Communications in Applied Analysis 12 (2008), no. 4, 377-398

RIEMANN-LIOUVILLE FRACTIONAL OPIAL INEQUALITIES
FOR SEVERAL FUNCTIONS WITH APPLICATIONS

GEORGE A. ANASTASSIOU

Department of Mathematical Sciences, University of Memphis
Memphis, TN 38152 U.S.A. ganastss@memphis.edu

ABSTRACT. A large variety of very general L,(1 < p < co) form Opial type inequalities ([15]) is
presented involving Riemann-Liouville fractional derivatives ([5], [12], [13], [14]) of several functions

in different orders and powers.

From the established results derive several other particular results of special interest. Ap-
plications of some of these special inequalities are given in proving uniqueness of solution and in
giving upper bounds to solutions of initial value fractional problems involving a very general system
of several fractional differential equations. Upper bounds to various Riemann-Liouville fractional

derivatives of the solutions that are involved in the above systems are given too.
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0. INTRODUCTION

Opial inequalities appeared for the first time in [15] and then many authors dealt
with them in different directions and for various cases. For a complete recent account
on the activity of this field see [3], and still it remains a very active area of research.
One of their main attractions to these inequalities is their applications, especially
to proving uniqueness and upper bounds of solution of initial value problems in dif-
ferential equations. The author was the first to present Opial inequalities involving
fractional derivatives of functions in [4], [5] with applications to fractional differential

equations. See also [8], [9].

Fractional derivatives come up naturally in a number of fields, especially in
Physics, see the recent book [11]. To name a few topics such as, fractional Kinetics of
Hamiltonian Chaotic systems, Polymer Physics and Rheology, Regular variation in
Thermodynamics, Biophysics, fractional time evolution, fractal time series, etc. One
there deals also with stochastic fractional-difference equations and fractional diffusion
equations. Great applications of these can be found in the study of DNA sequences.

Other fractional differential equations arise in the study of suspensions, coming from
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the fluid dynamical modeling of certain blood flow phenomena. An excellent account

in the study of fractional differential equations is in the recent book [16].

The study of fractional calculus started from 1695 by L’Hospital and Leibniz,
also continued later by J. Fourier in 1822 and Abel in 1823, and continues to our
days in an increased fashion due to its many applications and necessity to deal with
fractional phenomena and structures.

In this paper the author is greatly motivated and inspired by the very important
papers [1], [2]. Of course there the authors are dealing with other kinds of derivative.
Here the author continues his study of Riemann-Liouville fractional Opial inequalities
now involving several different functions and produces a wide variety of correspond-
ing results with important applications to systems of several fractional differential
equations. This article is a generalization of the author’s earlier article [6].

We start in Section 1 with Background, we continue in Section 2 with the main
results and we finish in Section 3 with applications.

To give an idea to the reader of the kind of inequalities we are dealing with,

briefly we mention a simple one

/ox (Z (D7 f3)(w)] |(D”fj)(w)|) dw
< <2F(u—7)\/v—7\/2u— 27 — 1) {/0 (;((D”fj)(w)) ) dw}, (%)

x > 0, for functions f; € L1(0,z),j =1,...,M € N; v > v > 0 etc. Here D°f stands

for the Riemann-Liouville fractional derivative of f of order § > 0. Furthermore one

system of fractional differential equations we are dealing with briefly is of the form

(DY fi)(t) = F5 @AD" A1) () iy, AP L))}y,
{(D"fa)(t)}izy),  allt € [a, 0], ()
j=1,...,M; D" *f;(0) = ay; € R, k=1,...,[v] + 1. Here [] is the integral part

of v.

1. BACKGROUND
We need

Definition 1 (see [10], [13], [14]). Let a € Ry — {0}. For any f € Ly(0,z); = €
R, — {0}, the Riemann-Liouville fractional integral of f of order « is defined by

(Jof)(s) == ﬁ /Os(s —t)* L f(t)dt, Vs € 0,1, (1)
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and the Riemann-Liouville fractional derivative of f of order o by

D18 = s () [ 6= 0m o, @)

where m := [a] + 1, [-] is the integral part. In addition, we set —D°f := f := Jyf,
Jof =Dfifa >0 D°f :=J,f,if 0 <a <1 Ifa €N, then D*f = f(® the

ordinary derivative.

Definition 2 ([10]). We say that f € Li(0,z) has an L., fractional derivative D* f
in [0,z], v € Ry — {0}, iff D**f e C([0,2]), k=1,..., m:=[a] + 1; « € Ry — {0},
and D' f € AC([0,x]) (absolutely continuous functions) and D®f € L (0, ).

We need

Lemma 3 ([10]). Let « € Ry, B > a, let f € L1(0,2), x € Ry — {0}, have an Lo

fractional derivative D° f in [0, 2], and let DP=*f(0) =0 for k =1,...,[8]+ 1. Then
1 S

D* 827/ s—t)P DA f(H)dt, Vs el0,x] 3

1) = | =0 D) 0,41 ®)

Clearly here D*f € AC([0,z]) for B—a > 1 and in C([0,z]) for B—a € (0,1), hence
Df € Lo(0,2) and D*f € L1(0,x).

2. MAIN RESULTS

Here we use a lot the following basic inequalities. Let a1, ao,...,a, >0, n € N,
then
al+-4a, <(ag+---+a,)", r>1, (4)
and
aj - +al <n'(ar+ o +a,), 0<r <1 (5)

Our first result follows next

Theorem 4. Let oy, a0 € Ry, § > oy, a9 and let f; € L1(0,2), j =1,...,M € N,
x € Ry — {0} have, respectively, Lo, fractional derivatives DPf; in [0,], and let
DP=Ff(0) =0, fork =1,...,[8]+1; 5 =1,...,M. Consider also p(t) > 0 and
q(t) > 0, with all p(t), ﬁ, q(t) € Loo(0,2). Let Ag > 0 and sy, Ao, > 0, such that
Ag < p, where p > 1. Set

p(B—a;—1)

Fi(s) == /Os<s—t>w(p(t))‘”“”‘”dt i=12 0<s<u, (6)

A(S) — Q(S)(Pl(s)))\al(%)(PQ(S)))\%(%)(]Q(S))_)‘LB/IJ
' (T(5 — 1)1 (T(B — ag) ) )

auto) = ([ apooas) o ®)
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and
MY (QartA)/P) i X+ A < p,
6= wens, ’ (9)
ol )L, if Ay + A5 > p.
Call
A As/p
e1(z) = (Ao(2) |, o) (m) (10)

If Ao, = 0, we obtain that,

/ (ZIDalf ()1 D f (s W) ds
Aa1+Aﬁ)

< St (x [/ (Z\Dﬁf] ) ]( o (11)

Proof. By Theorem 4 of 7] we obtain

[ ats) [0 5P (DA + 1D a9 [0 (o) s

>\ﬁ (As/p)
< (Ao(f) |>\a2 :0) (m)
ai

- (Reat2s
X 01 {/ p(s) [}Dﬁf]—(s)‘p + }Dﬁfﬁl(s)}p} ds] , (12)
0
7=12....M — 1, where
21=(Qay+20)/p) i N, + Ag < p,
51 = P =b (13)
1, if )‘041 + >\ﬁ > p-

Hence by adding all the above we find

/oxq<s> {Z_ (1D () [DP F () + [ D f41(3)*4 [ DP f41(5)]] } &

J=1

< dipi(x {M 1 U ) [[D7f5(s)FP + D% fa (s)IF] dS}W}- (14)

J=1

Also it holds
/0 q(s) [|D* fi(s) 1 [D? fi(8)[M + | DY fag (s)]*1 | D far ()] ds

Aoy +2p)
P

< bipr(@) [ [ o0 1D R0 + 10 (o)) ds] . (15)
Call

(16)

1, lf )‘a1+>‘ﬁ Zp,
g1 =
1=( 3 B), if )‘a1+>‘ﬁ Sp.
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Adding (14) and (15), and using (4) and (5) we have

M
(Z D f5(s)[1 [ DP £ (s W) ds

J=1
AaytAg

Ml (c
< dipi(x { $) [|ID7fi(s)” + D" fisa(s)IF] dS}

Jj=1

; [/omz?(s) (1D fi()P + D7 faa(5))7] ds] ()}

< hierpr(w) {/OIP(S) (22 IDﬁfj(S)lp) ds

(2eatts)
We have proved

|t <Z|D‘“f () DA (s W) s

s i - M (——)
<6 (2( g ﬁ)_1) e1p1(w {/ [Z ‘Dﬁfj ] } .

Jj=1

Aevq +A
55 = 6y <2< o) 1)51.

From (19) and (20) we derive (11).

Clearly here we have

Next we give

Theorem 5. All here as in Theorem 4. Denote

5 222/ — 1 if Ay, > Ag,
3 ::
1, if Aoy < Ag,

]-7 if)‘ﬁ+)‘a2 2p>
€2 = (s Hrey
M (> ), if)\g+)\a2 <,

and

381

(18)

(19)

(20)

(21)
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If \oy =0, then it holds

/0”” q(s){ { z_: [1D°2 fia(s)[*2| DP fi(s)]* + | D fi(s) "2 | D” f1 (5) ] }

i=1

+ (1D fas ()2 [ D2 fu () + | D2 fi(s) 2| D fag ()] }ds

Agtiag )

(=
SQ(@)@% {/ [Z|Dﬁf] ] } . (24)

Proof. From Theorem 5 of [7] we have

/0 q(s) [[D°2 fi1(s)*2 [ DI fi ()| + | D2 f(s)[*2 | D fra (5)[ Y] ds
(Agtrag)

< ¢pa(x) (/OIP(S) [ID?£3(s)I” + 1D fa(s) 7] dS) o (25)

for j=1,..., M — 1. Hence by adding all of the above we get

1

;o (Z D% fra () D s W+\D%(s)\*w\Dﬁfj+1<s>|”’]>ds

J=1

(MX:I (/ ) [[1D7 fi ()P + D7 fia ()] dS)W) . (26)

Jj=1

Similarly it holds

/qu(s) (1D far (s) |22 | D? fu(s)[> + | D2 fu(s)|*2 | D far (5)] ds

(Agtrag)
P

< () ( [ o0 10 R0 + 1D (o)) ds) . (27)
Adding (26) and (27) and using (4), (5) we derive (24). O

It follows the general case

Theorem 6. All here as in Theorem 4. Denote

. 2(Qar+Aaz)/Aa) — 1 if Ay + Ay > A,
M= (28)
1’ Zf >\a1 + )\ag S )\,37
and
1, if Aoy T Aoy + Ag 2 D,
’)72 — f 1 2 /6 p (29)
1= (Qar FAay t25)/p) 4t Aoy + Aoy + A < p.
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Set

28
As [ 2 (p— Ag) Ag
=A Al Vo +27 7 (MAa)? |,
pule) =) ((Am F ha) Oy Ay w) [ " e
(30)
and
L, if Aoy T Aoy + A 2 s
g3 = 1 Aaq +Aag+2g f ' ’ ’ (31)
M i Ay A+ Aay + As < p.
Then

. M—1
/ [ [Dalf (8)[* 1| D fia1 ()2 | D f ()™

Jj=1

+ ‘Da2fj(3)‘)\a2 | D™ fj+1(3)‘)\a1 |D6fj+1(5)|/\ﬁ}

" [|Da1f1(5>|>\a1|Da2fM(3)‘)\a2|Dﬁfl(S>|>\ﬁ

+ 1D f1(5)[2 [ D fag(s) e |DﬁfM<s>|”H os

Aag Hhag Hrg

T M ( P
<2 %gog(x){ / p(s) [Ewﬁfj(sw] ds} S (32

j=1

Proof. From Theorem 6 of [7] and by adding we get
Z / [‘Dalf (8)[*1| D fiia(s)] 22 D f(s)[>

+ D2 f5(s) |2 | D™ fi4a(s) e |Dﬁfj+1(8)|w] *

M-1

(g +ran+A5)/p
( [ oo er+ |Dﬁfj+1<s>\p>ds) (33)
]:1

Also it holds

| o [lDalms)Pal 1D fog () DP )

DR fy ()5 D g () \Dﬁfms)‘”] ds

N (Ao FAag+3g)

< oy(a) ( [ o) (D% 5607 + 10" 1)) ds) BEn

Adding (33) and (34), along with (4), (5) we derive (32). O

We continue with



384 G. A. ANASTASSIOU

Theorem 7. Let § > a1 +1, g € Ry and let f; € L1(0,z), j =1,...,.M € N,
r € Ry — {0} have, respectively, Lo, fractional derivatives DPf;, in [0,z], and let
DPFf(0) =0, fork =1,...,[8]+1; 5 =1,...,M. Consider also p(t) > 0 and

q(t) >0, with p(t), ﬁ, q(t) € Loo(0,2). Let Ay > 0,0 < Agy1 <1, andp > 1.
Denote
22/Qatt) — 1 i Ay > g,
0y = f a2 dars (35)
]_, Zf )\a S )\a—i-la
i (1/(1=Aat1)) (et /o gin, gy \
L(z):= (2 ~hatt)g — , 36
@)= (2 [ ae) O () (36)
and
P (z) == / (z — S)(ﬁ—al—l)p/(P_l)(p(s))_l/(p_l)ds’ (37)
0
p—1 (Aat+Aa+1)
Pl(:L')(T)
T(x):=L(z) | =" , 38
@ <>(F(ﬂ_m) 39
and
wy =205 )(’\“J”\““), (39)
O(z) :=T(x)wy (40)
Also put
]., Zf )\a + )\a 2 b,
&4 1= 1_(Aatratr o (41)
M i A+ A < .
Then

T M—-1
/ { {Z |Da1f] |>\a|Da1+1f]+1( )|>\a+1 + |Da1fj+1(s)|>\a|Dal+1fj(8)|)\a+li| }
7j=1

(1D ()P D™ ()0 + D2 fug ()P D4 fy(5) }ds

(Retatl)

< 902 gy [/ (Z\Dﬁfj )] P, (42)

Proof. From Theorem 8 of [7] we get

M-1

/0 g )X IO O D% (157 5P

H

(Retratl)

T [/”” )(ID7f;(s )|p+\Dﬁfj+1(S)lp)d8} o (43)

M—

,_.

.
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Similarly it holds

/ q(s) [[D™ fo(s)P[ D™ far(s)[ P + [D fag (s)[ [ D¥ L fi(s)[ ] ds
0
Qatrat)

<o) | [ M HP + D futyas| T (a1)
Adding (43) and (44), along with (4), (5) we obtain (42). O
Next it comes

Theorem 8. All as in Theorem 4. Consider the special case of Ao, = Aoy + Ag.

Denote
7 )‘6 Ae/p (p—2Xaq —323)/
T(x) = A — Q\P=2Aay =3A8)/P 4
(@)= aulo) (525 ) D (45)
L if 2(Aay + Ag) > D,
€ 1= 1 (2Qa1+2p) ' (46)
M 2N, 4+ As) < b
Then
. M—1 R
/ {{ |:|Da1f )\al |Da2fj+1(s)|)\a1+>\g }Dﬁfj(s)} 3
7j=1
« « [0 @ A
F D P D () (Do)
+ |:|Da1f1(8)‘)\a1 ‘Dasz(s)|)‘a1+>\ﬁ ‘Dﬁfl(s)‘Aﬁ
A
+ |Da2fl(s)|>\a1+>\ﬁ |Da1fM(S)|>\a1 ‘DﬁfM(S)} ﬁ] }ds
2(Aarq +Ag)
2 +Ap) ~ ’ 5 B P ’
3 T(2) / p(s) | DD fi(9)[" ) ds . (47)
0 o=
Proof. Based on Theorem 9 of [7]. The rest as in the proof of Theorem 7. O

Next we give special case of the above theorems.

Corollary 9 (to Theorem 4, A\, =0, p(t) = q(t) = 1). It holds

/<Z|D°‘1f )[*1 | DP f(s) })ds

AajtAg

)

< 6ty (z [/ [Z}Dﬁf; ] ]( : (48)

In (48), (Ao(z)|r,,=0) of wi(x) is given in [7], Corollary 10, equation (123).
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Corollary 10 (to Theorem 4, Ao, = 0,p(t) = q(t) = 1,As, = Ag = L,p =2). In
detail, let oy € Ry, > aq and let f; € L1(0,z), j=1,...,M € N, x € Ry — {0},
have, respectively, Lo, fractional derivatives DP f; in [0, x], and let DP=*f;(0) = 0 for
k=1,...,[6]+1;,7=1,...,M. Then

| (Z D f5(9) \D%-(s)}) is

p(B—a1) z [ M bh , .
= <2F(5—041)\/ﬂ—a1\/2ﬂ—2a1 — 1) {/0 [Z (D7 f;(s)) ] d } (49)

Jj=1

Proof. Bared on our Corollary 9 and Corollary 11 of [7], see inequality (130) there. O

Corollary 11 (to Theorem 5, Ao, =0, p(t) = q(t) = 1). It holds

/Ox{{i [|Da2fj+1($)|Aa2 D7 f5(5)[ + [ D2 £ ()] ‘Dﬁfj-kl(s)})\ﬁ}}

=1

(1022 fua ()= (D i) + 1D fa ()= | D7 fua ()] }ds

AgtArag

(2etre
ds} : (50)

In (50), (Ao(x) |/\a1:0) of pa(x) is given in [7], Corollary 12, equation (137) there.

M

<2075 ey (a) {/Ox [Z 1D f(s)]"

j=1

Corollary 12 (to Theorem 5, Ao, =0, p(t) = q(t) =1, Ao, = X\g =1, p=2). In
detail, let ay € Ry, > ag and let f; € L1(0,z), j=1,...,M € N, x € Ry — {0},
have, respectively, Lo, fractional derivatives DPf; in [0,z], and let D% f;(0) = 0,
fork=1,...)[8]+1;,j=1,...,M. Then

/ {{Z 1D 1) [Df()] + 1D £ \Dﬁfj+1<s>}]}
+ [ID% far(s)] |D° f1(s)] + 1D fu(s)] | D far(s)|] }ds
\/ix(ﬁ—cm) z | M . ,
= (F(ﬁ - 042) \/5 — Q9 \/25 — 2a3 — 1) {/0 [Z<D fy(s)) ] ds} . (51)

j=1

Proof. From Corollary 11 and Corollary 13 of 7], especially equation (146) there. O
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Corollary 13 (to Theorem 6, Ao, = Ao, = Ag =1, p =3, p(t) = q(t) =1). It holds

o [M—1

/0 [Z (D fi(s)| [D°2 fia ()] |DPfi(s)| + | D £ ()] 1D fia()] | D7 fiza(s)|]

=1

+ [ID™ fi($)] 1D faa(s)| [ D7 fu(s)] + [ D fu()] [D* far ()] | D fau(s)|] | ds

M

< 2¢3(a) [ / x [Z }Dﬁf]—(s)\gdS” . (52)

J=1

Here
1
L= (V24 —) Ay(x), 53
o= (V2 ) Aute) (53
where in this special case,

4 x(zﬁ—m —az)

L(8 —on)l(B — a2)[3(30 — 31 = 1)(38 — Bag — 1)(26 — an — ap)]*/*
(54)

A()(ZIZ') =

Proof. From Theorem 6 and Corollary 14 of [7], see there equation (151) which is
here (54). O

Corollary 14 (to Theorem 7, A\, = 1, Aoq1 = 1/2,p = 3/2,p(t) = q(t) = 1). In
detail: let f > a1+1, a1 € Ry and let f; € L1(0,z), j=1,...,M € N, x € R, — {0}
have, respectively, Lo, fractional derivatives DPf; in [0,z], and let D% f;(0) = 0,
fork=1,...[8]+1;,j=1,...,M. Set

. 2 A
() := (x/m) (T(B — ay))3/% =
Then
/ox{{M__l {\Dalfj(s)\ \/\Dal+1fj+1(5)| + D fia(s)] ‘Daﬁlfj(S)q}

+ (1D 1) TP Fag )] + 1D fuo )I\/|D“1+1f1(s)|]}ds

< 20*(x [/ <Z\Dﬁf |3/2> ds]. (56)

Proof. Based on Theorem 7 here, and Corollary 15 of [7], see there equation (161)
which is here (55). O



388 G. A. ANASTASSIOU

Corollary 15 (to Theorem 8, here p = 2(\,, + Ag) > 1, p(t) = q(t) = 1). It holds

/Ox{{z_ {|Da1fj($)|xa1 D2 f 1 (5) 7| D2 £ () [

j=1
D2 f;(s)| M | DO fy1 (s) }Dﬁf ir1(s )\AB}}
" [|Da1f1<s>val 1D fug ()P4 | DA fy ()

1D fi() 1 (D fag() [D° far(s)] ”d

/ (Z}Dﬁf] A”Hﬁ)ds]. (57)

Here T(z) in (57) is given by (45) and in detail by f(m) of [7], see there Corollary 16
and equations (165)—(169).

Corollary 16 (to Theorem 8, p =4, Ao, = A\g = 1, p(t) = q(t) = 1). It holds

/ow{ { >[I D" () [ D5 o)

J=1

+ (Dazfj(g))2 | D i (s)] }Dﬁfﬁl(s)‘} } + {|D0‘1fl(s)| (D2 f ( }Dﬁfl \

/(ZD% )]

(58)

+ (D2 f,(5))? | D™ frr(s)] ‘DﬁfM(s)@ }ds <2T(z

Here in (58) we have that T(x) = T*(x) of Corollary 17 of [7], for that see there
equations (177)—-(181).

Next we present the L., case.

Theorem 17. Let ay, 00 € Ry, > ay, 00 and let f; € L1(0,z), j=1,...,M €N,
r € Ry — {0}, have, respectively, Lo, fractional derivatives DPf; in [0,z], and let
DPFf(0) =0 fork =1,...,[8]+1; 5 =1,...,M. Consider p(s) > 0, p(s) €
Lo(0,2). Let Aoy, Aays Ag > 0. Set

() { ||p(3)||oo g (PAar —a1da; +0Aay —a2day +1)
p(x) ==

(T(B—ay + 1) (T(8 — ag + 1)) 2 [BAa; — @1y + Aoy — @2 A0y + 1(] })
29
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Then
. M-1 R
/ p<s>{{z [|Da1fj<s>|% D fy ()] [ D7y ()
j=1
D D G (P D s |+ (1D AP 10 fals) P D o)

1D ()2 (D far(s) Pt | D ()] }}d

M

<o {3 (I 4 1 .
=1

Proof. Based on Theorem 18 of [7]. O

Similarly we give

Theorem 18 (as in Theorem 17, A\,, = 0). It holds

/ <Z|D°“f (s)1| D2 £(s >|*ﬂ> ds

Pzt p(s)l 5y Perha
= ((5>\a1—a1)\a1+1)(r(ﬂ—a1+1 Aal) ZHD Ll (6

Proof. Based on Theorem 19 of [7]. O

It follows

Theorem 19 (as in Theorem 17, Ao, = Ao, + Ag). It holds

/oxp(S){{ Z_: {|D“1fj($)|A“1 D% figa ()] | D7 f(5)[

j=1
+ [D fi(8)] D fa(s)[ \Dﬁfm(s)\“] }
* {\Dalfms)ﬁal D2 fag(s) 1 | D2 fi (s)[

D2 fi () D fag () }DﬁfM(S)\M} }ds

2 p (21 —onday +8As—a2dar —02X5 1) |Ip(s)[| oo )
N <(2ﬂ)\a1 — g, + BAg — a2y, — Oég)\g + 1)(F(ﬂ — a1 + 1))>\a1 (F(ﬁ — Qg+ 1))(>‘&1+>\ﬁ)
B

(1ol ). -

Proof. By Theorem 20 of [7]. O
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We continue with

Theorem 20 (as in Theorem 17, Ag = 0, Ao, = Aa,). It holds

z M—1
| ne {{ 1D fy ()1 1D fra (s) ™+ D% () |Da1fj+1(8)|“1]}

J=1

+ (1D ()P 1D Fa () + D fi () (D% fur(s)] ] }ds

) [Z HDﬁfjHiiall : (63)

Here we have

() e g e menda t U lp(s) oo
pw) = ((25 Aoy — Q1A — Q2da, + D(T(B — g + 1)1 (T(5 — 0 + 1))“1)( )
64

Proof. Based on Theorem 21 of [7]. O
Next we give

Theorem 21 (as in Theorem 17, Ao, = 0, Ao, = Ag). It holds

x M—1
/op“){{z['””fm P (D) 4+ 1D 55() A”\Dﬁfﬂw\*”]}

j=1

+ 1D ()2 (D fi(5)] 2 4 (D fa(s) 2 | D ) }ds

pPaz=02dor D) |lp(s)|o 5o (2
SQ((ﬁAaz ~ash + )T (B —as + 1)) Aag) ZHD fill (65)

Proof. Based on Theorem 22 of [7].

Some special cases follow.

Corollary 22 (to Theorem 20, all as in Theorem 17, Ag = 0, A,
It holds

- M—1
/0 p(s){{ [|Da1f3 >\a1 ‘Dm—i-lfj ( ‘Afn + }Dm-i-lfj(s)})‘m |Da1fj+1(s)|)\a1} }

= )\QQ,OZQ = Oél—l-l).

Jj=1

1D fis) P [DoH fug(s)[ P [ D7 fy () |Da1fM<s>\“l]}ds

128y —2a12ay —Aay +1) HP(S)HOO

2oy
S ’ <(2/6)\0‘1 - 2a1)\al - )\al + 1)(6 - Oél)Aal (F<6 2>‘a1) [Z HDﬁfJH ]
(66)
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Proof. Based on Corollary 23 of [7]. O

Corollary 23 (to Corollary 22). In detail: Let oy € Ry, B> a3 + 1 and let f; €
Li(0,2),j=1,...,M € N,z € R, —{0}, have, respectively, Lo, fractional derivatives
DPf; in [0,z], and let DP~*f;(0) =0, fork=1,...,[8]+1;j=1,...,M. Then

/ { { 3 [0 1) 1D ()] + 1D 5 5) |D°“fj+1(s)l}}

i=1

+[[D fu(s)] D™ far ()] + [ DM fu(s)] \DalfM(S)H}dS

< i D7 67
(B =) (T8 —an))? ; IP°%l ) (67)
Proof. Based on Corollary 24 of [7]. O

Corollary 24 (to Corollary 23). It holds

| (Z D 1(5) |D“1+1fj(s)l> ds

22 (B-a1) M )
B f
= (2(ﬁ—a1)2(r(ﬁ—al))2) (; 1D faHoo>- (68)

Proof. Based on inequality (207) of [7]. O

3. APPLICATIONS
We present our first application.

Theorem 25. Let o; € Ry, § > a5, t = 1,....,7 € N, and let f; € L(0, ),
j=1....,M € N; x € R, — {0}, have, respectively, L., fractional derivatives
DPf; in [0,x], and let DP75f;(0) = au; € R fork =1,...,[8]+1;, j=1,..., M.
Furthermore for j =1,..., M, we have that

DPf(s) = B (s AD™ fi()H2 2, (69)
all s € 10, z].
Here F;(s, 21, 22, ...,20) are continuous for (21, z2,...,2n) € (R")M, bounded

for s € [0, z], and satisfy the Lipschitz condition
‘Fj(t§$1171’127 sy T1py X215, X225« - o5y L2ry T31y -+ 3 T35+ oo, TMy - - - 7xMr)

/ ! 1oL ! r oL r ’ ’
—Fj(t,$11,$12,...,[L’lr,l’m,l’m,...,1’2T7:L'31,...,I3T,...,1’M1,...,ZL'MT)|

r M
<> <Z Qe,i,5 ()| Tei — 932i|> ; (70)
=1 /=1
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Jj=1,2,..., M, where all qs; ;(s) > 0 are bounded on [0,z], 1 <i<r, £=1,...,M.
Call

W o=max {||qijlloc: | .7 =1,2,...,M;1=1,...,1}. (71)

Assume here that

¢ (z) == W (% + %) (; (r(g - iﬁc;i/w — 1)) <1 (72)

Then, if the system (69) has two pairs of solutions (f1, fa, ..., far) and (ff, fo, s fir)s
we prove that f; = f7, j=1,2,..., M; that is we have uniqueness of solution for the

fractional system (69).

Proof. Assume that there are two M-tuples of solutions (f1,..., far) and, (ff, ..., fi)
satisfying the system (69). Set g; := f; — f¥, j = 1,2,..., M. Then D’ *g;(0) = 0,
k=1,...,[6]+1;,7=1,..., M. It holds

Digy(s) =y (s AD" KW, ) = B (s {00V L) (73)

Hence by (70) we have

ID7g;(s)] <D <Z ge,i,j(t)lD“"'ge(S)\> : (74)

Thus
|D%g;(s)] < WZ (Z ID‘”ge(S)O : (75)

The last implies

(D7gi(s))* <W <Z D7 g;(s)| |D‘“ge(8)|> : (76)
and
D (Dgi(s)* < WY NN [D7g;(s)| DY gels)] (77)
j=1 i=1 j=1 (=1
Integrating (77) we observe
1= ( <Dﬁgj<s>>2> ds
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That is

1< W{Z[( | (fj D% ga(s)] \D%(sﬂ) ds>

1=1

. (/Ox(ID“igm(Sﬂ DPg,(s)] + | D% g.(s) |Dﬁgm<s>|)ds)]}. (19)

Using Corollary 10 from here, and Corollary 13 of [7], we find

a rB—ai) T
= W{;{<2F(6 — )P — /208 — 20, — 1)

aP=e) (M — 1)1
_'_<\/§F(6_ai)\/ﬁ_ai\/26—2ai—1):|}’ (80)
i.e we got that
I <¢*(x) 1. (81)

If I # 0 then ¢*(x) > 1, a contradiction by assumption that ¢*(x) < 1, see (72).
Therefore I = 0, implying that

i(Dﬁgj(s))2 =0, a.e. in|0,7], (82)
j=1
ie.
(DPg;(s))? =0, ae. in[0,2], j=1,..., M, (83)
and
DPgi(s) =0, ae. in[0,2], j=1,...,M. (84)

By DP7%g,(0) =0,k =1,...,[8]+1; 5 =1,...,M, and Lemma 3, apply (3) for

a =0, we find g;(s) =0, all s € [0,z],all j=1,..., M.
The last implies f; = f7, j =1,..., M, over [0, ], that is proving the uniqueness
of solution to the initial value problem of this theorem. O

It follows another related application.

Theorem 26. Let a; € Ry, 0 > oy, i = 1,...,7 € N and let f; € L1(0,2), j =
1,...,M e N; z € R, — {0}, have, respectively, fractional derivatives D f; in [0, z],
that are absolutely continuous on [0, ], and let DP=*f;(0) =0 fork=1,...,[8] +1;
j=1,...,M. Furthermore (D f;)(0) = A; € R. Furthermore for 0 < s < z we have

holding the system of fractional differential equations

(D7) () = Fy (s, D™ [ ()Y o D7 fi()} ) ) (85)
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for j=1,...,M. Here F; is Lebesque measurable on [0, z] x (R™)M such that
J

|F}'(t;1711,5512,---,Ilr,xl,r+1;1’2l,1’22,--~,$2r>552,r+1;
--ZCM1,SL’M2,---,SCM,7«+1>\ < E (E Qe ;(t |xh>7
=1 =

where qp;; > 0,1 <i<r;lj=1,...,M, are bounded on [0,z]. Call
W =max{||qrilloc; ¢, 7=1,...,M; i=1,...,r}.

Also we set (0 < s <)

=Y (D’fi(s)),

A=1

i
=
5,

r B~
Q) =W+ VA 1) ( (e 1)) |

and

s ) 1/2
x(s) := \/5{1 +Q(s) . elfo QM)dr) {/ <e—(f0 Q(y)dy)) dt} } )
0

0(s) < x(s), 0<s<u.

Then

Consequently we get
D fi(s)] < x(5),
1 S
(5)] < = — 1)1 x(t)dt
506) < 757 | = 07wty
all0<s<zx,j=1,...,M. Also it holds

«; 1 * —a;—1
D 9] < ey [ =07

all0<s<zx,j=1,... M,i=1,...,r

Proof. We observe that

(D F)(SD£) () = (D £)(5) B (s AD™ Fi (VA o ADH)})

g=1...,M all0<s <z
We then integrate (96),

/ (D 1,)(5)(DPF, ) (s)ds

0

:/Oy(Dﬁfj)() ( (D fi ()N D fi(s) } )ds’

(96)

(97)
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Hence we obtain

(86)

< [l

w [T [Z (Zum( >|)]ds

i=1 (=1

=W<Z< ([ 1= s >|ds))>. (98)

Thus we have for j =1,..., M that

<Dﬂfj<y>>2sA§+2W( (Z(/ D £(5)| D7 £ s >|ds)>>. (99)

(=1

(D7 fa

Consequently it holds

S

2 ;(Z (/ D% fo(s)] D" f;(s )|d8>>>> (100)
—prar{ ([ (S nonoonon) o)
(

v ([ s HDﬁfT()\+\D°”f7(t)|\Dﬁfm(t)\)dt)}}- (o)

T,me{l,...,M}
T#M

M

Using Corollary 10 from here, and Corollary 13 of [7], we find

0(y) < p+2 W{;{ (2 T(6— ai)\/ﬁy(f_::)\/% —20; — 1) </oy e(t)dt)

+ (\/5 TG ai)\/zgﬁia;’i\/% — 1) (M —1) (/Oy e(t)dt) }} (102)

Hence we have

O(y) < p+ Qy) /Oy O(t)dt, all 0<y<ux. (103)

Here p > 0, Q(y) > 0, Q(0) = 0, O(y) > 0, all 0 < y < z. As in the proof of
Theorem 27 of [7], see also [5], we get (92), (93). Using Lemma 3, see (3), for a = 0,
and (93) we obtain (94). Using again (3) and (93) we get (95). O

Finally we give a specialized application.

Theorem 27. Let o, € Ry, > oy, i = 1,...,r € N and f; € L1(0,z), j =
1,...,.M e N; x € R, — {0}, have, respectively, fmctzonal derivatives DP f; in [0, z],
that are absolutely continuous on [0, ], and let D~ f;(0) =0 forp=1,...,[8] +1;
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j=1,...,M. Furthermore (DPf;)(0) = A; € R. Furthermore for 0 < s < x we have

holding the system of fractional differential equations
/ o
(D7) () = B (s, 4D [y 2y D B9}, (104)
forg=1,.... M.

For fized i, € {1,...,r} we assume that a;,+1 = «;, + 1, where a;,, 0,41 €
{oq,...,o0}. Callk = o, v = a;, + 1, i.e. v =k+ 1. Here Fj is Lebesgue
measurable on [0, z] x (R™)M such that

|Fj(t, L11, X125 - -« 5 L1py L1415 X215 225+« + 5 L2y T2 r4-1;

31,2325+ -3 L3ry L3415 -3 LML, TM2, - - 'axMT’axM,T’+l)|

M—1
< {{ . (qevl,j<t>|xeu [\ |zeril + ez (8) e, \/|xe,i*+1|) }
=1
+ (QM,I,j(t)‘xli* \/ |Tari,+1| + qur2,5 ()| 2ar, [/ ‘1’1,2‘*+1‘) }, (105)

where all 0 < qp1;, qua; £ 0, are bounded over [0, x]. Put

W = max {[lge1,5lloos 19020100 Fo 51 - (106)
Also set
M
= [(D°f)(s)], 0<s<u, (107)
7j=1
M

9 S(Sﬁfgkfl)
d*(s) := 108
(s) <\/35 —3% ——2) TG =R (108)
all0 < s <z, and
Q(s) :=2MWd*(s), 0<s<uz, (109)
AMW 272
= = ) 110
7= Q). = Zar e (110)
We assume that
xo\/p < 2. (111)
Call 32 )y
N 4p°'%s — op’s
— <s<uz.
o(s) p+Q(s){(2_a ps)2}’ al0<s<ux (112)
Then
0(s) <@(s), all0<s<u, (113)

i particular we have

IDPfi(s)| < @(s), j=1,....,M, forall 0<s<uz. (114)
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Furthermore we get
1 S
5O 1 [ -0 el (115)
! I'(B) Jo
and,
1 S
Dif <7/ s — )P g (t)dt, 116
D6 € g [, (6= 177800 (116)
j=1.... M;e=1,....;r,all 0 < s <x.
Proof. Notice here that W > 0 and ¢ > 0. Clearly, here D°f; are L., fractional
derivatives in [0, z] For 0 < s <y <z, by (104) we get that
y , y
/0 (D?f;) (s)ds :/0 ( (D fi(s)} N {D (s } )ds. (117)
That is y
D°5)w) = A+ [ B, )ds (118)
0

Then we observe that

Yy
D%f,(y)] < |A,] +/0 Fy(s,..)|ds < | 4]

W /Oy{{Z_<|D%fe<s>|¢|D%+1fe+1<s>| + ID“i*fm(s)l\/ID%“fz(s)l)}
(1D% fu(5) [/ TD™ T Far(S)] + 1D Fag ()] /TD7 T i (5] s (119)

That is
D2 < | A + W(/ {{

V=
+[DF fraa (s)[ VD fo(s) )

M-1

> (ID’“fe | DFFL o (s)]

1

+ (ID" A VIDFT Far(3)] + | D s () VIDTF(3)]) }ds' (120)

By Corollary 14 we obtain

D7 fi(s)] < |Aj] +2W " (s (/0 <Z|Dﬁfz |3/2> t) : (121)

=1
j=1,....M,all 0 <s < z.
Therefore by adding all of inequalities (121) we get

0(s) < p+2MWe*(s (/ Z |DP () |3/2> dt) (122)
@) s (MU o2
< p+2MWeH(s) (/0 <Z|Dﬁfz(t)l> dt) : (123)
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1.e. i
6(s) < p+ (2MW 6 (5)) ( / <e<t>>3/2dt) , (124)
0
all 0 < s <ux.

More precisely we get that

0(s) < p+Qy) (/08(9(15))3/2(%) , al0<s<um. (125)

Notice that 6(s) > 0, p > 0, Q(s) > 0, and Q(0) = 0 by ®*(0) = 0. Acting here as in
the proof of Theorem 28 of [7] we derive (113) and (114).

Using Lemma 3, see (3), along with (114), we obtain (115) and (116). O
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