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ABSTRACT. In this paper we study a boundary value problem for a discrete elliptic equation.

The focus will be on the structure of the spectrum of this problem and the existence of a positive

eigenvector corresponding to the smallest eigenvalue. Comparison results for the eigenvalues are also

established as the coefficients of the problem changes.
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1. INTRODUCTION

We consider the Dirichlet boundary value problem for the elliptic differential

equation in the rectangle [0, m + 1] × [0, n + 1]

uxx + uyy + λa(x, y)u(x, y) = 0, 0 < x < m + 1, 0 < y < n + 1, (1.1)

u(x, 0) = u(x, n + 1) = 0, 0 < x < m + 1, (1.2)

u(0, y) = u(m + 1, y) = 0, 0 < y < n + 1, (1.3)

where m, n ≥ 1 are fixed integers. Define

uij = u(i, j), aij = a(i, j), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1,

u = (u11, · · · , um1, u12, · · · , um2, · · · , u1n, · · · , umn)T ,

A = diag(a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn).

Then the system (1.1) with the boundary conditions (1.2)-(1.3) is discretized as

Du = λAu, (1.4)
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where D is an mn × mn matrix given by

D =





































L −Im 0 0 · · · 0 0 0 0

−Im L −Im 0 · · · 0 0 0 0

0 −Im L −Im · · · 0 0 0 0

0 0 −Im L · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · L −Im 0 0

0 0 0 0 · · · −Im L −Im 0

0 0 0 0 · · · 0 −Im L −Im

0 0 0 0 · · · 0 0 −Im L





































,

Im is the identity matrix of order m, and L is an m × m matrix given by

L =



























4 −1 0 · · · 0 0 0

−1 4 −1 · · · 0 0 0

0 −1 4 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 4 −1 0

0 0 0 · · · −1 4 −1

0 0 0 · · · 0 −1 4



























.

We also consider the Dirichlet boundary value problem for the elliptic differential

equation in the rectangle [0, m + 1] × [0, n + 1]

uxx + uyy + λb(x, y)u(x, y) = 0, 0 < x < m + 1, 0 < y < n + 1,

u(x, 0) = u(x, n + 1) = 0, 0 < x < m + 1,

u(0, y) = u(m + 1, y) = 0, 0 < y < n + 1,

whose discretization is

Du = λBu, (1.5)

where

B = diag(b11, · · · , bm1, b12, · · · , bm2, · · · , b1n, · · · , bmn).

Throughout the paper, we assume that m and n are fixed integers and

(H) aij and bij are non-negative for 1 ≤ i ≤ m, 1 ≤ j ≤ n with
∑

i,j aij > 0 and
∑

i,j bij > 0.

If λ is a number (maybe complex) such that the problem (1.4) has a nontrivial

solution {yi}mn
i=1, then λ is said to be an eigenvalue of the problem (1.4), and the

corresponding nontrivial solution {yi}mn
i=1 is called an eigenvector of the problem (1.4)

corresponding to λ. Similarly, if µ is a number such that the problem (1.5) has a non-

trivial solution {yi}mn
i=1, then µ is said to be an eigenvalue of the problem (1.5), and the

corresponding nontrivial solution {yi}mn
i=1 is called an eigenvector of the problem (1.5)

corresponding to µ.
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The research on comparison of eigenvalues has been very active recently since the

earlier work of Travis [14]. A representative set of references for these works would be

Davis, Eloe, and Henderson [2], Diaz and Peterson [3], Hankerson and Henderson [4],

Hankerson and Peterson [5, 6, 7], Henderson and Prasad [8], and Travis [14]. However,

in all the aforementioned papers, the focus has been on the smallest eigenvalue.

Recently, a new approach was introduced in [9] for the eigenvalue comparisons

of second-order discrete Sturm-Liouville problem. With this approach, we were able

to compare all eigenvalues of a larger class of problems which has never been studied

in the literature (see, for example, Atkinson [1], Jirari [10], Shi and Chen [12, 13]).

Along the same lines, in this paper we will establish the comparison theorems for all

the eigenvalues of the problems (1.4) and (1.5). We will also prove the existence of

positive eigenvector corresponding to the smallest eigenvalue of the problem (1.4).

2. EIGENVALUE COMPARISONS

In this section, we denote by x∗ the conjugate transpose of a vector x. A hermitian

matrix C is said to be positive semidefinite if x∗Cx ≥ 0 for any x. It is said to be

positive definite if x∗Cx > 0 for any nonzero x. In what follows, we will write X � Y if

X and Y are hermitian matrices of the same order and X−Y is positive semidefinite.

First, we establish a few technical results.

Lemma 2.1. D is positive definite.

Proof. Obviously, both L and D are real symmetric. For any y = (y1, . . . , ym)T ∈ Rm,

yTLy = 4

m
∑

i=1

y2

i − 2

m−1
∑

i=1

yiyi+1 = y2

1 + 2

m
∑

i=1

y2

i + y2

m +

m−1
∑

i=1

(yi − yi+1)
2 ≥ 2yTy . (2.1)

Let x be a vector in Rmn, being partitioned according to the block matrix D, i.e.,

x = (xT
1 , xT

2 , . . . , xT
n )T and xi ∈ Rm, 1 ≤ i ≤ n .

In view of (2.1), we have

xT Dx =
n
∑

i=1

xT
i Lxi − 2

n−1
∑

i=1

xT
i xi+1 ≥ 2

n
∑

i=1

xT
i xi − 2

n−1
∑

i=1

xT
i xi+1

= xT
1 x1 +

n−1
∑

i=1

(xi − xi+1)
T (xi − xi+1) + xT

nxn ≥ 0 . (2.2)

Whenever xT Dx = 0, the equation (2.2) indicates that x1 = 0, xi − xi+1 = 0, 1 ≤ i ≤
n − 1, and xn = 0, i.e., x = 0. Thus, we have xT Dx > 0 for x 6= 0. The proof is

complete.



192 J. JI AND B. YANG

Next, we will focus on the study of the elements of the inverse matrix of D. To

this end, in what follows we will write X = (xij) ≥ Y = (yij) if xij ≥ yij for all i, j,

and write X = (xij) > Y = (yij) if xij > yij for all i, j. A matrix is said to be positive

if each element of the matrix is positive. We also need to employ the properties of

the Kronecker product A ⊗ B = (aijB) ∈ Rpm×qn of two matrices A = (aij) ∈ Rp×q

and B ∈ Rm×n. Let us first collect a few properties of A ⊗ B.

Lemma 2.2. There hold the following statements:

(1) Im ⊗ In = Imn.

(2) If A ≥ 0 and B ≥ C, then A ⊗ B ≥ A ⊗ C.

(3) If AC and BD exist, then (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

(4) If A and B are nonsingular, then A ⊗ B is also nonsingular and (A ⊗ B)−1 =

A−1 ⊗ B−1.

(5) Let A be an m × m matrix with eigenvalues λ1, λ2, . . . , λm and let B be a p × p

matrix with eigenvalues µ1, µ2, . . . , µp. Then the mp eigenvalues of A ⊗ B are

λiµj, 1 ≤ i ≤ m, 1 ≤ j ≤ p.

The first four results of Lemma 2.2 can be derived immediately from the definition

of Kronecker product. The proof of the last part of the lemma and many other

interesting properties of the Kronecker product can be found in [11, page 28].

Denote by Jm the m × m matrix of the form

Jm =



























0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

0 0 0 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0



























.

It is easy to see that

Im +
(

Jm + JT
m

)

+
(

J2

m + (JT
m)2
)

+ · · ·+
(

Jm−1

m + (JT
m)m−1

)

= emeT
m , (2.3)

where em = (1, 1, . . . , 1)T ∈ Rm, a vector of all ones. We note that L = 4(Im − F )

where F = 1

4
(Jm +JT

m) and that the spectral radius ρ(F ) satisfies ρ(F ) ≤ ‖F‖∞ = 1

2
.

Thus, we have

L−1 =
1

4
(Im − F )−1 =

1

4

∞
∑

i=0

F i . (2.4)

It is easily seen from Jm ≥ 0 that

F i =
1

4i
(Jm + JT

m)i ≥ 1

4i

(

J i
m + (JT

m)i
)

, for i ≥ 1 . (2.5)

Combining (2.3), (2.4), and (2.5), we have
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L−1 ≥ 1

4

(

Im +
∞
∑

i=1

1

4i

(

J i
m + (JT

m)i
)

)

≥ 1

4m

(

Im +
m−1
∑

i=1

(

J i
m + (JT

m)i
)

)

=
1

4m
emeT

m > 0 . (2.6)

In view of (2.6), we have

(L−1)i ≥ mi−1

4i m
emeT

m ≡ τiemeT
m > 0, for i ≥ 1 , (2.7)

where τi ≡ mi−1/4mi. It is seen from (2.1) that yT Ly > 2yTy for y 6= 0. Therefore, we

have min λi(L) = min{yTLy/yTy : y 6= 0} > 2 which implies ρ(L−1) < 1/2. Define

G ≡ (Jn + JT
n ) ⊗ L−1. It is obvious from (2.6) that G ≥ 0. Also, in view of part (5)

of Lemma 2.2, together with |λi(Jn + JT
n )| ≤ 2 and ρ(L−1) < 1/2, we have ρ(G) < 1.

Observe that the matrix D can be written as

D = In ⊗ L − (Jn + JT
n ) ⊗ Im = (In ⊗ L)(Imn − G) .

Therefore, together with (2.6) and the fact that G ≥ 0 and In ⊗ L−1 ≥ 0, we have

D−1 = (Imn − G)−1(In ⊗ L)−1 = (

∞
∑

i=0

Gi)(In ⊗ L−1)

≥ (

n−1
∑

i=0

Gi)(In ⊗ L−1) =

(

n−1
∑

i=0

(Jn + JT
n )i ⊗ (L−1)i

)

(In ⊗ L−1)

=

(

n−1
∑

i=0

(Jn + JT
n )i ⊗ (L−1)i+1

)

. (2.8)

Lemma 2.3. D−1 is a positive matrix.

Proof. Define τ = min1≤i≤n τi = mn−1/4nm. It is seen from (2.7) that

(L−1)i+1 ≥ τemeT
m, 0 ≤ i ≤ n − 1 . (2.9)

Combining (2.3), (2.8), and (2.9), with the help of part (2) of Lemma 2.2, we have

D−1 ≥
(

n−1
∑

i=0

(Jn + JT
n )i ⊗ τemeT

m

)

≥ τ

(

In +

n−1
∑

i=1

(

(Jn)i + (JT
n )i
)

)

⊗ emeT
m

= τeneT
n ⊗ emeT

m = τemneT
mn > 0 . (2.10)

Note that the identity given in (2.3) is used here for Jn instead of Jm.

Lemma 2.4. If λ is an eigenvalue of the problem (1.4) and y is a corresponding

eigenvector, then

(a) y∗Ay > 0.

(b) λ is real and positive.
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(c) If ρ is an eigenvalue of the problem (1.4) which is different from λ and x is a

corresponding eigenvector, then we have xT Ay = 0.

Proof. (a) The assumption (H) indicates that y∗Ay ≥ 0. Assume to the contrary that

y∗Ay = 0. Obviously, we have
√

A y = 0 where

√
A = diag(

√
a11, · · · ,

√
am1,

√
a12, · · · ,

√
am2, · · · ,

√
a1n, · · · ,

√
amn).

Then, we have Dy = λAy = λ
√

A
√

A y = 0, which, together with Lemma 2.1, implies

y = 0. This is a contradiction.

(b) We can write

λy∗Ay = y∗(λAy) = y∗Dy = y∗D∗y = (Dy)∗y = (λAy)∗y = λ̄y∗A∗y = λ̄y∗Ay,

which, together with (a), implies that λ = λ̄, i.e., λ is real. Finally, the relations

above indicate that λ = y∗Dy/(y∗Ay) > 0 thanks to Lemma 2.1 and the first part of

this lemma.

Part (c) follows from

(λ − ρ)xT Ay = λxT Ay − ρxT Ay = xT (λAy) − (ρAx)T y = xT Dy − (Dx)T y = 0.

The proof is complete.

Lemma 2.5. The eigenvalues of the problem (1.4) are related to those of the matrix

D− 1

2 AD− 1

2 as follows.

(a) If λ is an eigenvalue of the problem (1.4), then 1/λ is an eigenvalue of the matrix

D− 1

2 AD− 1

2 .

(b) If α is a positive eigenvalue of D− 1

2 AD− 1

2 , then 1/α is an eigenvalue of the

problem (1.4).

Proof. (a) If λ is an eigenvalue of the problem (1.4), and y is a corresponding eigen-

vector, then we have λAy = Dy with λ > 0 due to Lemma 2.4. Thus, we have

λAy = D
1

2 D
1

2 y, and D− 1

2 AD− 1

2 (D
1

2 y) =
1

λ
(D

1

2 y).

The result in (b) can be proved similarly. The proof is complete.

Next, we state the well-known Perron-Frobenius Theorem [15, page 30].

Theorem 2.6 (Perron-Frobenius). Let C be a real square matrix. If C is also a non-

negative irreducible matrix, then the spectral radius ρ(C) of C is a simple eigenvalue

of C, associated with a positive eigenvector. Moreover, ρ(C) > 0.

Theorem 2.7. If λ1 > 0 is the smallest eigenvalue of the problem (1.4), then λ1 is a

simple eigenvalue, and there exists a positive eigenvector y > 0 corresponding to λ1.



EIGENVALUE COMPARISONS FOR THE DISCRETE ELLIPTIC EQUATION 195

Proof. We note that D−1Ay = (1/λ1)y. Thus, 1/λ1 is the maximum eigenvalue of

D−1A and y is an eigenvector corresponding to 1/λ1.

In the case where aij > 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we obtain that the

matrix D−1A is positive (therefore irreducible) in view of Lemma 2.3. Therefore, the

result follows immediately from Theorem 2.6.

In the case where some of the aij ’s are zero, there exists a permutation matrix P

such that

P T AP =

(

Z 0

0 0

)

,

where Z = diag(ā1, . . . , āt), and ā1, . . . , āt are the positive elements in the set

{a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn}.

Then, (1.4) becomes

1

λ
P Tu = P T D−1P

(

Z 0

0 0

)

P Tu. (2.11)

Note that P T D−1P

(

Z 0

0 0

)

is in the form

(

W 0

V 0

)

, where W is nonsingular and

both W and V are positive matrices in view of Lemma 2.3. If λ1 is the smallest

eigenvalue of (1.4), then 1/λ1 is the largest eigenvalue of W . Therefore, λ1 is simple.

Lemma 2.6 indicates that there exists a positive eigenvector u1 of W corresponding

to 1/λ1. Finally, we see that

y ≡ P

(

u1

λ1V u1

)

> 0

is a positive eigenvector of (1.4) corresponding to λ1. This completes the proof.

Lemma 2.8. Let N ≥ 1 be the number of positive elements in the set

{a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn}.

Then there are N eigenvalues λi (i = 1, 2, . . . , N) of the problem (1.4) and αi =

1/λi (i = 1, 2 . . . , N) are the only positive eigenvalues of D− 1

2 AD− 1

2 .

Proof. The assumption (H) implies N ≥ 1. Suppose that α1 ≥ α2 ≥ · · · ≥ αmn ≥ 0

are all eigenvalues of D−
1

2 AD−
1

2 . The fact that D−
1

2 AD−
1

2 is real and symmetric

indicates that there exists an orthogonal matrix Q such that

QT D−
1

2 AD−
1

2 Q = diag(α1, α2, . . . , αmn). (2.12)

Therefore, we have

rank(A) = rank
(

QT D− 1

2 AD− 1

2 Q
)

= rank (diag(α1, α2, . . . , αmn)) ,

indicating that the number of positive αi is the same as that of positive aij in A,

which is equal to N .



196 J. JI AND B. YANG

Thus, in view of Lemma 2.5, we see that {λi = 1/αi : i = 1, 2 . . . , N} gives the

complete set of eigenvalues of the problem (1.4). The proof is complete.

Theorem 2.9. Assume that hypothesis (H) holds. Let N be the number of positive

elements in the set

{a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn}

and M be the number of positive elements in the set

{b11, · · · , bm1, b12, · · · , bm2, · · · , b1n, · · · , bmn}.

Let {λ1 ≤ λ2 ≤ · · · ≤ λN} be the set of all eigenvalues of the problem (1.4) and

{µ1 ≤ µ2 ≤ · · · ≤ µM} be the set of all eigenvalues of the problem (1.5). If aij ≥ bij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, then λi ≤ µi for 1 ≤ i ≤ M .

Proof. In view of Lemma 2.8, it is easily seen that

α1 =
1

λ1

≥ α2 =
1

λ2

≥ · · · ≥ αN =
1

λN

> 0, and αN+1 = · · · = αmn = 0 (2.13)

and

β1 =
1

µ1

≥ β2 =
1

µ2

≥ · · · ≥ βM =
1

µM

> 0, and βM+1 = · · · = βmn = 0 (2.14)

are the eigenvalues of D− 1

2 AD− 1

2 and D− 1

2 BD− 1

2 , respectively. If aij ≥ bij for all

1 ≤ i ≤ m, 1 ≤ j ≤ n, then A � B, implying

D− 1

2 AD− 1

2 � D− 1

2 BD− 1

2 . (2.15)

By Weyl’s inequality and (2.15), we have

αi ≥ βi ≥ 0, 1 ≤ i ≤ mn. (2.16)

The desired result follows immediately from (2.13), (2.14), and (2.16).

Finally, we remark that the smallest eigenvalue of the problem (1.4) is simple as

indicated in Theorem 2.7. But the other eigenvalues of the problem, in general, may

not be simple as is illustrated by the following example.

Example 2.10. Consider the simple case where m = n = 2 and a(x, y) ≡ 1 in (1.1).

Then we have Du = λAu where u = (u11, u21, u12, u22)
T , A = diag(1, 1, 1, 1), and

D =













4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4













.

A simple calculation leads to λ1 = 2, λ2 = λ3 = 4, λ4 = 6. In this example, λ1 is

simple, and λ2 = λ3 has multiplicity 2.
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