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ABSTRACT. The aim of this note is to show that the following difference equation

p Tp—2\¢
po = 2 (F22)
Tn In

where p,« > 0, has positive nonoscillatory solutions which converge to the positive equilibrium

- 1+1+4p
n 2

AMS (MOS) Subject Classification. 39A10.

. In the proof of the result we use a method developed by L. Berg and S. Stevic.

1. INTRODUCTION AND PRELIMINARIES

Recently, there has been a lot of interest in studying the global attractivity, the
boundedness character and the periodic nature of nonlinear difference equations. For

some recent results see, for example, [1-27].

In [7] the authors have studied the behavior of all positive solutions of the differ-

ence equation

b + Tn—2

Tpt1 = n=20,1,2 ...

n

where p is a positive real parameter and the initial values z_o,x_1, ¢ are positive
real numbers. For every value of (positive) parameter p, there exists a unique positive

equilibrium 7 which satisfies the equation
T=T+p.
In this note we investigate the behavior of positive solutions of the difference equation

xn+1:£+(%_2> C n=0,1,2,... (1)
Tn T

where p, a« > 0, and the initial values x_5,x_1, o are arbitrary positive real numbers.

Note that the positive equilibrium of Eq (1) also satisfies the equation 7% = T + p.
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We say that a solution (z,,) of equation (1) is bounded and persists if there exists

positive constants P and () such that
P<zx,<@Q for n=-2,-1,0,1,...

A positive semicycle of a solution (x,,) consists of a “string” of terms {x;, i1, ..., Tm
) +1, ) )

all greater than or equal to T, with [ > —2 and m < +o00 and such that
either [ =—2, or [ > —2and 2, <7,

and

either m =00, or m < oo and Z, <7.

A negative semicycle of a solution (z,,) consists of a “string” of terms {x;, x;11, ..., Tm },
all less than to =, with [ > —2 and m < oo and such that

either [ =—-2, or | > —2and x,_, > 7,

and

either m =00, or m < oo and x4, > T.

The first semicycle of a solution starts with the term x_, and is positive if x_5 > 7.
We now investigate oscillation and nonoscillation of positive solutions of the difference
equation (1). We shall prove two following theorems, which are similar to the results

from paper [7] (see also [19]).

Theorem 1.1. Let {z,}2°, be a positive solution of Eq (1) for which there exists
N > =2 such thatxy <T andxny1 > T, orxy > T and xyiq < T. Then the solution
{2,}2°, oscillates about the equilibrium T with every semicycle (except possibly the

first) having at most two terms.

Proof. Let N > —2 such that xy < T < xy11. The case where zyy1 < T < zy is
similar and will be omitted. Now suppose that the positive semicycle beginning with
the term x .1 has two terms. Then xy < 7T < x40 and so

l’ «
TNy = —2 +< N) <Pii==
TN42 ITN+2 T

The proof is completed. 0
Theorem 1.2. All nonoscillatory solutions of Eq (1) converge to the positive equi-
librium 7.

Proof. We will show the proof of the theorem in the case of a single positive semicycle.
The case of a single negative semicycle is similar and will be omitted. Assume that
z, > T for all n > —2. We first claim that for this solution

Tp_o > x, foralln=20,1,2,...
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For the sake of contradiction assume that there exists N > 0 such that zy_2 < xn.

Using Eq (1) we have

x_ (07
xNH:ﬁJr( al 2) <P 1<z
TN TN TN x

which is a contradiction and so
T<z,<x, o forn=0,1,2,...
In addition for 7 = 0, 1 there exists «q, a; such that
lim zo,1; = ay; 1 =0, 1.
n—o0

It follows that {ag, a1, o, g, . . .} is a periodic solution of not necessarily prime period
two. On the other hand Eq (1) has no prime period two solutions, and so ag = a4

=7.
The proof is completed. 0

2. ON POSITIVE NONOSCILLATORY SOLUTIONS OF THE
DIFFERENCE EQUATION (1)

Our aim in this note is to solve the following problem. Do there exists nonoscil-
latory solutions of Eq (1)?7 We will solve this problem by a method due to L. Berg
and S. Stevié, see, for example, [1]-]5], [20, 22, 23, 24, 26, 27].

Note that the linearized equation for Eq (1) about the positive equilibrium 7 is

p+ax o'
Yn+l = ———5Yn T =Yn—2
T x
p+ax «Q
Ynt1 + —  Yn — ZYn—2= 0 (2)
T x

From Eq (1) we have T = g +1, 22 =7 + p, and
T

R a

Ynt1+———5Yn— —Yn-2=10
T T
TYni1+ (T +a— 1Dy, —ay, =0 (3)
The characteristic polynomial associated with Eq (3) is
pt) =T+ T+a—-1Dt* —a=0 (4)
1++1+4p
2

Since p(0) = —a < 0, p(1) = 27 —1 > 0 with T =
p>0,a >0 and

> 1 for every

p(t) =37t + 2T +a— 1)t >0

when t € (0, 1], it follows that for each p > 0, a > 0, there is unique positive root
to of the polynomial belonging to the interval (0,1). As suggested by Stevi¢ in [24],
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this fact motivates us to believe that there are solutions of Eq (1) which have the
following asymptotics
Ty, =T+ aty + o(t) (5)

where a € R and ¢, is the above mentioned root of the polynomial (4). Asymptotics
for solutions of difference equations have been investigated by L. Berg and S. Stevi¢,
see, for example, [1-6], [9-27] and the reference therein. The problem is solved by

constructing two appropriate sequences vy, and z, with
Yn < Tp < 2 (6)

for sufficiently large n. In [1], [2] some methods can be found for the construction of
these bounds, see, also [3, 4].

From (5) and results in Berg’s paper [3, 4] we expect that for k > 2 such solutions
have the first three members in their asymptotics in the following form

On =T + at™ + bt (7)

Since Eq (1) is an autonomous one, the parameter a remains arbitrarily, whereas
b must have the structure b = a®*A with A independent from a (see the proof of
Theorem 3.1). We need the following result in the proof of the main theorem. The
proof of the result can be found in [23] and [24].

Theorem 2.1. Let f : I¥"2 — I be a continuous and nondecreasing function in each
argument on the interval I C R, and let (y,) and (z,) be sequences in I with y, < z,

for n > ngy and such that

Yn—k < f(n7 Yn—k+15- - - 7yn+1)7 (8)
fn, znpaty ooy Zna1) < Zneg, forn>ng+k— 1.
Then there is a solution of the following difference equation
Tk = f(N, Tppr1y -+ Tnga) (9)

with property (6) for n > ny.

3. THE MAIN RESULT

In this section, we prove the main result in this note.

Theorem 3.1. For each p,a > 0 there is a nonoscillatory solution of Eq (1) con-

verging to the positive equilibrium

1++v1+4p

T=—"Y_—C

2
with the asymptotic behavior (7).
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Proof. First note that Eq (1) can be written in the following equivalent form

1
_ b\
Tpn—2 = | Tnt1 — ZL’_ Tn.-
n

Since
fe 11—«
Tn41Tn =P+ Tp_oT)
we have
Lnt1Tn > P,
111
Tp—2 = ($n+1xn - p)aI”
and
1 a1
F(xn—% Tn—1, Tn, xn—l—l) = (xn—l—lxn - p)axna — Xy =20 (10>
Let

fla,y) = (z%y — pr®)a.

Then it is obvious that f increases in y on the interval (0, 0o) for each fixed x € (0, 00).
On the other hand

of

oy () = —(a%y = pre e oty — pla— 1)a?)

1
(6%
1 _ 1.9 oo
(" Ny —p))a a2 (azy + p(1 — a)),

which is obviously positive on the set A = {(z,y) € R2 : zy > p}, if a € (0,1].
On the other hand,

L= L

(zy — p))a 1z 2 (alzy — p) +p) >0,

on the set A, also for oo > 1.

Let [ = [T,00). Since for z,y € [T,00), zy > T*> = T+ p > p, we have that
[Z,00)? C A, so that
min f(x,y) = f(x,T) =7,
(x,y)epf( y) = f(T.7)
that is,

f i [E,00)" — [T, 00),

and f is increasing in both variables on [T, o).
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We expect that solutions of Eq (1) have the asymptotics approximation (7) with
a > 0. Thus, we can calculate F' (@, _2, ©n_1, ©n, Pnsr1). We have

a—1
a —

F = [(f + at" + bt2n)(f + at™ ! + bt2n+2) — p]é(f +at" + bt2n)
— (f + atn—2 + bt2n_4).
F =T+ Tat"™ + 206" + Tat" + a*t*" 4 abt® P+
a—1
1_e= N AN
IO 4 abt 4 P )R (7) S (1 i %) _

From 72 = p + T, we have

F =T +7at"™" + 70t + Tat" + a*" + abt® T+

1

o t" + bt
+ T 4 abt? 4 P e <1 Lo

a—1
) — (T +at"? + bt* 1),
X

1
F =71+ —@at""™ + 72t + zat™ + *t*"*! + abt®*? + 7bt*" + abt™ T+
axT

1—
+ b2 4 (2 ) (Tat™ + a*t*" T + abt™? + Tat" ! + TO* T2 + TH+

a27?
a—1 n 2n (1 - Oé)
= (at + bt ) + SE

+ abt?m—i—l + b2t4n+2)2 + .. :| X |:]_ + (a,tn + bt2n)2 + ..

— (T + at™ % 4 bt? Y,

1
F=7 {1 + —(@at"™ + Tt + Tat™ + P 4 abt®" P + Tt + abt* T+
axT

11—«
n b2t4n+2) 4 S (§2a2t2n 422422 4 2§2a2t2n+1) 1. ] %

a“T

—1 —1)b 1—
X [1+ o — atn_'_ut%l_'_—_oéaQth_'_”. _ (f—l—atn_2—0—bt2"_4)_
azr azT 2027
T a—-1 @t 1 T 7T, a—-1 1
F=al—+ + = = S b =+ P+ —— |+
Q o a 12 a o o t4
t (- (l-a)@ (1-a)T, a—-1 a-—1
2 2 2n 2n
o t t| ot ).
e [04+ 202 * a? + 202 + a2 + a2 +o(t™)
pog|@ta-t+a)tt—al,, [ @t+a-1+T) —a
at? at
L 2(l=a)7+20 -2+ (40— 2427 — 207)t + (1 — @)t £ 4 o),
202
We have

@T+a—1+Tt)°—a TP+ T+a—1)2—a  p(t)

at? at? at?’
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where p(t) is the characteristic polynomial (4). We know that there exists the unique
root ty € (0, 1) such that p(tg) = 0. Let

p(ty) THa—14+Tt)ti—a  TE+ T+ a— 1) —

1 1 1
oty oty aty

From this, with t = ¢y, we have
e {bp(zlﬁ) L [(1 — Q)T+ 20— 2+ (4o —22 ;r 2T — 20Tty + (1 — a)ftg} }t§"+
aty «

+o(t2M), 0 < t2 <ty <1, p(td) < p(ty) = 0.

t2
Thus, the coefficient of b is negative: p(ti) < 0.
Qalg
We set
Ao (1—-a)T+2a —2+ (4o — 2+ 2T — 2a7T)ty + (1 — )Tt}
n 202 ’
Then
t2
F = {bp( 3} - aQA] 2" 4 o(t2").
oty
Set Y @)
a”Aat; (5 9
qg=——— and Hy(q) =¢ + a”A.
p(t3) K aty
Note that ()
Pty
H,(q) = Tt <0.
If
14 /4 1
o =T+ atl b2 = TV PTC 2p+ + at] + b2,
we obtain

. . N ta n n
F(‘Pn—% Pn—1; Pn, ¢n+1) ~ [b% + a2A:| t(2) = Hto (b)t% :
0

. p(ts)
Since Hj (q) = at%
Hto(q1> > (0 and Hto(qQ) < 0.

With the notations

< 0, we obtain that there are ¢; < b and ¢ > b such that

Yn =T +aty + qity", 2, =T + aty + qotd".
We get

p(ty
F(yn—Qayn—laynayn-ﬁ-l) ~ |:q1 ( (31) + a2A
ot
p(t5)

4
oty

2" >0

+a?Alt" < 0.

F(ZTL—27 Zn—1; “n; Zn—l—l) ~ [(h

These relations show that inequalities (8) are satisfied for sufficiently large n, where

f = F+x, 5 and F is given by (10). Since for all n, y, > 0, we can apply Theorem 2.1
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with I = [T, 00) and see that there is an ng > 0 and a solution of Eq (1) with the
asymptotics x, = ¢, + o(t2"), for n > ng, where ¢, is defined by (7) and b = ¢. In
particular, the solution converges monotonically to the positive equilibrium

1++1+4p
2

T = , for n > ny.

Hence, the solution z,,4y,+2 is also such a solution when n > —2. O
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