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ABSTRACT. In this paper, we deal with the existence of positive periodic solutions of the func-

tional difference system x(n + 1) = A(n)x(n) + F (n, xn). Moreover we characterize the eigenvalue

intervals for x(n + 1) = A(n)x(n) + λH(n)G(xn). The technique is based on a fixed point theorem

in conical shells.
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1. INTRODUCTION

Let R denote the real numbers, Z the integers, and Z
+ the nonnegative integers,

respectively. In this paper, we study the existence of positive periodic solutions of

the following nonlinear functional difference system

x(n+ 1) = A(n)x(n) + F (n, xn). (1.1)

Here x = [x1, x2, . . . , xk]
T (T stands for the transpose), F = [f1, f2, . . . , fk]

T and

A(n) = diag[a1(n), a2(n), . . . , ak(n)]. For j ∈ {1, 2, . . . , k}, aj is ω−periodic, fj(n, x) :

Z × R
k → R is continuous in x and fj(n, x) is ω−periodic in n and x, whenever x is

ω−periodic, ω ≥ 1 is an integer. Let X denote the class of ω−periodic, continuous

functions x : Z → R
k with the norm ‖x‖ = max

1≤j≤k
|xj |0 for x = (x1, x2, . . . , xk), here

|xj |0 = maxθ∈Z |xj(θ)|. Then X is a Banach space. If x ∈ X, then xn ∈ X for any

n ∈ Z is defined by xn(θ) = x(n + θ) for θ ∈ Z. We also denote {a, a + 1, . . . , b} by

[a, b] for a, b ∈ Z and a < b.

The system (1.1) has been proposed as a model for a variety of population dy-

namics. In fact, we can obtain (1.1) if we consider the multiple-species ecological

model and take into account the time delay effect. Recently, the existence of pos-

itive periodic solutions for nonlinear functional difference equations and functional
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difference systems have been studied by many authors; see, for example, [4, 12, 14].

Moreover, many authors have considered the continuous case of system (1.1), i.e.,

x′(t) = A(t)x(t) + F (t, xt) (1.2)

in the literature [6, 11, 13]. The existence, multiplicity and nonexistence of positive

periodic solutions for the general scalar nonlinear nonautonomous delayed differential

equation

x′(t) = a(t)g(x(t))x(t) − λb(t)f(t, x(t− τ(t)))

has been studied in [15].

In some of the papers mentioned above, the main technique is based on Kras-

noselskii fixed point theorem on compression and expansion of cones. In fact, this

fixed point theorem have been extensively employed in studying the existence of posi-

tive solutions to many kinds of boundary value problems (see for example, [2, 3, 5, 7]).

The main results in this paper are proved by employing another fixed point theorem

(see Theorem 2.1 in section 2) for compact maps in conical shells. To do this, we

extend the ideas introduced by Lan and Webb in [9, 10] to the discrete case, see

Lemma 3.1.

We will prove a general existence result for system (1.1) in section 3. As an

application, in section 4, we study the following eigenvalue problem

x(n + 1) = A(n)x(n) + λH(n)G(xn). (1.3)

Here H(n) = diag[h1(n), h2(n), . . . , hk(n)], G(x) = [g1(x), g2(x), . . . , gk(x)]T and λ >

0 is a positive parameter. We prove that (1.3) has at least one positive periodic

solution for each λ in an explicit eigenvalue interval. Recently, several eigenvalue

characterizations for different kinds of boundary value problems have appeared and

we refer the readers to [1, 2, 3].

Throughout this paper, we assume the following two conditions on A(n) and

F (n, x).

(H1) 0 < aj(n) < 1 for all n ∈ [0, ω − 1], fj(n, xn) ≥ 0 for all n ∈ Z and x : Z → R
k
+,

j = 1, 2, . . . , k.

(H2) For any L > 0 and ε > 0, there exists δ > 0 such that [x, y ∈ X, ‖x‖ ≤

L, ‖y‖ ≤ L, ‖x− y‖ < δ, 0 ≤ s ≤ ω] imply

|F (s, xs) − F (s, ys)| < ε.

2. PRELIMINARIES

In this section, we state some preliminary results, which are essential to the proofs

of our main results in section 3.
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First we recall that a completely continuous operator means a continuous operator

which transforms every bounded set into a relatively compact set. If D is a subset

X, we write DK = D ∩K and ∂KD = (∂D) ∩K.

Theorem 2.1 ([8]). Let X be a Banach space and K a cone in X. Assume Ω1, Ω2

are open bounded subsets of X with Ω1
K 6= ∅, Ω1

K ⊂ Ω2
K . Let

T : Ω2
K → K

be a continuous and compact operator such that

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KΩ1, and

(ii) there exists e ∈ K\{0} such that x 6= Tx+ λe for all x ∈ ∂KΩ2 and all λ > 0.

Then T has a fixed point in Ω2
K \Ω1

K . The same conclusion remains valid if (i) holds

on ∂KΩ2 and (ii) holds on ∂KΩ1.

Lemma 2.2 ([14]). Assume (H1) holds. Then xj(n) ∈ X is a solution of

xj(n+ 1) = aj(n)xj(n) + fj(n, xn), j = 1, 2, . . . , k,

if and only if

xj(n) =
n+ω−1∑

u=n

Gj(n, u)fj(u, xu), j = 1, 2, . . . , k,

where

Gj(n, u) =

n+ω−1∏

s=u+1

aj(s)

1 −
n+ω−1∏

s=n

aj(s)

, u ∈ [n, n + ω − 1], j = 1, 2, . . . , k. (2.1)

Remark 2.3. It is clear that, for j = 1, 2, . . . , k,

Gj(n, u) = Gj(n+ ω, u+ ω), for all (n, u) ∈ Z
2.

To define the desired cone, we observe that

ω−1∏

s=0

aj(s)

1 −
n+ω−1∏

s=n

aj(s)

≤ Gj(n, u) ≤

ω−1∏

s=0

a−1
j (s)

1 −
n+ω−1∏

s=n

aj(s)

(2.2)

for all u ∈ [n, n+ ω − 1].

For all (n, s) ∈ Z
2 and j = 1, 2, . . . , k, let σj = (

ω−1∏

s=0

aj(s))
2, then σj ∈ (0, 1), j =

1, 2, . . . , k. Now we define

K = {x ∈ X : x(n) ≥ 0, n ∈ Z and xj(n) ≥ σj |xj|0, ∀ j = 1, 2, . . . , k}. (2.3)
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One can easily verify that K is a cone in X. Moreover, let T : K → X be a map

with components (T 1, . . . , T k), where T j, j = 1, 2, . . . , k, is defined by

(Tix)(n) =

n+ω−1∑

u=n

Gj(n, u)fj(u, xu), j = 1, 2, . . . , k; (2.4)

here Gj(n, u) is given as (2.1).

Lemma 2.4. Assume that (H1) and (H2) hold. Then T is well defined and maps K

into K. Moreover, T is continuous and completely continuous.

Proof Since (H2) holds, using a standard argument, one can show that T is continu-

ous and completely continuous. Moreover, the periodicity properties of the functions

F and A(n) guarantee that (Tjx)(n) = (Tjx)(n + ω) for all j = 1, 2, . . . , k.

Next, to show that T maps K into K. Let x ∈ K, so we have

(Tjx(n)) ≥ 0, j = 1, 2, . . . , k.

By using (2.4), (2.2), we see that

(Tjx)(n) ≤

ω−1∏

s=0

a−1
j (s)

1 −
n+ω−1∏

s=n

aj(s)

n+ω−1∑

u=n

fj(u, xu),

and this implies that

|Tjx|0 = max
n∈[0,ω−1]

|(Tjx)(n)| ≤

ω−1∏

s=0

a−1
j (s)

1 −
n+ω−1∏

s=n

aj(s)

n+ω−1∑

u=n

fj(u, xu).

Therefore,

(Tjx)(n) =

n+ω−1∑

u=n

Gj(n, u)fj(u, xu) ≥

ω−1∏

s=0

aj(s)

1 −
n+ω−1∏

s=n

aj(s)

n+ω−1∑

u=n

fj(u, xu)

≥ (
ω−1∏

s=0

aj(s))
2|Tjx|0 = σj |Tjx|0.

That is, T (K) ⊂ K. �
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3. MAIN RESULTS

In this section we establish the existence of positive periodic solutions for system

(1.1) and characterize the eigenvalue intervals for system (1.3). First we extend the

ideas introduced by Lan and Webb in [9, 10] to the discrete case.

For r > 0, we define the open sets

Ωr = {x ∈ X : min
n∈[0,ω−1]

xj(n) < σjr for all j = 1, 2, . . . , k},

Br = {x ∈ X : ‖x‖ < r}.

Lemma 3.1. Ωr, Br defined above have the following properties:

(a) Ωr
K and Br

K are open relative to K.

(b) Bσr
K ⊂ Ωr

K ⊂ Br
K , here σ = min{σj , j = 1, 2, . . . , k}.

(c) x ∈ ∂KΩr if and only if x ∈ K and min
n∈[0,ω−1]

xi(n) = σir for some i ∈

{1, 2, . . . , k} and min
n∈[0,ω−1]

xj(n) ≤ σjr for each j ∈ {1, 2, . . . , k}.

(d) If x ∈ ∂KΩr, then σir ≤ xi(n) ≤ r, n ∈ [0, ω − 1] for some i ∈ {1, 2, . . . , k}

and 0 ≤ xj(n) ≤ r, n ∈ [0, ω − 1] for each j ∈ {1, 2, . . . , k}. Moreover, |xj |0 ≤ r.

(e) For each δ > r, the following relations hold:

Ωr
K = (Ωr ∩Bδ)K and Ωr

K = (Ωr ∩Bδ)K .

Proof (a) is true since min
n∈[0,ω−1]

xj(n) is continuous (discrete topology) for each j ∈

{1, 2, . . . , k}. (c) is clear. Let x ∈ ∂KΩr, so we have from (c) that there exists

i ∈ {1, 2, . . . , k} such that

σi|xi|0 ≤ min
n∈[0,ω−1]

xi(n) = σir.

Thus |xi|0 ≤ r and σir ≤ xi(n) ≤ r, n ∈ [0, ω − 1]. In addition notice for each

j ∈ {1, 2, . . . , k} that σj |xj |0 ≤ min
n∈[0,ω−1]

xj(n) ≤ σjr, so |xj|0 ≤ r and 0 ≤ xj(n) ≤ r

for n ∈ [0, ω − 1], i.e., (d) holds.

Now we prove (b). Let x ∈ Bσr
K , then for each j ∈ {1, 2, . . . , k}, we have |xj|0 <

σr, so min
n∈[0,ω−1]

xj(n) < σr ≤ σjr and x ∈ Ωr
K . If x ∈ Ωr

K , then for each j ∈

{1, 2, . . . , k}, we have min
n∈[0,ω−1]

xj(n) < σjr and xj(n) ≥ σj |xj |0 for n ∈ [0, ω−1]. This

implies |xj |0 < r, i.e., Ωr
K ⊂ Br

K . Hence (b) holds.

Finally we prove (e). The first equality follows immediately from (b). For the

second let x ∈ Ωr
K , then from (c), we have that

σj |xj |0 ≤ min
n∈[0,ω−1]

xj(n) ≤ σjr < σjδ, j = 1, 2, . . . , k.
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Thus |xj |0 < δ, j = 1, 2, . . . , k, and this implies that x ∈ (Ωr ∩ Bδ) ∩K. Now, since

Ωr and Bδ are open sets we have Ωr ∩ Bδ ⊂ Ωr ∩Bδ. Thus x ∈ (Ωr ∩Bδ)K , and

therefore Ωr
K ⊆ (Ωr ∩ Bδ)K . The reverse inclusion is trivial. �

Remark 3.2. It is clear that the sets Ωr are unbounded sets for each r > 0, so we

cannot use Theorem 2.1 with Ωr directly. However we will be able to apply Theorem

2.1 with Ωr
K since (e) holds.

Theorem 3.3. Assume that (H1) and (H2) hold. Furthermore, it is assumed that the

following two hypotheses hold:

(D1) For each j = 1, 2, . . . , k, there exist a constant α > 0 and a continuous function

ψj : Z → (0,∞) such that

fj(n, x) ≥ σjαψj(n), for all n ∈ [0, ω − 1], 0 ≤ xl ≤ α (l ∈ {1, 2, . . . , k}\{j})

and σjα ≤ xj ≤ α; and

min
n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)ψj(n) ≥ 1;

(D2) For each j = 1, 2, . . . , k, there exist a constant β > 0 and a continuous function

χj : [0, ω − 1] → (0,∞) such that

fj(n, x) ≤ βχj(n) for all n ∈ [0, ω − 1], 0 < xj ≤ β

and

max
n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)χj(n) ≤ 1.

Then, the following results hold:

(a) if β < σα, then problem (1.1) has at least one positive periodic solution x

satisfying

β ≤ ‖x‖ = max
j∈{1,2,...,k}

max
n∈[0,ω−1]

|xj(n)| ≤ α;

(b) if α < β, then problem (1.1) has at least one positive periodic solution x

satisfying

σα ≤ ‖x‖ ≤ β.

Proof As was indicated in the introduction, the proof is based on Theorem 2.1. We

show that :

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KB
β , and

(ii) there exists e ∈ K\{0} such that x 6= Tx+ λe, for all x ∈ ∂KΩα and all λ > 0.
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We start with (i). Now for any x ∈ ∂KB
β , we have |xj |0 ≤ β for each j ∈ {1, ..., k}.

Fix j ∈ {1, ..., k}. Then from (D2) we obtain, for each n ∈ [0, ω − 1],

(Tjx)(n) =

n+ω−1∑

u=n

Gj(n, u)fj(u, xu) ≤ β

n+ω−1∑

u=n

Gj(n, u)χj(u)

≤β max
n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)χj(u) ≤ β.

Hence, |Tjx|0 ≤ ‖x‖ for each j ∈ {1, ..., k}. This implies that (i) holds.

Next we consider part (ii). Let e(t) ≡ 1, so e ∈ K \ {0}. Next, suppose that

there exists x ∈ ∂KΩα and λ > 0 such that x = Tx+ λe. Since x ∈ ∂KΩα, then from

Lemma 3.1 (d) there exists i ∈ {1, 2, . . . , k} with σiα ≤ xi(n) ≤ α, n ∈ [0, ω − 1],

and 0 ≤ xj(n) ≤ α for n ∈ [0, ω − 1] and j ∈ {1, 2, . . . , k}\{i}.

From (D1) we have, for n ∈ [0, ω − 1], that

xi(n) = (Tix)(n) + λ =
n+ω−1∑

u=n

Gi(n, u)fi(u, xu) + λ

≥σiα

n+ω−1∑

u=n

Gi(n, u)ψi(u) + λ

≥σiα min
n∈[0,ω−1]

n+ω−1∑

u=n

Gi(n, u)ψi(u) + λ ≥ σiα+ λ.

Hence min
n∈[0,ω−1]

xi(n) ≥ σiα+ λ > σiα, contradicting the statement of Lemma 3.1 (c).

This contradiction proves part (ii) above.

Now suppose that β < σα. Then one has from Lemma 3.1 that Bβ
K ⊂ Bσα

K ⊂

Ωα
K and therefore it follows from Theorem 2.1 that T has at least one fixed point

x ∈ Ωα
K \ Bβ

K . Hence ‖x‖ ≥ β and σjβ ≤ min
n∈[0,ω−1]

xj(n) ≤ σjα, j ∈ {1, 2, . . . , k}.

On the other hand, σj |xj |0 ≤ min
n∈[0,ω−1]

xj(n) ≤ σjα and therefore |xj|0 ≤ α for each

j ∈ {1, 2, . . . , k}. This implies that ‖x‖ ≤ α.

Finally, if α < β one has Ωα
K ⊂ Bβ

K , and then Theorem 2.1 guarantees the

existence of at least one fixed point x ∈ Bβ
K \ Ωα

K of T . Hence we obtain the

inequality σα ≤ ‖x‖ ≤ β. �

4. EIGENVALUE INTERVALS OF (1.3)

In this section, we employ Theorem 3.3 to characterize the eigenvalue intervals of

the system (1.3). First we establish one existence result for the following functional

difference system

x(n + 1) = A(n)x(n) +H(n)G(xn), (4.1)

here H(n) = diag[h1(n), h2(n), . . . , hk(n)], G(x) = [g1(x), g2(x), . . . , gk(x)]T .
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For each j = 1, 2, . . . , k, we assume that:

(H3) g
j : R

k
+ → R+ is continuous with gj(x) > 0 for ‖x‖ > 0.

(H4) hj(n) : Z → R+ is continuous and
n+ω−1∑

u=n

Gj(n, u)hj(u) > 0.

Theorem 4.1. Suppose that conditions (H1), (H3) and (H4) hold. Then problem (4.1)

has at least one positive periodic solution x with x(n) 6≡ 0 for n ∈ [0, ω − 1] if one of

the following conditions holds.

(h1) 0 ≤ gj
0 < A−1

j and B−1
j < gj

∞ ≤ ∞, j = 1, 2, . . . , k;

(h2) 0 ≤ gj
∞ < A−1

j and B−1
j < gj

0 ≤ ∞, j = 1, 2, . . . , k;

here gj
0 = lim

x→0+

g(x)

‖x‖
, gj

∞ = lim
x→∞

g(x)

‖x‖
, j = 1, 2, . . . , k, and

Aj = max
n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)hj(u), Bj = min
n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)hj(u).

Proof To see this, we will apply Theorem 3.3 with fj(n, x) = hj(n)gj(x), j =

1, 2, . . . , k. We assume that (h1) holds. The case when (h2) holds is similar.

From the first part of (h1), there exists β > 0 such that gj(x) ≤ A−1
j β for

0 < ‖x‖ ≤ β. Choose χj(n) = A−1
j hj(n) for j = 1, 2, . . . , k. Fix j ∈ {1, ..., k}. Then

fj(n, x) = hj(n)gj(x) ≤ A−1
j βhj(n) = βχj(n) if n ∈ [0, ω − 1] and 0 < xj ≤ β

and
n+ω−1∑

u=n

Gj(n, u)χj(u)=A−1
j

n+ω−1∑

u=n

Gj(n, u)hj(u)

≤A−1
j max

n∈[0,ω−1]

n+ω−1∑

u=n

Gj(n, u)hj(u) = 1.

Thus hypothesis (D2) holds.

From the second part of (h1), there exists α > 0 such that σjα > β and gj(x) ≥

B−1
j σjα for xj ≥ σjα, j = 1, 2, . . . , k.

Thus gj(x) ≥ B−1
j σjα for xj ≥ σjα, j = 1, 2, . . . , k. Choose ψj(n) = B−1

j hj(n),

then

fj(n, x) = hj(n)gj(x) ≥ B−1
j σjαhj(n) = σjαψj(n), if n ∈ [0, ω − 1], xj ≥ σjα,

(so in particular for σjα ≤ xj ≤ α) and

n+ω−1∑

n=u

Gj(n, u)ψj(u) =B−1
j

n+ω−1∑

n=u

Gj(n, u)hj(u)

≥B−1
j min

n∈[0,ω−1]

n+ω−1∑

n=u

Gj(n, u)hj(u) = 1.
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This implies that hypothesis (D1) holds. The result now follows from Theo-

rem 3.3. �

Theorem 4.2. Suppose that conditions (H1), (H3) and (H4) hold. Then problem (1.3)

has at least one positive periodic solution for each

λ ∈ (
1

B min
j=1,2,...,k

{gj
∞}

,
1

A max
j=1,2,...,k

{gj
0}

) (4.2)

if
1

B min
j=1,2,...,k

{gj
∞}

<
1

A max
j=1,2,...,k

{gj
0}

. The same result remains valid for each

λ ∈ (
1

B min
j=1,2,...,k

{gj
0}
,

1

A max
j=1,2,...,k

{gj
∞}

) (4.3)

if
1

B min
j=1,2,...,k

{gj
0}

<
1

A max
j=1,2,...,k

{gj
∞}

. Here

A = max{Aj , j = 1, 2, . . . , k}, B = min{Bj, j = 1, 2, . . . , k}

and we write 1/gj
α = 0 if gj

α = ∞ and 1/gj
α = ∞ if gj

α = 0, where α = 0,∞.

Proof We consider the case (4.2). The case (4.3) is similar. If λ satisfies (4.2), then

λgj
0 ≤ λ max

j=1,2,...,k
{gj

0} <
1

A
≤

1

Aj

, j = 1, 2, . . . , k,

and

λgj
∞ ≥ λ min

j=1,2,...,k
{gj

∞} >
1

B
≥

1

Bj

, j = 1, 2, . . . , k.

Thus Theorem 4.1 applies directly. �

Remark 4.3. Our results improve those in [12] when n = 1.

Remark 4.4. In this paper, if condition (H1) is replaced by

(H1)
∗ If aj(n) > 1 for all n ∈ [0, ω−1], then fj(n, xn) ≤ 0 for all n ∈ Z and x : Z → R

k
+,

j = 1, 2, . . . , k.

Then we can obtain the similar results as we present in Theorem 3.3 and Theorem 4.2.
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