3.4 (Positivity Lemma, Pao, [8]). Suppose that u;,, satisfies

p
(1) krjl(ui,n - ui,n—l) - Z (Di,nAyui,n + bi,ndyui,n)) + Ci,nui,n Z 0 (Z, n) € Ap

v=1
(i) a(wi, tn)|e: — &il[u(zs, tn) — w(Zy, tn)] + Bz, t)u(z, t,) >0 (i,n) €5,
(111) U;.0 > 0e Qp

where ¢; , > 0, then u;, > 0 in Kp

4. MONOTONE ITERATIVE SCHEME

(0) ()
(m) ™1 simultaneously from the following

wn 0 Yin

We choose suitable initial iteration(u ) as either (@, 0in) Or (Uip, Uip)
and construct a sequence of iterations {u
iteration processes I and II.

Iteration Process I :

k@) —an) ) — LOmE] + 45 = FO@ Y oY)
k@ — o)) — LA + yw) = FO@! o)
B(l)[ﬂ%)] + Ul(’lgﬂl(z) _ G(l)(ﬂ%—l)’yg’rz—l))
B + ol = GO @ vl Y) (4.1)
) =
uy =

when m=1,2,...
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Iteration Process 11 :

Bt — ) = L0+ Al = FO @) o)
ki) = o7l ) = LO) 440 = FO @, o)

zn—zn

(
(

B )[ (m>] 4+ oWy m — G(1)(u(m—1) _(m_1)>
(

B® [ )] +g@ym — @

Z’I’L—ZTL

when m=1,2,.

The construction of sequence of iterations {um , m } is possible if we split up

the iteration process I & II given above into the following four sub-iteration processes.

Set

,n ZTL

.;2”(1)[u(m)] = ;1(u(m) ul™ ) — LW [u (m)] Dy m
) — L@ [Uﬁm)] 1y m)

i,n wn ) Yin—1 i,n i,n Yi,n
O[] = BOWD] + o ul 43)
BOW = B+ olhu

g(l)[ﬂ(m)] (1)~ ( +f(1 ( (m 1) U(m—l))

_fyzn 2,

BYE") = o 4+ W@ (m R
wg =

where m =1,2,...

Sub-Iteration Process I (B) :

L] = 42D 4 f@ g ginly
B = oY 4 g (@ En%v?z V)
_(m 2
o) =

where m =1,2, ...

Sub-Iteration Process II (A) :

g(l)[u( )] 1), (m—1) +f(1( (m 1) E(m—l))

~2in _,}/zn—zn ) Y,n
BONu) = o )ul ™ + g0, <m Vo)
uly) =y

where m = 1,2, ...
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Sub-Iteration Process II (B) :

2 m—1) m—1
‘”S/ﬂ@ [—zn]_fyz(rz—zn +f ( 7U§,n ))
BN = ofun ) + 9P 5,2,25”; ")

oY) = ¢

7

where m =1,2,...

We start with initial iteration as (_5072, 6502) (Tip, U; n) and ( u; ,2, vgog) (Ui s Vi)
and obtain the sequences denoted by {um ,_Z n '} and {ul s Z n ™1 respectively, from

the sub-iteration processes I A, I B, II A and II B simultaneously.

Lemma 4.1. Let (f), f ) cmd (g(1 ,g?) be mmed quasimonotone C- functions in

Sin. Then the sequences {um : Z n ™1 and {um ,_m ™\ obtained from the iteration pro-
cess (4.1), (4.2) simultaneously by using the initial iterations (ufrz,vforz) = (Ujn, Vi)

and (u “3, UZ((B) (Ui, Vi) respectively possess the monotone properly
@, pm Dy < @™ o) < @™ 7Y < @V F D), (Gn) €K,

Zi,n » Zi,n U, n » Yin

where m = 1,2, ...

PROOF: Let w;, = a0 — Uy = i — Ty

Zin = U;p — Uiy

2(1)[wi ] = g(l)[ai o] — F(l)(ﬂgo U(O))
- kirtl(,a’v" - ’aivn—l) - L(l)[ﬁz,n] - f(l)('ai,na @z,n) >0
%(1)[%‘ ] = %(1)[%‘ a] — G(l)(ﬂ@ U(0)>
= B(l)[ﬂim] - 9(1)(ﬂi,n>@i,n) > 0.

By (3.1) and iteration process (4.1)

Applying Lemma 3.4, we get w;,, > 0, which gives

= (1)
uz’,n Z ui,n
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By (3.1), (3.2), (3.6) and iteration process (4.1),

Z® [Zz n] = 2(2)[% n] F(2)( flrz,vg%
ke (Bi — Biner) — L [050] — [P (1 zn’lﬁi,”)
Zf(2)(,a n>'U7,n) f(2 ( 2n7{]i,n)
0 - @ is quasimonotone nondecreasing and ;,, > HQ) .
(o f q g in > Uy,
B 2] = B[] — GO (@), T10)
- B® [0;.0] — g(z)(u(l) Bin)
Z 9(2) (ﬁi,na ﬁz,n) - 9(2) (Ugyz, U; n)

>0 (- ¢ is quasimonotone nondecreasing and Uiy > ﬂﬁﬁi)

By (3.1) and iteration process (4.1)

Zinm = v 0 6570) = 62,0 - ¢2(2) >0
By Lemma 3.4, we get z;, > 0. So 0,9 > 510)
Similarly letting Wiy = 2173 QEOTZ ﬂ(l) Uj
Zin (1) ’U(O) =M - Vi n

Then by (3.1), (3.2), (3.6) and iteration process (4.2),similar arguments lead to

(1

Uiy = Uiy and Qﬁz@m
Now let w(l) Ug,l) _2173 zl(ln) = ES) _5172

Then by iteration processes (4.1), (4.2) and Lemma 3.3

g(l)[w(l)] _ g(l)[ﬂﬁl)] _g(l)[uﬁl)]

~i,n

— PO, o) - PO, 2 0

AV = 2" >[ 1 A m

zn’ zn Lino Yin

By iteration process (4.1) and (4.2)
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By iteration process (4.1), (4.2) and Lemma 3.3

2 [zfl)] — 2 [@(1)] _ @ [v(l)]

= FO@Y) 70 — FOW!) 0% >0
B[ = B[] - B[]

_G (zn? zn) G(2 (_ma_go,z)zo

By iteration process (4.1) and (4.2)

LW = FO@L, o) = FO@S) o) 2 0
AV = GO@l Y oY) - GY@ o) > 0
By iteration process (4.1)
) = ™ = o~ =0

Lemma 3.4 implies that w%) > 0. So HE’ > u(m+1)

By iteration process (4.1) and Lemma 3.3

LR = FO@ v ) - FO@R ™ v 2 0
0

AL = G0 @, ) - GO o) >

By iteration process (4.1)

R I
Lemma 3.4 implies that zl( ™) > (. Therefore UE ™ > @(TZH)
Similar arguments yield
A A > o
and EEZZH) > QEZZH), _Z(-ZZH) > QZ(TZH)

Thus monotone property follows from the principle of induction, for all m. This

completes the proof.
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Clearly
: —(m) —(m)y _ (—
hm (uzn 7Ui,n ) - (ulmu v; n)v
Tim (), o)) = (W 05, o
4.4
lim (HETZ)7QETZ)) = (Hi,fu Y n)’
and  Tim (uly), 7)) = (u,, Tin),

exist inA,. As m — oo, in the iteration process (4.1) and (4.2) implies that (%, ;)
and (u

ZTL?

v; ,) are solutions of the discrete problem (2.6)—(2.8).

5. EXISTENCE-COMPARISON THEOREM

Now, we can prove existence-comparison theorem for the solution of the discrete
problem (2.6)—(2.8).

Theorem 5.1. Let (fOV, @) and (g9, g®) be mized quasimonotone C"-functions
in Sin. Let (Ui, Vin) and (Ui, 0;n) be ordered upper—lower solutwns of the dis-
™1 and {ul™ ZTZ } obtained

from the iteration processes (4.1) and (4.2) szmultaneously with initial iterations

crete problem (2.6)—(2.8). Then the sequences {u

ZTL7 7,n7

(ag?,z,@f.?g) = (Ui, Vin) and (u Hz,yz(orz) = (Ujn, Vin) converge monotonically to their
respective solutions (Wi, Uiny, (U, Vi) Of the discrete problem (2.6)-(2.8). More-
over

(Uisns Vi) < (WU Vi) < Wiy Vi) < (Gin, Vi) (1,m) € Ay (5.1)

PROOF : By results in Lemma 4.1, it is observed that the limits (%, ,,, 7; ) and
(U s V;,,,) in (4.4) exist and are solutions of the discrete problem (2.6)-(2.8). These

solutions satisfy the relation 5.1. This completes the proof.
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