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ABSTRACT. This paper is concerned with the following third-order m-point boundary value

problem
{ u” (t) = f(tu(t),u (t),u" (t)+e(t), 0<t<I,
m—2

where f : (0,1) x R® — R is a function satisfying Carathéodory’s conditions, e : (0,1) — R
and t(1—t)e(t) € L'[0,1],0 < & < & < - < &pa < 1, k; € R(i = 1,2,...,m — 2) and
m—2

> k; # 1. Some existence criteria of at least one solution are established by using the well-known

i=1
Leray-Schauder Continuation Principle.

AMS (MOS) Subject Classification. 34B10, 34B16.

1. INTRODUCTION

Third-order differential equations arise in a variety of different areas of applied
mathematics and physics, e.g., in the deflection of a curved beam having a constant
or varying cross section, a three-layer beam, electromagnetic waves or gravity driven
flows and so on [10]. Recently, third-order two-point or three-point boundary value
problems (BVPs for short) have received much attention [1, 2, 3, 6, 7, 11, 12, 13,
14, 17, 18]. Although there are many excellent works on third-order two-point or
three-point BVPs, a little work has been done for more general third-order m-point

BVPs or high-order multi-point BVPs [4, 5, 8, 9, 16] (either singular or non-singular).
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As we know, the study on singular multi-point BVPs proceeded very slowly. For the

singular second-order m-point BVP

" (t)=f(tx(t), 2" (t)+e(t), 0<t<1,
2 (0) =0,z (1) = mg_l @z (&) (1.1)

Ma [15] studied the existence of at least one solution by using Leray-Schauder Con-

tinuation Principle.

Motivated greatly by the above-mentioned excellent works, in this paper we will

investigate the third-order m-point BVP
u” (t) = f (tu(t), v (t),u” () +elt), 0<t<L,

u(0) = ’:Lz:—:j ke (€) 0/ (0) = o/ (1) = 0. (1.2)

Throughout this paper, we always assume that f : (0,1) x R* — R is a function
satisfying Carathéodory’s conditions, e : (0,1) — R and ¢ (1 —t)e(t) € L'[0,1], 0 <
§<&< - <Enao<lkieR(i=1,2,...,m—2) and %—fki # 1. It is interesting
that our f and e may be singular at ¢ = 0 and t = 1. Zg(l)me existence results of
at least one solution for the BVP (1.2) are established by applying the well-known

Leray-Schauder Continuation Principle [19], which we state here for convenience of

the reader.

Theorem 1.1. Let X be a Banach space andT : X — X be a compact map. Suppose
that there exists an R > 0 such that if u = XTu for some X € (0,1), then ||u|| < R.
Then T has a fixed point.

In the remainder of this section, we introduce some useful spaces. We will use the
classical Banach spaces C'[0,1], C*¥[0,1], L [0, 1] and denote the space of absolutely
continuous functions on the interval [0, 1] by AC[0, 1]. We also denote

ACio: (0,1) = {yl yl, ) € AC'[a,b] for every compact interval [a,b] € (0, 1)} :
Let E be the Banach space
E={y€ L, (0,1)]t(L—t)y(t) € L'[0,1]}

equipped with the norm

1
lolle = [ =0l
where
L, (0,1) = {y| Ylay € L' [a,b] for every compact interval [a,b] C (0, 1)} :
Moreover, we also use the Banach space

X={ueC?0,1)|ueCl0,1],u € C[0,1] and t (1 —t)u" € C[0,1]}
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equipped with the norm

lully = max {[lull o, l0'll » 1t (1 =) u"ll 0}

where ||-|| . denotes the sup norm.
In the remainder of this paper, we suppose that the following condition is satisfied:

(H) There exist ag, 1,0 € E and ay € L' [0,1] such that

2
|f (t, x0, 21, 22)] < Zal )|zl +6(t), ae. t €(0,1), (20, z1,22) € R>.

=0
2. PRELIMINARY LEMMAS
In this section, we present several important preliminary lemmas.

Lemma 2.1. Let y € E. Then the BVP
”’(t)—l—y()zO, te(0,1),

2.1
w0 =S bu(€), w(©)=u'1)=0 2
i=1
has a unique solution
1 m—2 1
/ Go (t,s)y(s)ds + ———— l@/ Go (&, 9)y (s) ds,
1-— ]{52 i=1 0
=1
which satisfies
1
/Glts s)ds and u" ):/G2(t,s)ysds
0
where L
2st—s“—st 0<S<t<1
Gy (t,s 2, ' - - =7 2.2
(t.5) {<> ooy (22
1—1t 0<s<t<1
Gy (ts) =4 Um0, 0=ssisl (23)
t(l—s), 0<t<s<l1
and
—s 0<s<t<1
Gy (t,8) = ’ 2.4
2 (t;) {1—S,O<t<s<1 (24)
Proof. In fact, if u is a solution of the BVP (2.1), then we may suppose that
Lt —s)
u@:—/‘ 5 y(s)ds + At> + Bt + C.
0
By the boundary conditions, we get A = fo =2y (s)ds, B =0 and
1 = L 1 = f
C:TZ/’@- 5 §i2y(s)ds— — l{:l/o =y (s)ds.

1— 3 k; i=t1 0 k; i=1

=1 =1
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Therefore, the BVP (2.1) has a unique solution

u(t) = —/0 “‘25) y(s)ds+/0 ?ﬁy(s)ds

by & (¢ _ )2
+%Zki/o 12 Sffy(s)dS—%Zki/O (& 28) y(s)ds

t o2 42 1 . 2
_ / 2st — s° — st y (5) ds+/ (1 —s)t y () ds
0 t

2 2
2

1 m— &i 2 L G2 2 1 1 — 2
— D ki </ 6 =8 786 y(s)ds +/ &y(s) ds) .
S k. i=1 2 & 2

=1

Moreover,

and

U
Lemma 2.2. For all (t,s) € [0,1] x [0, 1], we have
0<Go(t,s) < 38 s(l—s) (2.5)
and
0<Gi(t,s) <s(1—ys). (2.6)
Proof. Since it is obvious that (2.6) holds, we only prove (2.5). If s <¢, then
25t —s2—st2  s(l—s—(1-1)%) 1
= = < Zg(1—
o (t.9) . . < gs(1-3)
If t <s, then
1—s)t? 1-— |
Golts) = . 25” <! ;)S < s(1-s)
U
Lemma 2.3. Let y € E. Then the unique solution of the BVP (2.1) satisfies
[u®ll,. < Adllyll, i =0,1 (2.7)
and
1t (1 =) u" ()l < A2 lyllg (2.8)
Sk
where Ay = %

1+‘ i:,i,Z O/ﬂdAleQ:l.
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Proof. In view of Lemma 2.2, for all ¢ € [0, 1], we have

1 m—2 1
lu(t)] = /Gots s)ds + ———— Zk: Go (&, )y (s)ds

1=1

1 zi
=1
1
< 5[ -9l wa\/ (1= 5)ly(5)| s
0 2%—}3@
i=1
m—2| |
k;
1 £
= 3 1+ —=—— | |lylls.
‘1 Sk
i=1
and thus
m—2
1 k|
=1
lule <5 | 1+ Tz 1yl -
'1_ Sk,
i=1

Similarly, for all ¢ € [0, 1], we get

/Glts

[u' (1) =

_/0 s(1—5) |y () ds = [yl

and so
0] < Yl 5

Finally, for all ¢ € [0, 1],

t(1—t)u" ()] = /Ot(l—t)(—s)y(s)ds—l—/t t(1—t)(1—s)y(s)ds

IN

/0<1—t>s|y<s>|ds+/t £ — 8)ly ()] ds
< [a=asuEldst [ s0-9l)
- /Os<1—s>|y<s>|ds=uqu,

which implies that

1t (=8 " ()l < lylle-
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Now, we define an integral mapping 7' : £ — X by

(Ty)(t):/ Go(t,s)y(s)d8+ Zk/ Go (&, 9)y (s)ds, t €[0,1].
0 Zk i=1

Similar to the proof of part one of Lemma 2.3, we have

1 m—2 1
/ Go (t,s)y (s)ds + i_2 k:Z/ Go (&, 9)y (s)ds
0 1-— ]{52 i=1 0
i=1
m—2
1 Skl .
< 3 1+Z:1T /s(l—s)|y(s)|ds<oo,
‘1 — S k| )
i=1

which shows that 7" is well-defined.

Lemma 2.4. Lety € E. Then Ty € X and

(Ty)" (t) +y(t) =0, ae. t€(0,1), ’o
(Ty) () = 2 ki (Ty) (&) (Ty)' (0) = (Ty)' (1) =0. 29
Proof. For y € E, we know that ¢t (1 —¢)y (t) € L' [0,1]. By Lemma 2.1, we get
= /0 Gy (t,s)y(s)ds (2.10)
and
(Ty)" ( / G (t,5) (2.11)
Now, since

/0\<Ty)’<t>\dt= /G1 (t,s)y (s)ds dt</0 s(1—s)|y(s)|ds < oo,

we have Ty € AC[0,1]. A simple computation (by interchanging the order of inte-

gration) yields

/01}<Ty>”<t>\dt - / /01G2<t,s>y<s>ds
< [ [sww@nasaes [ [ a-s )i
- /01/813|y(s)|dtds+/01/08(1—s)|y(s)|dtds

= 2/0 s(1—s)|y(s)|ds < oo,

dt
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which shows that (Ty) € AC'[0,1]. Now (2.11) together with the fact y € L [a, b],
for any a,b € (0, 1), imply that (T'y)" € AC [a,b]. So

(Ty)" (t) +y(t) =0, ae. t € (0,1).

Set
¢ (1) = [t(1—1)(Ty)" ()], t€0,1].
We first show ¢ € L'[0,1]. If this is true, then ¢ (1 —t)(Ty)" € AC]0,1], and

accordingly, ¢ (1 —t) (T'y)" € C'[0,1]. In fact, a simple computation yields

/0 6@t = / (1= 28) (Ty)" (£) + £ (1 — 1) (Ty)" (1)

IN

/0 \(Ty)”(t)}dwr/o t(L—t)|(Ty)" (t)|dt
< 2/0 3(1—s)|y(s)\ds+/0 t(1—1) |y (t)|dt < 0.

Next,
1 m—2 1
T ) = — Yk [ Goles)y(s)ds
1-— ]{52 i=1 0
=1
and
1 m—2 1
T (€)= [ Goleo)ye st — Yok [ Goles)y(s)ds
0 1-— Z k’z i=1 0
i=1
imply that
m—2
(Ty) (0) = > ki(Ty) (&)
i=1

Similarly, we can obtain that

(Ty) (0) = (Ty)' (1) = 0.

For u € X, we define a nonlinear operator N : X — E by

(Nu) (t) = —f (t,u(t),u (t),u" (t)) —e(t), t € (0,1).
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From (H), we can conclude that N is well-defined. In fact,

INullg = /0t(l—t)If(tU(t),U'(t),U"(t))+6(t)ldt

< [ o=@l [ 0=l @ @)
+ o 0lt -0l 0]
+/1t(1—t)|6(t)|dt+/1t(1—t)|e(t)|dt

< laollg lulle + lloall g e lloe + No2lly 18 (U= 1) u"ll o + 1161l & + llell 5 < oo

Lemma 2.5. TN : X — X is compact.

Proof. Let D C X be a bounded set. We will prove that TN (D) is relative compact
in X. Suppose that {wy},., C TN(D) is an arbitrary sequence. Then there is
{ur}r—, C D such that TN (uy) = wy. Set

M = sup{|jul|ly : we D}.

Then it is easy to see that

|as (1)
t(1—1)

+16@)| +le@®)|:=xt), te(0,1).

|(Nug) ()] < oo ()] M + Jan (£)| M + M

Obviously, x € E, i.e., fol t (1 —1t)x(t)dt < oco. Thus, by Lemma 2.2, we have

lwi @) = [(T'N) ux) (t)]
- / Go (t,s) (Nuy) (s) ds + i_2 - kz/ Go (&, 8) (Nug) (s) ds
0 1-— kz i=1 0
IR
< % (RS S / (1= 5) [(Nug) (s)] ds
‘1 — ; ki | 0
S SI T
< 3 1+Z:1T /s(l—s)x(s)ds,te[o,l],
‘1 - > ki)
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which implies that {wy},-, is uniformly bounded. Similarly, we get

wi (O] = [(TN)u)' ()] = /0 Gy (L, s) (Nug) (s) ds

< /0 s(1—s)x(s)ds, t€l0,1],

which shows that {wy}},, is also uniformly bounded. Therefore, {wy},-, is equicon-
tinuous. By the Arzela-Ascoli theorem, {wy},-, has a convergent subsequence in

C'[0,1]. Without loss of generality, we may assume that {wy},-, converges in C [0, 1].

Next,
1 1
//|G2(t,s)|x(s)dsdt //sx dsdt+// (1 —5)x(s)dsdt
o Jo
= //sx dtds+// (1 —s)x(s)dtds

- / s (1 5) x (s) ds,

that is to say, fol |G2 (t,5)| x (s)ds € L'[0,1], which together with
t1 t1 t1
)~ wi el = | [Cut@a| < [Cug@ia= [T @y ol
to t2 t2
t1 1
_ / / G (£, 5) (Nug) (s) ds
to 0
t1 1
< [ [ 16 o) asa
to 0

t1 1
< [ [1esine)asa
to 0

for every ty,ts € [0,1] with ¢, < ¢1, imply that {w}},;~, is equicontinuous. As a result,

dt

without loss of generality, we may put that {wj} },- is also convergent in C' [0, 1].

Finally,
tA—tuwi )] = [td—t)(TN)uw)" (t)]

/1t 1 —t) Gy (t,s) (Nuyg) (s)ds

< /Ot (1—1)s Nuk)(s)|ds+/t F(L— 1) (1 — 5) |(Nug) (5)] ds
< /08 (1) Nuk)(s)|ds+/t (1= 8)|(Nug) (s)| ds

1
g/sl—s s)ds, t €[0,1],
0

which shows that {¢ (1 —¢) w]},—, is uniformly bounded. If we let
= fol |Ga (t,s)] x (s)ds +t(1—1t)x(t), t € [0,1], then it is easy to know that
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o€ L'[0,1] and

[t =wi@®)] = |1 =20 (TN)w)" (1) + (1 = t) (TN) w)" (¢)]

/0|G2(ta5)||(Nuk)(3)|d3+t(1_t)|(Nuk)(t)|
< @(t), telo,1].

IA

And then for every t,t, € [0, 1] with to < 1, we have

|t (1 —t1) wy (t1) —ta (1 —t2) wy (ta)| =

[ e nutoya

to

< [ lea-nuioy|a

to

t1
< / o () dt,
to

which shows that {t (1 —t)w}},—, is equicontinuous. Again, by the Arzela-Ascoli
theorem, we know that {t (1 —t)wy};—, has a convergent subsequence in C[0, 1].

Therefore, {wy},-, has a convergent subsequence in X. O

3. MAIN RESULTS

Now, we apply the Leray-Schauder Continuation Principle to establish the exis-
tence of at least one solution for the BVP (1.2).

Theorem 3.1. Assume that (H) holds. Then the BVP (1.2) has at least one solution
in X provided

m—2
1 ; | kil
5 loollp | 1+ T | Tl + e, < 1. (3.1)
=
=1

Proof. To complete the proof, it suffices to verify that the set of all possible solutions
of the BVP

W () = M (tu ()0 (8) 0" (B) + de (t), 0<t<1,
u (0) = mZ_ w(&), W (0)=u(1)=0 (3.2)

1=1

is, a priori, bounded in X by a constant independent of A € (0, 1).
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Suppose that u € X is a solution of the BVP (3.2) for some A € (0,1). Then it
follows from (H) and Lemma 2.3 that

|l = / E(L— 1) [ (1) dt = / ML= )| (o () ol (8) " (8) + e (8)] e

S/O t(1=1) (Jao ()] [u () + laa (O] [0 ()] + ez (O] [u” @) + [0 (£)] + [e (£)]) dt

< laoll g lulloo + lleallg 10l + lezlly 1t (0= 8) "l + 16115 + llell g

m—2
1 > Ik,
< | 5llaolls [ 14— + llaallp + llezlly | lu"1lg + 116l 5 + llell -
‘1_21@.
i=1

191l g +llell

In view of (3.1), there exists a constant ¢ =

—2 Y
1 1gl‘k2|
1= gllaollp | 1= | Hlleall ptllezll,
1— > k;

i=1

7

independent of A € (0, 1), such that

"

[u”]|lp < e
By Lemma 2.3, we obtain
m—2
] |Kil
lule <5 | 1+ = |
‘1 S
i=1
and
W'l <o It —t)u"]|l < e
Then,
m—2
1 5 Ik
|lull y < max {1, 3 1+ Z:1m_2 c.
‘1 S
i=1
It is now immediate from Theorem 1.1 that T'N has at least one fixed point, which
is a desired solution of the BVP (1.2). O
ACKNOWLEDGMENTS

The third author was supported by the NNSF of China (10801068).

REFERENCES

[1] D. R. Anderson, Green’s function for a third-order generalized right focal problem, J. Math.
Anal. Appl., 288 (2003), 1-14.

[2] D. R. Anderson and J. M. Davis, Multiple solutions and eigenvalues for three-order right focal
boundary value problems, J. Math. Anal. Appl., 267 (2002), 135-157.



364 A-L. SHI, H-E ZHANG, AND J-P. SUN

[3] Z.J. Du, W. G. Ge and X. J. Lin, Existence of solutions for a class of third-order nonlinear
boundary value problems, J. Math. Anal. Appl., 294 (2004), 104-112.
[4] Z. J. Du, W. G. Ge and M. R. Zhou, Singular perturbations for third-order nonlinear multi-
point boundary value problem, J. Differential Equations, 218 (2005), 69-90.
[5] Z.J. Du, X. J. Lin and W. G. Ge, On a third order multi-point boundary value problem at
resonance, J. Math. Anal. Appl., 302 (2005), 217-229.
[6] M. El-Shahed, Positive solutions for nonlinear singular third order boundary value problems,
Commun Nonlinear Sci Numer Simul., (2007), doi: 10.1016/j.cnsns.2007.10.008.
[7] Y. Feng and S. Liu, Solvability of a third-order two-point boundary value problem, Applied
Mathematics Letters, 18 (2005), 1034—-1040.
[8] J. R. Graef, J. Henderson, and B. Yang, Positive solutions to a singular third order nonlocal
boundary value problem, Indian J. Math., 50 (2008), 317-330.
[9] J. Graef, L. Kong, and Q. Kong, Higher-order multi-point boundary value problems, Math.
Nachr., to appear.
[10] M. Gregus, Third Order Linear Differential Equations, Math. Appl., Reidel, Dordrecht, 1987.
[11] L. J. Guo, J. P. Sun and Y. H. Zhao, Existence of positive solution for nonlinear third-order
three-point boundary value problem, Nonlinear Analysis, 68 (2008), 3151-3158.
[12] B. Hopkins and N. Kosmatov, Third-order boundary value problems with sign-changing solu-
tions, Nonlinear Analysis, 67 (2007), 126-137.
[13] S. Li, Positive solutions of nonlinear singular third-order two-point boundary value problem,
J. Math. Anal. Appl., 323 (2006), 413-425.
[14] R. Ma, Multiplicity results for a third order boundary value problem at resonance, Nonlinear
Analysis, 32 (1998), 493-499.
[15] R. Ma, Solvability of singular second order m-point boundary value problems, J. Math. Anal.
Appl., 301 (2005), 124-134.
[16] M. Maroun, Positive solutions to a third-order right focal boundary value problem, Comm.
Appl. Nonlinear Anal., 12 (2005), 71-82.
[17] Q. Yao, The existence and multiplicity of positive solutions for a third-order three-point bound-
ary value problem, Acta Math. Appl. Sinica, 19 (2003), 117-122.
[18] Q. Yao and Y. Feng, The existence of solution for a third-order two-point boundary value
problem, Applied Mathematics Letters, 15 (2002), 227-232.
[19] E. Zeidler, Nonlinear Functional Analysis and Applications, I: Fixed Point Theorems, Springer-
Verlag, New York, 1986.



