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ABSTRACT. In this paper, the generalized monotone iterative technique is developed to study

existence of solutions of PBVP for fractional differential equation, where the function considered

is split into two parts, a function that is can be made non-decreasing and a function that is non-

increasing.
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1. INTRODUCTION

The derivative of an arbitrary order or fractional derivative has been introduced

almost 300 years ago with a query posed by L’Hospital to Leibnitz. The fractional

calculus was reasonably developed by 19th century. It was realized, only in the past

few decades that these derivatives are better models to study physical phenomenon

in transient state. This gave a fresh lease to this field and there is a growing interest

to study the theory of fractional differential equations.[1, 3, 4, 5, 6, 8, 9, 10].

The monotone iterative technique [7] is an effective and flexible mechanism that

offers theoretical, as well as constructive results in a closed set, namely, the sector.

The generalized monotone iterative technique is a generalization and a refinement of

the monotone method.

In this paper, the PBVP for Caputo fractional differential equation is considered

and the generalized monotone iterative technique is developed to cater to the situation

where the function on the righthand side is split into two functions- a function that

can be made into a non-decreasing function and a non-increasing function.
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2. PRELIMINARIES

We begin with the definition of the Riemann-Liouville fractional differential equa-

tion, the Caputo fractional differential equation and then proceed to give the relation

between these derivatives.

The Riemann-Liouville fractional differential equation is given by

Dqx = f(t, x), x(t0) = x0 = x(t)(t − t0)
1−q|t=t0 , (2.1)

and the corresponding Volterra fractional integral equation is given by

x(t) = x0(t) +
1

Γ(q)

t
∫

t0

(t − s)q−1x(s)ds

where x0(t) =
x0(t − t0)

q−1

Γ(q)
.

The Caputo fractional differential equation is given by

cDqx = f(t, x), x(t0) = x0

and the corresponding Volterra fractional integral equation is given by

x(t) = x0 +
1

Γ(q)

t
∫

t0

(t − s)q−1x(s)ds.

The relation between the Caputo fractional derivative and the Riemann-Liouville

fractional derivative is given by

cDqx(t) = Dq[x(t) − x(t0)].

Using this relation we can show that the following results that are true for Rie-

mann Liouville fractional derivative, also hold for Caputo derivative.

We need the following notation before proceeding further.

Cp[[t0, T ], R] = [u ∈ C((t0, T ], R] and (t − t0)
pu(t) ∈ C[[t0, T ], R].

Now we state the following lemmas without proof.

Lemma 2.1. Let m ∈ Cp([t0, T ], R) be locally Hölder continuous with exponent λ > q

and for any t1 ∈ (t0, T ], we have

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1. (2.2)

Then it follows that,

Dqm(t1) ≥ 0. (2.3)

Lemma 2.2. Let {xǫ(t)} be a family of continuous functions on [t0, T ], for each

ǫ > 0, where Dqxǫ(t) = f(t, xǫ(t)), x0
ǫ = xǫ(t)(t − t0)

1−q|t=t0, and |f(t, xǫ(t))| ≤ M

for t0 ≤ t ≤ T . Then the family {xǫ(t)} is equicontinuous on [t0, T ].
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In order to develop the monotone iterative technique for PBVP of Caputo frac-

tional differential equation we need the explicit solution of the nonhomogeneous linear

fractional differential equation of Caputo’s type given by

cDqx = λx + f(t), x(t0) = x0, (2.4)

where f ∈ Cq([t0, T ], R), is Hölder continuous with exponent q. Following the method

of successive approximations we get the unique solution of (2.4) as

x(t) = x0Eq(λ(t − t0)
q) +

t
∫

t0

(t − s)q−1Eq,q(λ(t − s)q)f(s)ds, t ∈ [t0, T ], (2.5)

where

Eq(t) =

∞
∑

k=1

tk

Γ(qk + 1)
and Eq,q(t) =

∞
∑

k=1

tk

Γ(qk + q)

are Mittag-Leffler functions of one parameter and two parameters respectively.

Theorem 2.3. Let f ∈ C([0, 2π]×R, R), v, w ∈ C([0, 2π], R), v, w be Hölder contin-

uous for exponent λ > q, 0 < λ < 1 and for 0 < t ≤ 2π,

cDqv(t) ≤ f(t, v(t)), v(0) ≤ v(2π)
cDqw(t) ≥ f(t, w(t)), w(0) ≥ w(2π)

}

. (2.6)

Suppose further f(t, x) is strictly decreasing in x for each t. Then

v(t) ≤ w(t), 0 ≤ t ≤ 2π. (2.7)

Proof. If (2.7) is not true, then there exists an ǫ > 0 and t0 ∈ [0, 2π] such that

v(t0) = w(t0) + ǫ and v(t) ≤ w(t) + ǫ, 0 ≤ t ≤ 2π. (2.8)

Setting m(t) = v(t) − w(t) − ǫ, we find that, if t0 ∈ (0, 2π], m(t0) = 0, m(t) ≤ 0, 0 ≤

t ≤ t0 ≤ 2π. If t0 = 0, we get, because of (2.6), v(2π) ≥ v(0) = w(0)+ ǫ ≥ w(2π) + ǫ,

and hence, in all cases, we have

m(t0) ≥ 0 and m(t) ≤ 0 for 0 ≤ t ≤ t0 ≤ 2π (2.9)

We therefore obtain, using (2.6), strictly decreasing nature of f(t, x) in x and

Lemma 2.1,

f(t0, v(t0)) ≥
c Dqv(t0) ≥

c Dqw(t0) ≥ f(t0, w(t0)) > f(t0, v(t0)),

which is a contradiction. Hence (2.7) is valid and the proof is complete.

Corollary 2.4. Let m : [0, 2π] → R be Hölder continuous and satisfy

cDqm(t) ≤ −Mm(t), 0 ≤ t ≤ 2π, m(0) ≤ m(2π), M > 0.

Then m(t) ≤ 0, 0 ≤ t ≤ 2π.
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We next consider the PBVP for linear nonhomogeneous fractional differential

equation given by

cDqu(t) = −Mu(t) + h(t), u(0) = u(2π) (2.10)

where M > 0 and h ∈ C([0, 2π], R).

In order to prove the existence of a solution for the PBVP (2.10), we begin with

the solution of the IVP

cDqu(t) = −Mu(t) + h(t), u(0) = u0 (2.11)

which is given by

u(t) = u0Eq(Mtq) +

t
∫

0

(t − s)q−1Eq,q(M(t − s)q)h(s)ds.

Now setting t = 2π and u(2π) = u(0) = u0, we get

u0[1 − Eq(Mtq)] =

2π
∫

0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds

which give,

u0 =
1

[1 − Eq(Mtq)]

2π
∫

0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds.

Thus the solution of the PBVP (2.11) is given by

u(t) =
Eq(Mtq)

1 − Eq(Mtq)

2π
∫

0

(2π − s)q−1Eq,q(M(2π − s)q)h(s)ds

+
t
∫

0

(t − s)q−1Eq,q(M(t − s)q)h(s)ds.















. (2.12)

We now proceed to develop the generalized monotone iterative technique.

3. GENERALIZED MONOTONE ITERATIVE TECHNIQUE FOR

PBVP

In this section, we continue to consider the Caputo fractional differential equation

to develop the generalized monotone method for PBVP. We begin by considering the

IVP for Caputo fractional differential equation, given by

cDqx = f(t, x), x(0) = x0 (3.1)

where f ∈ C([0, 2π] × R, R), 0 < q < 1.

The corresponding fractional Volterra integral equation is given by

x(t) = x0 +
1

Γ(q)

t
∫

0

(t − s)q−1f(s, x(s))ds, 0 ≤ t ≤ 2π. (3.2)
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We are interested in the situation where we have mixed monotone functions on

the right hand side of (3.1) and the problem having periodic boundary conditions. So

we consider

cDqx = f(t, x) + g(t, x), x(0) = x(2π) (3.3)

where f, g ∈ C[J × R, R], J = [0, 2π], x ∈ Cq[J, R].

We note that the coupled lower and upper solutions of type I for (3.3) are as

follows.

Definition 3.1. Let v0, w0 ∈ Cq[J, R]. Then (v0, w0) are said to be coupled lower

and upper solutions of type I for (3.3) if,

cDqv0 ≤ f(t, v0) + g(t, w0), v0(0) ≤ v0(2π)
cDqw0 ≥ f(t, w0) + g(t, v0), w0(0) ≥ w0(2π).

We now proceed to prove existence of solutions for (3.1) using the monotone

method.

Theorem 3.2. Assume that

(A1) v0, w0 ∈ Cq[J, R] are coupled lower and upper solutions of type I for (3.1) with

v0(t) ≤ w0(t) on J .

(A2) f, g ∈ C[J × R, R], g(t, y) is nonincreasing in y for each t and f(t, x) + Mx is

nondecreasing in x for each t. There exist monotone sequences {vn(t)}, {wn(t)} ∈

Cq[J, R] such that vn(t) → ρ(t) and wn(t) → r(t) in Cq[J, R] and (ρ, r) are cou-

pled minimal and maximal solutions of (3.3) respectively, that is (ρ, r) satisfy

cDqρ = f(t, ρ) + g(t, r)
cDqr = f(t, r) + g(t, ρ) on J.

Proof. Consider the PBVP given by

cDqx + Mx = f(t, x) + Mx + g(t, x)

x(0) = x(2π).

}

Since this a resonance problem, we begin by considering the IVP

cDqx + Mx = f(t, η) + Mη + g(t, µ)

x(0) = x0

}

(3.4)

where η, µ ∈ Cq(J, R]. The solution of (3.4) is given by

x(t) = x0Eq(Mtq) +

t
∫

0

(t − s)q−1Eq,q(M(t − s)q)h(s)ds
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where h(s) = f(s, η(s)) + Mη(s) + g(t, µ(s)). Now setting t = 2π and noting that

x(2π) = x(0) = u0, we get

x0 =
1

1 − Eq(Mtq)

2π
∫

0

(2π − s)q−1Eq,q[M(2π − s)q]h(s)ds

and the solution of the PBVP is given by

x(t) =
Eq(Mtq)

1 − Eq(Mtq)

2π
∫

0

(2π − s)q−1Eq,q[M(2π − s)q]h(s)ds

+

t
∫

0

(t − s)q−1Eq,q(M(t − s)q)h(s)ds.































(3.5)

We now claim that the solutions of (3.4) are unique and the proof is as follows.

Suppose x1(t) and x2(t) be two solutions of (3.4) and set p = x2 − x1 on J . Then

cDqp = cDqx2 −
cDqx1 = −Mp, p(0) = p(2π).

Then from Corollary 2.4, we get that x1(t) = x2(t) on J , completing the proof of

uniqueness.

We next define the iterates as below.

cDqvn+1 = f(t, vn) + g(t, wn) − M(vn+1 − vn), vn+1(0) = vn+1(2π) (3.6)

and

cDqwn+1 = f(t, wn) + g(t, vn) − M(wn+1 − wn), wn+1(0) = wn+1(2π). (3.7)

Clearly, the above arguments imply the existence of the unique solutions vn+1, wn+1

for (3.6), (3.7) respectively. By setting n = 0 in (3.6) and (3.7), we get the existence

of solutions v1(t) and w1(t) respectively. We shall show that v0(t) ≤ v1(t) ≤ w1(t) ≤

w0(t). For this, consider p = v0 − v1 on J . Then,

cDqp = cDqv0 −
c Dqv1 ≤ f(t, v0) + g(t, w0) − f(t, v0) − g(t, w0) + M(v1 − v0).

This gives, cDqp ≤ −Mp, p(0) ≤ p(2π). Then using Corollary 2.4, we infer that

p(t) ≤ 0 or v0(t) ≤ v1(t), t ∈ J . Similarly we can show that w1(t) ≤ w0(t) and

v1(t) ≤ w1(t), t ∈ J . Assume that for some k > 1, vk−1 ≤ vk ≤ wk ≤ wk−1 on J . We

claim that vk ≤ vk+1 ≤ wk+1 ≤ wk on J . To prove the claim, set p = vk −vk+1. Then,

cDqp = cDqvk −
cDqvk+1

= f(t, vk−1) − M(vk − vk−1) + g(t, wk−1) − f(t, vk) + M(vk+1 − vk) − g(t, wk)

≤ f(t, vk) + Mvk + g(t, wk) − Mvk − f(t, vk) + M(vk+1 − vk) − g(t, wk)

= −Mp,
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which holds by the nondecreasing nature of f(t, x) + Mx in x and nonincreasing

nature of g(t, y) in y. Also p(0) = p(2π). Hence by Corollary 2.4, we deduce that

vk ≤ vk+1 on J . Next consider p = vk+1 − wk+1. Then

cDqp = cDqvk+1 −
cDqwk+1

= f(t, vk) + g(t, wk) − M(vk+1 − vk) − f(t, wk) − g(t, vk) + M(wk+1 − wk)

≤ f(t, wk) + g(t, vk) + Mwk − Mvk+1 − f(t, wk) − g(t, vk) + M(wk+1 − wk)

= −Mp

and p(0) = p(2π). Hence as earlier, by Corollary 2.4, we conclude that vk+1 ≤ wk+1

on J . Similarly, we can show that wk+1 ≤ wk on J . Hence we have from the principle

of mathematical induction,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ wk ≤ · · · ≤ w2 ≤ w1 ≤ w0 on J. (3.8)

Since the sequences {vn}, {wn} are uniformly bounded by (3.8), we observe that

{cDqvn} and {cDqwn} are also uniformly bounded on [0, 2π], in view of the relations

(3.6) and (3.7). Then utilizing Lemma 2.2 we can conclude the equicontinuity of

the sequences {vn}, {wn}. Now from Ascoli-Arzela Theorem we obtain that vn → ρ

and wn → r as n → ∞ uniformly on J . Clearly we have v0 ≤ ρ ≤ r ≤ w0 on

J . Now to show that (ρ, r) are coupled solutions of (3.3), we consider the fractional

Volterra integral equations corresponding to the equations (3.6) and (3.7) for vn and

wn respectively and observe that as n → ∞, we obtain that ρ and r satisfy the

equation (3.5) with the corresponding h(s), proving the required result.

To prove that (ρ, r) are coupled minimal and maximal solutions of PBVP (3.3),

we first suppose that for some k > 0,

vk−1 ≤ x ≤ wk−1 on J,

where x is any solution of the PBVP (3.3) such that v0 ≤ x ≤ w0. Setting p = vk −x,

we have

cDqp = cDqvk −
cDqx

= f(t, vk−1) + g(t, wk−1) − M(vk − vk−1) − f(t, x) − g(t, x)

≤ f(t, x) + Mx + g(t, wk−1) − Mvk − f(t, x) − g(t, wk−1)

= −Mp,

by the nondecreasing nature of f(t, x) + Mx in x and the nonincreasing nature of

g(t, x) in x for each t. Thus,

cDqp ≤ −Mp, p(0) = p(2π).

Again Corollary 2.4 yields vk ≤ x on J . Similar arguments allow us to conclude that

x ≤ wk on J . Then it follows by induction that

vn ≤ x ≤ wn for all n on J.
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Hence ρ ≤ x ≤ r on J , proving the theorem.

Corollary 3.3. If, in addition to the assumption of Theorem 3.2, we assume that for

x1 ≥ x2, f and g satisfy

f(t, x1) − f(t, x2) ≤ −N1(x1 − x2)

and

g(t, x1) − g(t, x2) ≥ −N2(x1 − x2)

where 0 < N1 < M , and N2 > 0. Then ρ = x = r is the unique solution of (3.3).

Proof. Since ρ ≤ r it is enough to show that r ≤ ρ. Consider p = r − ρ. Then

cDqp = cDqr − cDqρ

= f(t, r) − f(t, ρ) + g(t, ρ) − g(t, r)

≤ −(N1 + N2)(r − ρ)

and p(0) = p(2π).

Hence, by Corollary 2.4, we arrive at the required conclusion that r ≤ ρ, which means

ρ = x = r is the unique solution.
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