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ABSTRACT. In this paper nonhomogeneous deterministic and stochastic Maxwell equations are

used to rigorously formulate the capacity of electromagnetic channels such as wave guides (cavities,

coaxial cables etc). Both distributed, but localized, and Dirichlet boundary data are considered

as the potential input sources. We prove the existence of a source measure, satisfying certain

second order constraints (equivalent to power constraints), at which the channel capacity is attained.

Further, necessary and sufficient conditions for optimality are presented.
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1. INTRODUCTION

Channel capacity for MIMO (multiple input multiple output) channels has been

the subject of intense study in recent years. Most of the papers have been concerned

with a strictly information theoretic analysis [13],[8]. On the other hand, channel

capacity can be treated as an optimization problem subject to the constraint imposed

by the Maxwell equations [12]. In this paper, a mathematical framework for MIMO

capacity is provided using Electromagnetic constraints of the channel. It is shown

that this problem can be rewritten as an optimal control problem where the control

is the source measure subject to moment constraints equivalent to transmitter power

constraints.

The rest of the paper is organized as follows: The current section ends after a brief

list of notations. In Section 2, we present the dynamic models of electro-magnetic

channels. Both distributed and boundary sources are considered, and existence and

regularity properties of solutions of the dynamic systems are presented. In Section 3,

communication problems are formulated. Section 4 deals with the solution of the

problems proving existence of control measures from the admissible class at which

channel capacity is attained. In Section 5, necessary and sufficient conditions of

optimality are presented whereby a numerical algorithm can be developed for capacity

computation. The paper is concluded with some comments in Section 6.
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Some notations: Let Ξ denote an arbitrary set and F the Borel algebra of susbsets

of the set Ξ. We call the pair (Ξ,F) a measurable space. Let {µ, ν} be any two

regular Borel measures on the measurable space (Ξ,F). We let µ ≺ ν to denote the

absolute continuity of the measure µ with respect to the measure ν. The Radon-

Nikodym derivative, if it exists, of µ with respect to ν is denoted by µ(dx)
ν(dx)

≡ g(x),

where g ∈ L1(Ξ, ν).

For any pair of Banach spaces X, Y , we let L(X, Y ) denote the space of bounded

linear operators from X to Y . For any bounded open connected domain Ω ⊂ Rn with

sufficiently smooth boundary ∂Ω, Hs(Ω, Rm) ⊂ L2(Ω, R
m), s ≥ 0, will denote the

standard Sobolev spaces of functions defined on Ω and taking values from Rm whose

generalized derivatives up to order s belong to L2(Ω, R
m. Similarly H−s(Ω, Rm), s ≥

0, will denote the Sobolev spaces with negative exponents. These are distributions

and, under some assumptions, are the topological duals of Hs(Ω, Rm). By Sobolev’s

embedding theorem, it is known that for s ≥ (n/2) + k, Hs(Ω, Rm) →֒ Ck(Ω, Rm).

Thus the Dirac measure δω(dx) with mass concentrated at ω ∈ Ω satisfies bδω ∈
H−s(Ω, Rm) for any b ∈ C(Ω, Rm) and s > (n/2). Note that for s ≥ 0, a continuous

linear functional ℓ on Hs(Ω, Rm) has the representation

ℓ(ϕ) =

∫

Ω

(ϕ, ψ)dx

for some ψ ∈ H−s(Ω, Rm).

For example, for any f ∈ L2(Ω, R
m) with aα being constants, the function ψ,

given by ψ ≡ ∑

|α|≤s aαD
αf , is an element of H−s(Ω, Rm). Here α ≡ (α1, α2, · · · , αn)

stands for the multi index and |α| =
∑n

i=1 αi, αi ≥ 0 and Dαf denotes the distribu-

tional derivative of f of order |α|. For fractional s, the Sobolev spaces are defined by

use of Fourier transform.

2. CHANNEL DYNAMICS

In this section we present several models that describe the channel dynamics.

The first model is assumed to satisfy homogeneous Neumann boundary condition

(no leakage) with input source being a vector of current and charge density. The

second model consists of homogeneous wave equation describing the electric field with

nonhomogeneous Dirichlet boundary data whereby the input or source is provided.

2.1 Channel with Current and charge as input Sources. First we consider

channels with homogeneous Neumann boundary condition. In this case the system

is governed by a system of wave equations arising from Lorenz transformation of

Maxwell’s equations. The electromagnetic waves are generated by input sources such

as current and charge densities and are confined in a wave guide. The electrical

signals in the wave guide are governed by Maxwell’s equations. Using the vector and
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scalar potentials denoted by (a, ϕ) and the Lorentz gauge, the Maxwell’s equations

are given by a system of wave equations:

∂2a/∂t2 − (1/µǫ)△a = (1/ǫ)i, t ≥ 0, ξ ∈ Ω ⊂ R3, (2.1)

∂2ϕ/∂t2 − (1/µǫ)△ϕ = (1/µǫ)ρ, (2.2)

where i and ρ are the sources, the first denoting the current density (vector) and the

second the charge density. These are the sources that can be controlled to produce

desirable field distributions inside the wave guide. The field variables {E,B} are

related to the potentials by the following equations:

E = −(ȧ + ∇ϕ), B = ∇× a.

These models are useful in various fields of communication such as radar, optical fibre

etc. [3] (see references therein). We let Ω ⊂ R3 denote an open bounded connected

domain (representing the waveguide) having piecewise smooth boundary.

Define H ≡ L2(Ω, R
3) × L2(Ω, R) = L2(Ω, R

4), denote y ≡ (a, ϕ), and define the

formal differential operator C by Cy ≡ (1/µǫ)(△a,△ϕ) and let B denote the Neu-

mann boundary operator and set B(a, ϕ) = 0. This operator is simply the outward

normal derivative of the arguments at every point on the boundary of the wave guide.

Then introduce the operator A as follows:

D(A) ≡ {y ∈ H : B(y) = 0 and Cy ∈ H} ⊂ H2(Ω, R3) ×H2(Ω, R)

and set Az = Cz for z ∈ D(A).

Under the given boundary condition, −A is an unbounded positive self-adjoint oper-

ator in H . Define the state space as H ≡ D(
√−A) ×H and the state as z = (y, ẏ).

This is the energy space. Furnished with the scalar product and the associated norm

as presented below,

(x, z)H = (
√
−Ax1,

√
−Az1)H + (x2, z2)H

‖ x ‖H≡
(

‖
√
−Ax1 ‖2

H + ‖ x2 ‖2
H

)1/2

,

H is a Hilbert space. Note that the first term represents the potential energy and

the second the kinetic energy (magnetic field energy). Then we define the system

operator A and the control operator B as follows

A ≡
(

0 I

A 0

)

,
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B ≡































0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(1/ǫ) 0 0 0

0 (1/ǫ) 0 0

0 0 (1/ǫ)

0 0 0 (1/µǫ)































.

Define the input or the control vector as

u ≡













i1

i2

i3

ρ













.

Using these notations the system of wave equations given by (1) and (2) can be

written as an abstract differential equation on the Hilbert space H as follows

ż = Az + Bu, t ≥ 0, (2.3)

where A is an unbounded operator with domain and range in H. In practice the

input is localized. Let Ω0 ⊂ Ω be a part of the domain at the input end of the

wave guide and consider the Hilbert space U ≡ L2(Ω0, R
4) with the standard scalar

product. We may assume that the controls are functions of time taking values from

the Hilbert space U . Thus our admissible source is a proper subset Uad ⊂ L2(I, U). It

can be shown that on the Hilbert space H the system operator A is skew adjoint and

hence iA is self adjoint. Thus it follows from semigroup theory ([1], Theorem 3.1.4,

p. 71), in particular Stones theorem, that A generates a unitary group of operators

S(t), t ∈ R. Using this unitary group of operators we can write the solution (mild) of

equation (2.3) as follows

z(t) = S(t)z0 +

∫ t

0

S(t − s)Bu(s)ds, t ≥ 0. (2.4)

Note that in the absence of external input u, the system is conservative and

‖ z(t) ‖H=‖ S(t)z0 ‖H=‖ z0 ‖H ∀ t ∈ R.

This can be proved by simply scalar multiplying in H on either side of the equation

ż = Az, z(0) = z0

by z and integrating and noting that (Aξ, ξ)H = 0, ∀ ξ ∈ D(A). We summarize the

above results in the following theorem.
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Theorem 2.1. For every input u ∈ L2(I, U) and initial state z0 ∈ H, the system

(2.3) has a unique mild solution z ∈ C(I,H). Further the solution is given by the

expression (2.4). This in turn implies that the system of wave equations (2.1)-(2.2)

has a unique mild solution for every given initial state in the energy space and every

given finite energy input.

2.2 Channel with Dirichlet Data as Input Source. In cgs units, the Maxwell

equations for electric field E and magnetic field B are given by

∇×B = (1/c)∂E/∂t + (4π/c)i, (2.5)

∇×E = −(1/c)∂B/∂t, (2.6)

∇ ·E = 4πρ, ∇ · B = 0, (2.7)

where c denotes the velocity of light and the pair {i, ρ} denotes the current density

vector and charge density respectively. Here we have used standard notations for

curlφ ≡ ∇×φ and divφ ≡ ∇·φ. Using the first identity of equation (2.7), the reader

can easily verify that

∇×∇× E = −△E + 4π(∇ρ).

Now applying the curl operator on either side of equation (2.6) and using equation

(2.5) one can easily verify that the electric field E satisfies the following wave equation

∂2E/∂t2 − c2△E = −4π(∂i/∂t + c2∇ρ). (2.8)

Since here we are interested in boundary data, we assume that both the current and

charge densities are identically zero. In order to solve such equations in any bounded

domain one must specify the initial and boundary conditions. Hence the complete

system equation is given by

∂2E/∂t2 − c2△E = 0, ξ ∈ Ω, t ≥ 0, (2.9)

E(0, ξ) = E0(ξ), Ė(0, ξ) = E1(ξ), ξ ∈ Ω, (2.10)

E(t, ξ)|∂Ω = u(t, ξ), ξ ∈ ∂Ω, t ≥ 0. (2.11)

This is a initial boundary value problem with nonhomogeneous Dirichlet boundary

condition. In general the source u carries the information to be transmitted over the

wave guide channel Ω.

There are two possible ways of attacking this problem. One is the semigroup

approach [2] and the other is based on the principle of transposition [10].

Method A (Semigroup Approach): The first method is based on a well known

technique ([2], p. 59–63) (and the references therein) whereby one can transfer the

boundary data to the righthand side of the original differential equation. We write
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equation (2.9)–(2.11) as a system

∂e/∂t = Le, e(0) = e0, (2.12)

Be = Tre1 = u, (2.13)

where e ≡ (E, Ė), Trφ ≡ φ|∂Ω, and

L ≡
(

0 I

c2△ 0

)

.

Note that this is a 6×6 matrix with the elements of the first and the fourth diagonal

blocks being all zero and the second block being a 3×3 identity matrix and the third

diagonal block is a 3× 3 diagonal matrix with the elements being the Laplacian c2△.

To avoid introducing new notations, we use the same symbols to define the operators

A,A, B0 by

A ≡ c2I△|kerB and A ≡ L|kerB and B0 ≡ B|kerL.

Note that the operator A is a negative self adjoint unbounded operator on H ≡
L2(Ω, R

3). The domain of the operator A is given by

D(A) = H2(Ω, R3) ∩H1
0(Ω, R

3) × L2(Ω, R
3) ⊂ H

where H is the energy space,

H ≡ D(
√
−A) ×H,

considered here as the state space. Now returning to the system model, it is not

difficult to verify that the operator A is closed and densely defined and that for any

R ∋ λ 6= 0,

‖ R(λ,A ‖≡‖ (λI −A)−1 ‖H ≤ (1/|λ|).
Thus by Hille-Yosida theorem ([1], Theorem 2.2.8, p. 27) A is the infinitesimal gen-

erator of a C0-group S(t), t ∈ R, of contractions in H. Further, it is easy to verify

that the operator A is skew adjoint and hence by Stones theorem ([1], Theorem 3.1.4,

p. 71), it is the infinitesimal generator of a unitary group S(t), t ∈ R, on H. Our

objective is to convert the initial boundary value problem (2.12)–(2.13) into a Cauchy

problem (initial value problem). Define

W ≡ H2(Ω, R3) × L2(Ω, R
3) ⊂ H

and set W1 ≡ KerL,W2 ≡ KerB. For any λ(∈ R) 6= 0, define P ≡ R(λ,A)(λI −L),

and notice that P |W2
= I, the identity and that P 2 = P . Thus W admits the direct

sum decomposition as follows,

W = W1 ⊕W2.

Clearly R(λ,A) ∈ L(H,W2). For the source space, let U be a linear subspace of

H3/2(∂Ω, R3) carrying the structure of a Banach space such that B0 : W1 −→ U
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is surjective and ℜ ≡ (B0)
−1 ∈ L(U,W1). Now going back to our original problem

(2.12)–(2.13), we can rewrite the first equation in the equivalent form

∂e/∂t = Ae+ (Π − (λI − L))e (2.14)

with Π ≡ (λI − A). For λ ∈ ρ(A), the resolvent set of A, the operator Π has

bounded inverse giving the resolvent R(λ,A). Using the direct sum decomposition,

we can express the solution as the sum given by e = e1 + e2, e1 ∈ W1, e
2 ∈ W2.

Substituting this in equation (2.14), and following similar steps as presented in ([2],

p. 59–62),we arrive at the following abstract Cauchy problem

ζ̇ = Aζ + Λℜu, ζ0 ≡ ζ(0) = R(λ,A)e0, (2.15)

Λ ≡ (I −R(λ,A)(λI − L)), (2.16)

e = Πζ. (2.17)

Using the unitary group introduced above, the mild solution of the system (2.15)–

(2.16)–(2.17) is given by

ζ(t) = S(t)ζ0 +

∫ t

0

S(t− s)Λℜu(s)ds, t ∈ I, (2.18)

e(t) = Πζ(t), t ∈ I. (2.19)

Briefly this is the first method. It is clear from the expression (2.18) that, for every

u ∈ L2(I, U) and ζ0 ∈ D(A), ζ ∈ C(I,D(A)) and hence it follows from (2.19) that

e ∈ C(I,H). We collect these facts together in the following theorem.

Theorem 2.2. For every e0 ∈ H and u ∈ L2(I, U), the initial boundary value problem

(2.12)–(2.13) has a unique mild solution e ∈ C(I,H), and it is given by the expressions

(2.18) and (2.19).

Method B (Principle of Transposition): The second method, which admits much

more general boundary data, is the method of transposition ([10], p. 231, p. 283).This

method admits L2(∂Ω) data and, more generally, data from Sobolev spaces with neg-

ative norm like H−1/2(∂Ω). The method consists of constructing a suitable isomor-

phism and then transposing the isomorphism for the solution of nonhomogeneous

Dirichlet problems like (2.9)–(2.11). Consider the homogeneous Dirichlet problem

Lψ ≡ ∂2ψ/∂t2 − c2△ψ = f, ξ ∈ Ω, t ≥ 0, (2.20)

ψ(T, ξ) = 0, ψ̇(T, ξ) = 0, ξ ∈ Ω, (2.21)

ψ(t, ξ)|∂Ω = 0, ξ ∈ ∂Ω, t ≥ 0, (2.22)

for f ∈ L2(Q,R
3) ≡ L2(I, L2(Ω, R

3)). Reversing the flow of time, it follows from the

results of the previous subsection that for every f ∈ L2(Q,R
3) this problem has a
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unique solution ψ ∈ H2(Q,R3). Now introduce the vector space Ψ by

Ψ ≡
{

ψ ∈ L2(Q,R
3) : Lψ ∈ L2(Q,R

3), ψ(T, ·) = 0, ψ̇(T, ·) = 0, ψ|I×∂Ω = 0

}

and furnish it with the norm topology given by

‖ ψ ‖Ψ≡‖ Lψ ‖L2(Q,R3) . (2.23)

The reader can easily verify that Ψ is a normed linear space. Since L is a closed

operator, it follows that Ψ is a Banach space, in fact a Hilbert space. Thus it fol-

lows from the given norm topology that L is an iosmetric isomorphism of Ψ onto

L2(Q,R
3) ≡ L2(I, L2(Ω, R

3)). For convenience of notation we may express this fact

by stating that

L ∈ Iso(Ψ, L2(Q,R
3)).

This is known as the adjoint isomorphism. Transposing this isomorphism, we can

settle the question of existence of solution of our original nonhomogeneous boundary

value problem (2.9)–(2.11). This is stated in the following Theorem.

Theorem 2.3. Consider the system (2.9)–(2.11) and suppose E0 ∈ H−1/2(Ω, R3),

E1 ∈ H−3/2(Ω, R3) and u ∈ L2(I,H
−1/2(∂Ω, R3)) ⊂ H−1/2(I × ∂Ω, R3). Then the

system (2.9)–(2.11) has a unique solution E ∈ L2(Q,R
3) = L2(I, L2(Ω, R

3)).

Proof Formally, scalar multiplying equation (2.9) by any ψ ∈ Ψ and using Greens

formula for integration by parts, one can easily derive the following identity
∫

I×Ω

(E,Lψ)dξdt

=

∫

Ω

(E1, ψ(0))dξ −
∫

Ω

(E0, ψ̇(0))dξ − c2
∫

I×∂Ω

(∂ψ/∂ν, u(t, ξ)dσ(ξ)dt,(2.24)

where ∂ψ/∂ν denotes the partial derivative of ψ in the outward direction of the

unit normal vector ν at any position on the boundary ∂Ω and σ denotes the surface

(Lebesgue) measure on the boundary. Define the functional

ℓ(ψ) ≡
∫

Ω

(E1, ψ(0))dξ −
∫

Ω

(E0, ψ̇(0))dξ − c2
∫

I×∂Ω

(∂ψ/∂ν, u(t, ξ))dσ(ξ) dt. (2.25)

Clearly this is a linear functional. Since ψ ∈ H2(Q,R3), it follows from standard

trace theorems for Sobolev spaces that ψ(0) ≡ ψ(0, ξ), ξ ∈ Ω, is an element of

H3/2(Ω, R3), ψ̇(0) ∈ H1/2(Ω, R3) and ∂ψ/∂ν ∈ H1/2(I × ∂Ω, R3). Thus, for the given

data {E0, E1, u} with the regularities as specified in the statement of the theorem, the

scalar products on the righthand side of the identity (2.25) have the correct duality

pairings. Hence, we conclude that the given data determines a continuous and hence

a bounded linear functional ℓ on the Banach space Ψ. Since L ∈ Iso(Ψ, L2(Q,R
3)),

this means that the composition map (ℓoL−1) is a continuous linear functional on
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L2(Q,R
3). Hence, by Riesz representation theorem, there exists an unique E ∈

L2(Q,R
3) such that

(ℓoL−1)(f) = (E, f)L2(Q,R3) ∀ f ∈ L2(Q,R
3). (2.26)

Since L is an isomorphism, this is equivalent to saying that

ℓ(ψ) = (E,Lψ)L2(Q,R3) ∀ ψ ∈ Ψ. (2.27)

This also verifies the validity of the formal identity (2.24) obtained by integration by

parts. The uniqueness is a consequence of the fact that L ∈ Iso(Ψ, L2(Q,R
3)). This

completes the proof. •

Remark 2.4. It is clear from the above result that our nonhomogeneous Dirichlet

initial boundary value problem (2.9)–(2.11) has a unique solution E ∈ L2(Q,R
3) for

a very general set of data form the class of generalized functions

{E0, E1, u} ∈ H−1/2(Ω, R3) ×H−3/2(Ω, R3) ×H−1/2(I × ∂Ω, R3).

For practical applications we may limit our data from the Hilbert spaces L2(Ω, R
3)×

L2(Ω, R
3) × L2(I, L2(∂Ω, R

3)). In this case, of course, we expect our solutions to be

much more regular or smooth.

Note that the data to solution map {E0, E1, u} −→ E, which we denote by G, is

a continuous linear map from H−1/2(Ω, R3) × H−3/2(Ω, R3) × H−1/2(I × ∂Ω, R3) to

L2(Q,R
3) ≡ L2(I, L2(Ω, R

3)) and hence there exists a constant K > 0 such that

‖ G(E0, E1, u) ‖L2(Q,R3) ≤

K

{

‖ E0 ‖H−1/2(Ω,R3) + ‖ E1 ‖H−3/2(Ω,R3)‖ + ‖ u ‖H−1/2(I×∂Ω,R3)

}

.

Since for s > 0, the embeddings L2(Q) →֒ H−s(Q) are continuous, it follows from the

above result that for {E0, E1, u} ∈ L2(Ω, R
3) × L2(Ω, R

3) × L2(I, L2(∂Ω, R
3))

‖ G(E0, E1, u) ‖L2(Q,R3) ≤

K̃

{

‖ E0 ‖L2(Ω,R3) + ‖ E1 ‖L2(Ω,R3)‖ + ‖ u ‖L2(I,L2(∂Ω,R3))

}

,

where K̃ depends on K and the embedding constants

L2(Ω, R
3) →֒ H−1/2(Ω, R3), L2(I, L2(∂Ω, R

3)) →֒ H−1/2(I × ∂Ω, R3).

In the study of communication problems we will set E0 = E1 = 0 and consider

the boundary data as the input source giving E = G(u) ∈ L2(I,H). A complete

characterization of the input-output map is given in section 3.

Remark 2.5. It is interesting to note that Theorem 2.2 dealing with the question

of existence and regularity properties of solutions also provides a clue to numerical

technique for solving the basic problem (2.9)–(2.11). Let {fi} ⊂ L2(Q,R
3) be a
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complete orthonormal set (orthonormality is not essential though linear independence

is). Then note that

(ℓoL−1)(fi) = (E, fi)L2(Q,R3) ≡ ci, i ∈ N.

These are precisely the Fourier coefficients of E with respect to the complete set {fi}
as indicated by the righthand expression, and hence E is given by E =

∑∞
i=1 cifi.

Further, it is clear that ci,s are determined entirely by the data {E0, E1, u} of the

problem.

Remark 2.6. Comparing method A (Semigroup Approach) with method B (Principle

of Transposition), it is apparent that the later admits much more general data. At

least for linear initial-boundary value problems, semigroup theory seems to be less

powerful.

3. FORMULATION OF COMMUNICATION PROBLEMS

3.1 Distributed Source:

Transmit End (T): First we consider the system model described by equation (2.3)

with the distributed source or control space U = L2(Ω0, R
4), that is,

U ≡ {u ∈ L2(Ω, R
4) : u(ξ) = 0, ∀ ξ ∈ Ω \ Ω0}.

For application to communication problems we may simplify the source further by

taking a finite number of disjoint closed subsets {σi}n
i=1 ⊂ Ω0 and consider input

source to be composed of the sum

u ≡
n

∑

i=1

xi(t)ϕi(ξ), t ∈ I, ξ ∈ Ω0 (3.1)

where the functions ϕi ∈ L2(Ω0, R
4) vanishing outside σi. In other words, these

functions have σi as their supports and xi ∈ L2(I) are scalar valued functions which

are the signals. These represent message signals radiated by the strategically located

n-transmit antennas.

Receiver End (R): Let S0 denote the receiving end of the wave guide. Sensors

are located on this set. Again let {βi}m
i=1 be a family of disjoint closed subsets of

the set S0 where the sensors are located. These sensors are assumed to be able to

measure the electric field distribution on these patches. These represent receiving

antennas. In terms of the vector and scalar potential {a, ϕ} we have already seen

that the electric field vector is given by

E = −(ȧ + ∇ϕ).
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Hence in terms of the state variable we have

E ≡ −
( z5 + ∂1z4

z6 + ∂2z4

z7 + ∂3z4

)

≡ Γz, (3.2)

where Γ is the matrix of differential operators easily determined by the above relation.

Clearly, Γ is a bounded linear operator from H to L2(Ω, R
3). The outputs are the

integrals of weighted sensor response to the electric field distribution on the patches.

These are given by

yi(t) =

∫ t

0

(
∫

βi

< αi(ξ), E(s, ξ) >R3 dσ(ξ)

)

ds+ wi(t), t ∈ I, i = 1, 2 . . . , m, (3.3)

where αi is the vector of weight given to the measured electric field distribution on

i-th site and wi represents the measurement noise of this site. The weight vector αi

may be assumed to be supported on the set βi. We assume that {wi}m
i=1 are mutually

independent standard Brownian motions withW denoting the correspondingm vector

Brownian motion. Throughout the paper we use (Ξ,F ,Ft, P ) to denote the filtered

probability space where Ft, t ≥ 0, is an increasing family of right continuous subsigma

algebras of the sigma algebra F . All random processes arising in this paper will be

assumed to be based on this complete filtered probability space.

Now returning to our problem and using the source and the output models as

described above, the state and the measurement dynamics turn out to be

ż = Az + Cx, z(0) = z0, (3.4)

dy = GΓzdt+ dW, (3.5)

where the operators {C,G} are given by

Cx ≡
n

∑

i=1

xiBϕi, and (GiE)(t) ≡
∫

βi

< αi(ξ), E(t, ξ) > dσ(ξ), i = 1, 2, . . . , m.

The reader can easily verify that the operators C : Rn −→ H and (GΓ) : H −→ Rm

and they are bounded linear operators. Using the semigroup S(t), t ≥ 0, correspond-

ing to the operator A, it follows from the expression (2.4), that

z(t) = Kt(x) ≡ S(t)z0 +

∫ t

0

S(t− r)Cx(r)dr. (3.6)

Define the composition map F with values

Ft(x) ≡ (GΓKt)(x). (3.7)

Clearly F is a nonanticipative (causal) operator mapping L2(I, R
n) to L2(I, R

m) ∩
C(I, Rm) and, being the composition of bounded linear operators, it is also a bounded
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linear operator. Thus, the output equations (3.3) can be written as a linear stochastic

differential equation in Rm,

dy = Ft(x)dt+ dW, y(0) = 0, t ∈ I. (3.8)

In case of method B, the map F is given by the composition map Ft(x) = (GGC)t(x),

which is a bounded linear operator from L2(I, R
n) to L2(I, R

m).

3.2 Boundary Source:

Next we consider the model described by the boundary value problem (2.9)-

(2.11). Here we consider a part ∂Ω0 ⊂ ∂Ω of the boundary ∂Ω where the source is

active. Then for the source space we take L2(I, U) where U is a closed linear subspace

of H3/2(∂Ω0, R
3) ≡ {ϕ ∈ H3/2(∂Ω, R3) : ϕ(ξ) = 0 for ξ 6∈ ∂Ω0}. Again we let {σi}

denote a family of disjoint subsets of the set ∂Ω0 and model the input as

u(t, ξ) ≡
n

∑

i=1

xi(t)ψi(ξ), t ∈ I, ξ ∈ ∂Ω0 (3.9)

where ψi ∈ U and supported on the set σi and xi ∈ L2(I). The complete system

model is then given by

∂2E/∂t2 − c2△E = 0, ξ ∈ Ω, t ≥ 0, (3.10)

E(0, ξ) = 0, Ė(0, ξ) = 0, ξ ∈ Ω, (3.11)

E(t, ξ)|∂Ω = u(t, ξ) =

n
∑

i=1

xi(t)ψi(ξ), ξ ∈ ∂Ω, t ≥ 0. (3.12)

For this model, we can use the representations (2.18)-(2.19) and (3.12) to construct

the output equation. Define the map

Kt(x) ≡ Π

(

S(t)ζ0 +

∫ t

0

S(t− r)ΛℜCx(r)dr
)

, t ∈ I. (3.13)

Let Γ denote the projection map Γe ≡ e1 which projects e ≡ (e1, e2) = (E, Ė) to the

first component e1 = E. Using these maps, again we can write the output equation

in the same general form (3.8),

dy = (GΓKt)(x)dt+ dW,

= Ft(x)dt+ dW, t ∈ I. (3.14)

The existence of the map F is assured by the expressions (2.18)-(2.19) as presented

in the semigroup approach (method A).
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3.3 Noisy Source. So far we have assumed that the source is noise free. In order

to admit noisy source one must add some compatible additional terms to the evolu-

tion equations (2.3) and (2.15). For the distributed source, we replace the evolution

equation (2.3) by the stochastic differential equation

dz = Azdt+ Budt+ σdW o, t ≥ 0, (3.15)

on the Hilbert space H, where the operator σ is given by a 8× 4 matrix of operators

with the first four rows being all zero and the remaining 4 × 4 matrix is a diagonal

matrix of operators {σi, i = 1, 2, 3, 4}. The Brownian motion W o is given by the

vector W o ≡ col{W o
1 ,W

o
2 ,W

o
3 ,W

o
4 } of independent Brownian motions

W o
i (t, ·) ≡ {W o

i (t, ξ), ξ ∈ Ω}, i = 1, 2, 3, 4,

each taking values possibly from L2(Ω, R). In reference to the field equations (2.1)

and (2.2), this means adding distributed white noise on the righthand side of each

of the equations in the form σiẆ
o
i (t) ≡ σi(·)Ẇ o

i (t, ·), i = 1, 2, 3, 4. This model

allows one to deal with localized as well as distributed noise around the wave guide.

Letting V denote any separable Hilbert space, for example a closed linear subspace

of L2(Ω, R
4), we may assume W o to be a V valued Brownian motion, independent

of the Brownian motion W (receiver noise), with covariance operator denoted by

Qo and σ ∈ L(V,H) so that Qo
σ ≡ σQoσ∗ is a positive nuclear operator in H. A

natural choice for the space V is L2(Ω0, R
4) ≡ U , same as the source space, and

σ = B. In any case, this choice is determined primarily by physical requirements

and mathematical simplicities. Since S(t), t ∈ R, is a unitary group, it is easy to

verify that S(t)Qo
σS

∗(t) is a positive nuclear operator in H for all t ∈ R given that

Qo
σ is. Thus, for each u ∈ L2(I, U), equation (3.15) has a unique mild solution z,

which belongs to C(I,H) with probability one, possessing bounded second moments.

In this case the map Kt(x), t ≥ 0, is given by

Kt(x) ≡ z(t) = S(t)z0 +

∫ t

0

S(t− r)Cx(r)dr +

∫ t

0

S(t− r)σdW o. (3.16)

Considering the boundary value problems, for noisy boundary source, equation

(2.15) is replaced by

dζ = (Aζ + Λℜu)dt+ ΛℜσdW o, t ≥ 0. (3.17)

For the boundary source we had chosen U ⊂ H3/2(∂Ω0, R
3). Thus, it is necessary that

σ ∈ L(V, U) where V is any separable Hilbert space supporting the Brownian motion

W o. For example, V ≡ L2(∂Ω0, R
3) or any closed linear subspace thereof. Again

for the existence of mild solutions e ≡ Πζ ∈ C(I,H), it suffices if ΛℜσQoσ∗ℜ∗Λ∗ is

a positive nuclear operator in H. In this case, equation (3.13) is replaced; and the
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process Kt(x), t ≥ 0, is given by

Kt(x) ≡ Π

(

S(t)ζ0 +

∫ t

0

S(t − r)ΛℜCx(r)dr +

∫ t

0

S(t− r)ΛℜσdW o

)

, t ∈ I. (3.18)

Remark 3.1. In case the sensors (receiving antennas) are nonlinear, the operator G
is nonlinear and hence the composition map Ft, t ∈ I, is also nonlinear. The results

presented in this paper remain valid provided this nonlinearity is uniformly Lipschitz

having at most linear growth.

4. CHANNEL CAPACITY

In view of the preceding discussions, we notice that the input and output spaces

are given by X ≡ L2(I, R
n) and Y ≡ C(I, Rm). Suppose these spaces are furnished

with the (topological) Borel algebra turning them into measurable spaces (X,BX)

and (Y,BY ). Let M(X) and M(Y ) denote the space of Borel probability measures on

(X,BX) and (Y,BY ), respectively. Considering the source space, let M2(X) ⊂ M(X)

denote the class of probability measures having finite second moments, that is,

µ ∈M2(X) if and only if

∫

X

|x|2X µ(dx) <∞.

Since normally the source power is limited, we consider a bounded subset of M2(X)

given by

Sr ≡ {µ ∈M2(X) :

∫

X

|x|2X µ(dx) ≤ rT}

where r > 0 is the power constraint and T is the length of the time interval I denoting

the duration of the message source. For admissible source measures, we can choose

any set Mad that is a weakly compact and convex subset of the set Sr. For example,

Mad = wcℓ(Γr) where Γr is any convex subset of the set Sr satisfying

lim
n→∞

sup
µ∈Γr

∫

X

∑

i≥n

(x, ei)
2µ(dx) = 0

for any orthonormal basis {ei} of the Hilbert space X. Under this assumption, the

set Γr is uniformly tight and hence conditionally weakly compact. Thus, its weak

closure is weakly compact. Necessary and sufficient conditions for weak compactness

of subsets of M2(X) can be found in [[9],Theorem 2, p 377]. For more concrete

examples of compact sets Mad, see Remark 4.2 following Theorem 4.1.

Considering the output space (Y,BY ), let M(Y ) denote the space of regular Borel

probability measures on it. Let M(X×Y ) denote the space of joint Borel probability

measures on the product sigma algebra BX ×BY . We have seen in section 3, that the

output signal y is related to the input process x through the communication system

(3.4)-(3.5) leading to (3.8) for the distributed source; and (3.10)-(3.12) leading to

(3.14) for the Dirichlet source. In other words, for a given probability measure µ ∈
Sr ⊂M2(X) on the input space, there is a unique measure ν ∈M(Y ) on the output
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space Y induced by the channel. Let γ ∈ M(X × Y ) denote the joint probability

measure and µ× ν the product measure with µ and ν being the marginals of γ. The

relative entropy of γ with respect to the product measure µ× ν, denoted by I(X ,Y),

is called the mutual information which is a measure of the amount of information

carried by the observable noisy output Y about the input message (source) X . This

is given by the following expression,

I(X ,Y) ≡
∫

X×Y

log

(

γ(dx× dy)

µ(dx) × ν(dy)

)

γ(dx× dy), (4.1)

where Υ(x, y) ≡ γ(dx×dy)
µ(dx)×ν(dy)

denotes the Radon-Nikodym derivative of γ with respect

to the product measure. Clearly, this requires that γ be absolutely continuous with

respect to the product probability measure µ× ν. Note that the output measure ν is

related to the input measure µ through the channel operator and it is given by

ν(D) = γ(X ×D) =

∫

X

q(x,D)µ(dx), ∀ D ∈ BY (4.2)

where

q(x,D) = Pr{y ∈ D|x}
is the conditional probability of the output y being in D ∈ BY given that the input

x ∈ X. This is precisely the action of the channel on the input and, as we have seen

in the preceding sections, it is determined by the dynamic models of the channel. A

closed form expression for this will follow shortly. Substituting the expression (4.2)

into the expression (4.1) we obtain

I(X ,Y) ≡ J(µ) ≡
∫

X×Y

log

(

q(x, dy)
∫

X
q(ξ, dy)µ(dξ)

)

q(x, dy)µ(dx) (4.3)

which is a functional of the measures q and µ. Since the channel dynamics is given,

this is a functional of the source measure only as indicated above. We have seen in

the preceding section that, for both the distributed and the boundary sources, the

output equation has the general form given by a linear stochastic differential equation

in Rm,

dy = Ft(x)dt+ dW, y(0) = 0, (4.4)

where F is the causal (nonanticipative) map F : L2(I, R
n) −→ L2(I, R

m) as described

earlier. This is a continuous linear map. Now it follows from equation (4.4) that for

every given x ∈ X, q(x, ·) is a Gaussian measure on Y with mean trajectory given by

F̄ (x) ≡ {
∫ t

0

Fs(x)ds, t ∈ I} ∈ Y, (4.5)

while the covariance operator Q1 is given by

(Q1ξ, ξ) ≡
∫

I2

(K1(t, s)ξ(s), ξ(t))dsdt, ξ ∈ Y,
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with the kernel of the operator Q1 being K1(t, s) ≡ (t ∧ s)Im, (t, s) ∈ I × I, and Im

is the identity matrix of dimension m. Thus, the Channel Kernel is given by the

conditional Gaussian measure

q(x,D) ≡ NG(F̄ (x), Q1)(D), x ∈ X,D ∈ BY . (4.6)

Since F̄ is a continuous linear map from X to Y , it is clear that, for every D ∈ BY , the

map x −→ q(x,D) is continuous fromX to the interval [0, 1]. Note that, by continuity

here, we do not mean absolute continuity of Gaussian measures with respect to their

means. That is entirely a different question and we are not concerned with this here.

However, it may be interesting to note that if q2 ∈M(Y ) is the conditional probability

measure induced by x2 ∈ X and q1 ∈ M(Y ) is the one induced by x1 ∈ X through

the output equation (4.4), then the Radon-Nikodym derivative of q2 with respect q1

exists and is given by dq2 = gdq1 where g is given by

g ≡ E

{

exp
{

∫

I

(Ft(x2) − Ft(x1), dW ) − (1/2)

∫

I

|Ft(x2) − Ft(x1)|2dt
}

|Fy

}

,

with Fy ⊂ F denoting the smallest sigma algebra induced by the the random pro-

cesses {y}. Exchanging the roles of x1 and x2, it is clear from this expression that q1

and q2 are actually equivalent measures on Y . Since x −→ F̄ (x) is a continuous map

from X to Y , it follows from the above expression for RND that q2
w−→ q1 (weakly)

in M(Y ) as x2 −→ x1 in X. Thus, x −→ q(x, ·) is also continuous in this sense.

Returning to our problem and using the expression (4.6) in the expression for the

mutual information given by (4.3) we obtain the following equivalent expression,

J(µ) ≡
∫

X×Y

log

(

NG(F̄ (x), Q1)(dy)
∫

X
NG(F̄ (ξ), Q1)(dy)µ(dξ)

)

NG(F̄ (x), Q1)(dy)µ(dx), (4.7)

which is clearly dependent on the channel operator F . Denoting the convolution
∫

X

NG(F̄ (x), Q1)(D)µ(dx) ≡ νG(D), D ∈ BY ,

the reader can easily verify that

NG(F̄ (x), Q1)(·) ≺ νG(·)

for µ almost all x ∈ X. Thus, the Radon-Nikodym derivative of NG with respect to

the measure νG exists and hence J(µ) given by (4.7) is well defined. Now our objective

is to determine the capacity of the channel by maximizing the above functional over

a set of admissible measures on the source space subject to power constraints. That

is, we must find

C ≡ sup{J(µ), µ ∈ Mad} (4.8)

where the set Mad, as defined before, is any weakly compact convex subset of the set

Sr ≡ {µ ∈M2(X) :

∫

X

|x|2X µ(dx) ≤ rT}. (4.9)
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The first question that we must address is: does the supremum exist and, if it does,

is it attained on the set Mad. Without much additional assumptions we can prove

the following result.

Theorem 4.1 Suppose Mad is a weakly compact and convex subset of the set Sr ⊂
M2(X). Then, there exists a unique µo ∈ Mad at which J attains its supremum. In

other words, capacity is attained.

Proof. For the existence of the supremum on Mad, it suffices to prove that J is

weakly upper semicontinuos and bounded away from +∞. For uniqueness we show

that J is strictly concave. First we prove that the functional µ −→ J(µ) is concave

and weakly upper semicontinuous on M(X). For simplicity of notation we revert

back to our original notation and set NG(F̄ (x), Q1)(D) ≡ q(x.D), D ∈ BY . For the

first statement, we show that the functional

J(µ) ≡
∫

X×Y

log

(

q(x, dy)
∫

X
q(ξ, dy)µ(dξ)

)

q(x, dy)µ(dx) (4.10)

is concave. Define the measure µ̃ ∈M(Y ) by the convolution

µ̃(D) ≡
∫

X

q(x,D)µ(dx), D ∈ BY .

Since, for each D ∈ BY , x −→ q(x,D) is continuous and bounded, with values from

[0, 1], this is well defined. Choose any v ∈ M(Y ) so that q(x, ·) ≺ v(·) for all x ∈ X.

Such a choice is assured since q(x, ·) is a regular Borel probability measure on BY

induced by the output process {y} having continuous sample paths. Clearly, µ̃ ≺ v

also. Using this measure we can express (4.10) as the sum of two terms as follows,

J(µ) ≡
∫

X×Y

log

(

q(x, dy)

µ̃(dy)

)

q(x, dy)µ(dx)

=

∫

X×Y

{

log

(

q(x, dy)

v(dy)

)

− log

(

µ̃(dy)

v(dy)

)}

q(x, dy)µ(dx).

Then using Fubini’s theorem and interchanging the order of integration in the second

term, we find that

J(µ) =

∫

X×Y

{

log

(

q(x, dy)

v(dy)

)}

q(x, dy)µ(dx)−
∫

Y

log

{(

µ̃(dy)

v(dy)

)}

µ̃(dy)

= J1(µ) − J2(µ) ≡ J1(µ) − I2(µ̃). (4.11)

Consider the function

η(x) ≡
∫

Y

log

(

q(x, dy)

v(dy)

)

q(x, dy).

We have already noted that for every D ∈ BY , x −→ q(x,D) is continuous on X

with values in [0, 1]. This implies continuity of η. Indeed, η is the uniform limit of



314 N. U. AHMED, F. REZAEI, AND S. LOYKA

the sequence of bounded continuous functions {ηm} given by

ηm(x) ≡
m

∑

i=1

log

(

q(x, Yi)

v(Yi)

)

q(x, Yi)

where {Yi} is a partition of Y by pairwise disjoint members Yi ∈ BY . Thus, µ −→
J1(µ) is linear and bounded. By definition, the second term is the relative entropy of

µ̃ with respect to the measure v. For an arbitrary but fixed v ∈M(Y ), ν −→ I2(ν) is

a strictly convex functional ([7], Lemma 1.4.3, p. 36) on the set {ν ∈M(Y ) : I2(ν) <

∞}. This can be easily verified by use of Gibb’s formula and the strict convexity of

the function η(ξ) ≡ ξ log ξ, ξ ≥ 0. Thus I2 is strictly convex and hence −I2 is strictly

concave. Combining these facts we conclude that µ −→ J(µ) is strictly concave

proving the first part of the statement. Now we consider the question of continuity.

It is clear from the expression (4.11) that J1 is bounded linear and hence continuous

with respect to the weak topology. The functional J2, or equivalently I2, gives the

relative entropy of µ̃ with respect to the measure v. Again, it is well known that

relative entropy is weakly lower semicontinuous ([7], Lemma 1.4.3, p. 36). Thus, J2 is

weakly lower semicontinuous and hence −J2 is weakly upper semicontinuous. Hence,

the functional J given by their sum is weakly upper semicontinuous proving the

second part of the statement. Thus we conclude that µ −→ J(µ) is strictly concave

and weakly upper semicontinuous. Next we verify that sup{J(µ), µ ∈ Mad} < ∞.

Clearly it suffices to verify that sup{J(µ), µ ∈ Sr} < ∞. An alternative expression

for the mutual information, well known in the literature, ([6], Duncan, Theorem 2,

p. 269), and ([11], Lipster-Shirayev, Theorem 16.3, p. 174) is given by

I(X ,Y) = (1/2)E

{∫

I

(

|Ft(x)|2Rm − |F̂t(y)|2Rm

)

dt

}

where F̂t(y) ≡ E

{

Ft(x)|Fy
t

}

with Fy
t denoting the smallest sigma algebra with re-

spect to which the process {y(s), s ≤ t} is measurable. This identity holds for all finite

dimensional stochastic differential equations like (3.8) and (3.14) with F nonanticipa-

tive and Ft taking values from Rm. Under the assumption, P
{∫

I
|Ft(x)|2Rmdt <∞

}

=

1, the proof is identical. We give a brief outline. Let γ(dx × dy) with its marginals,

µ(dx) and ν(dy), be the measures as introduced earlier and let β(dy) denote the

Wiener measure on Y . For the system

dy = Ft(x)dt+ dW, y(0) = 0,

it follows from absolute continuity of γ with respect to µ× β, and ν with respect to

β, and Girsanov measure substitution that the Radon-Nikodym derivative of γ with
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respect to µ× β is given by

(

γ(dx× dy)/µ(dx)× β(dy)
)

(x, y) = exp

{
∫

I

(Ft(x), dy) − (1/2)

∫

I

|Ft(x)|2Rmdt

}

= exp

{

(1/2)

∫

I

|Ft(x)|2dt+

∫

I

(Ft(x), dW )

}

.

Similarly, the RND of ν with respect β is given by

(ν(dy)/β(dy))(y) = ρ(y) ≡ exp

{
∫

I

(F̂t(y), dy)− (1/2)

∫

I

|F̂t(y)|2dt
}

= exp

{∫

I

(F̂t(y), Ft(x))dt− (1/2)

∫

I

|F̂t(y)|2dt

+

∫

I

(F̂t(y), dW )

}

,

where F̂t(y) = E
{

Ft(x)|Fy
t

}

. Since by assumption P

{

∫

I
|Ft(x)|2Rmdt < ∞

}

= 1, it

is clear that β{ρ(y) = 0} = 0 and hence β{1/ρ(y) < ∞} = 1. From these it follows

that the RND of γ with respect to the product measure µ× ν is given by

(γ(dx× dy)/µ(dx)× ν(dy)
)

(x, y) =

= exp

{

(1/2)

∫

I

|Ft(x) − F̂t(y)|2Rmdt+

∫

(Ft(x) − F̂t(y), dW )

}

.

Using this expression and the definition of mutual information along with standard

properties of conditional expectations, we obtain

I(X ,Y) ≡ E

{

log{(γ(dx× dy)/µ(dx)× ν(dy)
)

(x, y)}
}

=

= (1/2)E

{
∫

I

|Ft(x)|2 − F̂t(y)|2dt
}

.

This ends the outline. Conditional expectation is a contraction map and so I(X ,Y) ≥
0, as expected, and we have

J(µ) ≡ I(X ,Y) ≤ (1/2)E

∫

I

|Ft(x)|2Rmdt ≤ (1/2)

∫

X

{∫

I

|Ft(x)|2Rmdt

}

µ(dx).

Since F is a bounded linear operator from X to Y there exists a finite positive number

K, independent of t ∈ I, so that |Ft(x)|2Rm ≤ K2|x|2L2([0,t],Rn), t ∈ I. Hence it follows

from the above inequality that for µ ∈M2(X),

J(µ) ≤ (K2T/2)

∫

X

|x|2µ(dx) <∞.

Thus on Sr ⊂M2(X), we have

sup
µ∈Sr

J(µ) ≤ (K2T 2r/2) <∞

proving that the functional µ −→ J(µ) is bounded away from +∞ on Sr. Since

J is weakly upper semicontinuous and bounded away from +∞ and, by our choice,
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the admissible set Mad ⊂ Sr is weakly compact, J attains its supremum on Mad.

This proves the existence of a µo ∈ Mad at which the capacity C is attained, that is,

C = J(µo). The uniqueness follows from strict concavity of µ −→ J(µ) and convexity

of Mad. This completes the proof. •

Remark 4.1. (Some Examples of Compact sets): Here we present some simple ex-

amples of weakly compact subsets Mad of the set Sr.

Example 4.2. Let {µk} ⊂ Sr be a family of distinct measures, in the sense that

µk 6≡ µm on BX for k 6= m, and Λ a subset of ℓ1 satisfying the following properties:

(1) : αk ≥ 0,
∞

∑

k=1

αk = 1 for α ∈ Λ,

(2) : lim
N→∞

∑

k≥N

αk = 0, uniformly in α ∈ Λ.

Define the set MΛ ≡ {µ ∈ M(X) : µ =
∑

k≥1 αkµk, α ∈ Λ}. The reader can easily

verify that MΛ ⊂ Sr and it is uniformly tight, so relatively weakly compact. Since Λ

is compact, MΛ is closed and hence it is weakly compact.

Example 4.3. A variant of this example for which the same conclusion holds is as

follows. Let X0 be a countable dense subset of the closed ball Ba(X) of X of radius

a ≤ rT . Then the set MΛ(X0) ≡ {µ ∈M(X) : µ =
∑

k≥1 αkδxk
, xk ∈ X0, α ∈ Λ} is a

weakly compact subset of Sr.

Example 4.4. If Υ is any uniformly tight subset of Sr, then the set Mad ≡ wcℓ(Υ)

given by the weak closure of Υ is weakly compact.

Example 4.5. Let D be a compact subset of the Hilbert space X and M(D) =

{µ ∈ M(X) : µ(X \D) = 0}. Clearly M(D) is a weakly compact subset of M(X).

We may choose D such that Sr ∩ M(D) 6= ∅ and then take Mad ≡ Sr ∩ M(D).

Since X = L2(I, R
n), it follows from Sobolev embedding theorems that for any finite

interval I and any p ∈ [2,∞) the embedding W 1,p(I, Rn) →֒ L2(I, R
n) is continuous

and compact. Thus a good example of a compact set D of X is any closed bounded

subset D of W 1,p(I, Rn).

5. MAXIMIZING SOURCE MEASURE

In this section we wish to present necessary conditions that a (maximizing) mea-

sure, subject to energy constraints and determining the channel capacity, must satisfy.

Such conditions are called necessary conditions of optimality. In fact, in the following

result we have both necessary and sufficient conditions of optimality.
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Theorem 5.1 In order for µo ∈ Mad ⊂ M2(X) to be the optimum source measure,

it is necessary and sufficient that the following inequality holds
∫

X×Y

{

log

(

NG(F̄ (x), Q1)(dy)
∫

X
NG(F̄ (ξ), Q1)(dy)µo(dξ)

)}

NG(F̄ (x), Q1)(dy)µ
o(dx)

≥
∫

X×Y

{

log

(

NG(F̄ (x), Q1)(dy)
∫

X
NG(F̄ (ξ), Q1)(dy)µo(dξ)

)}

NG(F̄ (x), Q1)(dy)µ(dx) (5.1)

for all µ ∈ Mad.

Proof Let µo ∈ Mad denote the optimizer, that is,

J(µo) = C ≡ sup{J(µ), µ ∈ Mad}.

Then for any µ ∈ Mad, define µε ≡ µo + ε(µ − µo) for ε ∈ (0, 1). Since Mad is

convex, it is clear that µε ∈ Mad. Clearly µo being the maximal element, we have

J(µo) ≥ J(µε). Let DJ(µ) denote the Gateaux gradient of J at µ whenever it exists.

Then computing the limit,

lim
ε↓0

{

J(µε) − J(µo)

ε

}

=< DJ(µo), µ− µo >,

and noting that for optimality,

< DJ(µo), µ− µo > ≤ 0, (5.2)

it is easy to verify that
∫

X×Y

{

1 − log

(

NG(F̄ (x), Q1)(dy)
∫

X
NG(F̄ (ξ), Q1)(dy)µo(dξ)

)}

NG(F̄ (x), Q1)(dy)(µ− µo)(dx) ≥ 0,

∀ µ ∈ Mad. The inequality (5.1) now easily follows from the above expression. For

the sufficiency, recall that µ→ J(µ) is concave. Hence

< DJ(µ), ν − µ > ≥ J(ν) − J(µ) ∀µ, ν ∈ Mad. (5.3)

Taking µ = µo it follows from this inequality and (5.1), or equivalently (5.2), that

0 ≥ < DJ(µo), ν − µo > ≥ J(ν) − J(µo) ∀ ν ∈ Mad. (5.4)

and hence J(µo) ≥ J(ν) ∀ ν ∈ Mad. This proves the sufficiency of condition (5.1)

thereby completing the proof. •

Remark 5.1. So far in Sections 4 and 5, we have assumed the source of electro-

magnetic fields to be noise free. As seen in section 3.3, to include noisy source, we

must consider the evolution equations (3.15) and (3.17) which are the stochastic ver-

sions of Maxwell (field) equations. With the source noise included, the results of

Theorem 4.1 and Theorem 5.1 remain valid with the replacement of the Channel
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Kernel NG(F̄ (x), Q1)(·) by NG(F̄ (x), Q1 + Q2)(·) where Q2 is the covariance oper-

ator associated with the source noise. For the distributed source model (3.15), the

covariance operator Q2 is given by

(Q2ξ, ξ) =

∫

I×I

< K2(t, τ)ξ(t), ξ(τ) > dtdτ (5.5)

where the kernel K2 is given in terms of the system parameters as follows:

K2(t, τ) =

∫ t∧τ

0

drR(t, r)R∗(τ, r), (5.6)

with R(t, r), 0 ≤ r ≤ t ≤ T , given by

R(t, r) ≡ GΓ

∫ t

r

S(θ − r)σdθ =

∫ t

r

GΓS(θ − r)σdθ. (5.7)

The last identity follows from the fact that GΓ is a bounded linear operator from the

state space H to Rm and hence closed and so commutes with the integral operation.

Similar expressions can be derived for the boundary source. These conclusions are

based on the properties of stochastic convolutions, see ([5], Theorem 5.2, p. 119)

which use stochastic Fubini’s theorem ([5], Theorem 4.18, p. 109).

Remark 5.2. (Numerical Algorithm for Computation) Based on the necessary (and

sufficient) conditions of optimality as presented above, we can develop a gradient

based algorithm for numerical computation. In particular, for simple sources like

those of examples, (E1) and (E2), the functional J(µ) on Mad can be redefined as

being a functional on Λ and, with slight abuse of notation, we may denote it by

J(α). Our problem is to find an αo ∈ Λ at which J attains its supremum. For the

source (E1), it follows from the necessary conditions that in order for αo ∈ Λ to

be the optimal distribution of weights assigned to the family of measures {µk}, it is

necessary and sufficient that we have,

∑

k≥1

(αk − αo
k)

∫

X

Lαo(x) µk(dx) ≥ 0, ∀ α ∈ Λ, (5.8)

where

Lαo(x) ≡
∫

Y

log

(

q(x, dy)/
∑

k≥1

αo
k ν

k(dy)

)

q(x, dy), νk(dy) =

∫

X

q(x, dy)µk(dx).

For the source (E2), this further reduces to

∑

k≥1

(αk − αo
k)Lαo(xk) ≥ 0, ∀ α ∈ Λ,

where

Lαo(xk) ≡
∫

Y

log

(

q(xk, dy)/
∑

k≥1

αo
k q(xk, dy)

)

q(xk, dy).
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For these simple sources, one can write a gradient based numerical algorithm for

finding the optimum source. Considering the first source, the gradient of J at the

n-th iteration is given by

△J(αn) = {△kJ(αn) =

∫

Lαn(x)µk(dx), k = 1, 2, · · · }.

Choose

αn+1
k ≡ αn

k + εn△kJ(αn), k ∈ N,

with εn > 0 sufficiently small so that αn+1 ∈ Λ. Using this αn+1, we compute the

objective functional giving

J(αn+1) = J(αn) + ε
∞

∑

k=1

(△kJ(αn))2 + 0(ε).

For εn > 0 sufficiently small the series converges guaranteeing improvement of the

objective functional at each step. Similar conclusion holds for the source (E2) with

the gradient vector given by

△J(αn) = {△kJ(αn) = Lαn(xk), k = 1, 2, · · · }.

Remark 5.3. The notion of entropy and relative entropy play significant roles not

only in communication problems as seen above, but also in min-max games arising

in the study of control of uncertain stochastic differential systems on Hilbert spaces

([3], Ahmed and Charalambos ) and also in nonlinear filtering ([4], Ahmed and Char-

alambos).

6. CONCLUSION

We have presented a complete dynamic model for MIMO channels (wave guides,

cavities) based on deterministic as well as stochastic Maxwell’s equations. To the

best of our knowledge, this formulation has not been considered in the literature.

Both distributed and boundary sources have been considered. Proof of existence of

maximizing source measure subject to power constraints has been presented. Opti-

mality conditions have been developed which can be used for numerical computations

as indicated in Remark 5.3 for simple source spaces. The model used for sensors in

the above formulation can be extended to cover linear (sensor) dynamics without any

difficulty. This requires inclusion of the associated transition operator for the con-

struction of the output map Ft(x). It would be interesting to study similar problems

with nonlinear sensor dynamics.
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