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ABSTRACT. In this paper we study numerical methods for hybrid fractional differential equations.

A convergence result is proven and we provide a numerical example called the hybrid relaxation-

oscillation equation. The numerical solution is compared to the actual solution.
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1. INTRODUCTION

The origins of fractional calculus go back to 1695 when Leibniz considered the

derivative of order 1/2. Miller and Ross [5] and Oldham and Spanier [6] provide

historical details on the fractional calculus. Many applications have been found for

fractional calculus, some of which are discussed in Debnath [2] and Podlubny [9].

In particular, fractional differential equations have received much attention and a

number of recent works concern their numerical solution (see Ford and Connolly [3]

and others).

As another development, hybrid systems are dynamical systems that progress

continuously in time but have formatting changes called modes at a sequence of dis-

crete times. Some recent papers about hybrid systems include [1, 4, 10]. When

the continuous time dynamics of a hybrid system comes from fractional differential

equations the system is called a hybrid fractional differential system or a hybrid frac-

tional differential equation. This is one of the first papers to study hybrid fractional

differential equations. The aim of this paper is to study their numerical solution.

This paper is organized as follows. In Section 2, we provide some background

on fractional differential equations and hybrid fractional differential equations. In

Section 3 we discuss the numerical solution of hybrid fractional differential equations

by following the results of [8]. The method given uses piecewise application of a

numerical method for fractional differential equations. A convergence result is proven

when the underlying numerical method for fractional differential equations is one-step
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explicit and numerically stable. In Section 4, as an example, we numerically solve

a hybrid relaxation-oscillation equation which is under Grünwald-Letnikov fractional

differentiation. The numerical solution is compared to the exact solution.

2. HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS

First consider the fractional differential equation IVP

t0D
q
t x(t) = f(t, x(t)), x(t0) = x0 ∈ R, t0 < t < T, (2.1)

where q ∈ (0, 1), t0D
q
t represents some type of fractional differentiation, and f :

[t0, T ] × R → R. The subscripts t0 and t of t0D
q
t are called terminals. For q ∈ (0, 1),

Grünwald-Letnikov fractional differentiation is defined by

aD
q
t x(t) = lim

h→0

nh=t−a

h−q

n
∑

r=0

(−1)r

(

q

r

)

x(t − rh). (2.2)

For q ∈ (0, 1), Riemann-Liouville fractional differentiation is defined by

aD
q
t x(t) =

1

Γ(1 − q)

d

dt

∫ t

a

(t − τ)−qx(τ)dτ,

where Γ is the Gamma function. It is well known that if x ∈ C1 (and q ∈ (0, 1)) then

aD
q
t x(t) is the same under both Grünwald-Letnikov and Riemann-Liouville fractional

differentiation. For q ∈ (0, 1), Caputo fractional differentiation is defined by

aD
q
t x(t) =

1

Γ(1 − q)

∫ t

a

(t − τ)−qx′(τ)dτ.

Let {tk}
∞

k=0 be a strictly increasing and unbounded real sequence and let f :

[t0,∞) × R × R → R. For each k = 0, 1, 2, . . . , let λk : R → R and let fk :

[tk, tk+1] × R → R where fk(t, x(t)) = f(t, x(t), λk(x(tk))). Even though k ≥ 0,

{λk}
∞

k=0 will be a finite set known as the set of modes. A hybrid fractional differential

equation IVP based on (2.1) is a system of fractional differential equation IVPs of

the form










































t0D
q
t x0(t) = f(t, x0(t), λ0(x0(t0))) ≡ f0(t, x0(t)), t ∈ (t0, t1), x0(t0) ∈ R,

t1D
q
t x1(t) = f(t, x1(t), λ1(x1(t1))) ≡ f1(t, x1(t)), t ∈ (t1, t2), x1(t1) = x0(t1),
...

tkD
q
t xk(t) = f(t, xk(t), λk(xk(tk))) ≡ fk(t, xk(t)), t ∈ (tk, tk+1), xk(tk) = xk−1(tk),
...

(2.3)
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where q ∈ (0, 1) and tkD
q
t represents some type of fractional differentiation (fixed for

all k’s). A solution to (2.3) will be a sequence of functions










































x0(t), t0 ≤ t ≤ t1,

x1(t), t1 ≤ t ≤ t2,
...

xk(t), tk ≤ t ≤ tk+1,
...

(2.4)

satisfying (2.3) in the sense that for each k = 0, 1, 2, . . . xk(t) is a solution of


















tkD
q
t xk(t) = f(t, xk(t), λk(xk(tk))) ≡ fk(t, xk(t)), tk < t < tk+1,

xk(tk) =







xk−1(tk) if k ≥ 1,

x0(t0) if k = 0.

(2.5)

We will sometimes write (2.3) in a condensed form as

(t0)D
q
t x(t) = f(t, x(t), λk(x(tk))), t ∈ (tk, tk+1), k = 0, 1, 2, . . . , x(t0) ∈ R, (2.6)

where a solution to (2.6) will be a function x : [t0,∞) → R using (2.4):

x(t) =











































x0(t), t0 ≤ t ≤ t1,

x1(t), t1 ≤ t ≤ t2,
...

xk(t), tk ≤ t ≤ tk+1,
...

. (2.7)

We will call the subscripts (t0) and t of (t0)D
q
t “generalized” terminals. A solution x

of (2.6) will be piecewise fractional differentiable of order q over [t0,∞) and fractional

differentiable of order q in each interval (tk, tk+1) for k = 0, 1, 2, . . . To find a solution

x(t) of (2.6) we may solve (2.3) piecewise over each [tk, tk+1] to obtain each xk. In

Section 4, an example of a hybrid fractional differential equation IVP will be given

along with its exact solution.

3. NUMERICAL SOLUTION OF HYBRID FRACTIONAL

DIFFERENTIAL EQUATIONS

In this section, assuming that (2.6) has a unique solution, we will show that we

may numerically approximate the solution x(t) of (2.6) by piecewise application of

any one-step explicit numerical method for fractional differential equations which is

numerically stable. To numerically integrate the system (2.6) in [t0, t1], [t1, t2], . . . ,

[tk, tk+1], . . . , we will replace each interval [tk, tk+1] by a set of Nk +1 regularly spaced
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grid points (including the endpoints) at which the exact solution xk(t) will be ap-

proximated by some yk(t). For the grid points on [tk, tk+1] let tk,n = tk + nhk where

hk = (tk+1 − tk)/Nk and 0 ≤ n ≤ Nk. We will denote yk(tk,n) by yk,n. In the chosen

one-step explicit numerically stable method for fractional differential equations we let

y0,0 = x(t0) and yk,0 = yk−1,Nk−1
if k ≥ 1. The next result is parallel to Theorem 3.2

in [8] but the numerical technique is not necessarily the Euler method and the setting

is not fuzzy differential equations. The proof of Theorem 3.1 below is basically the

same as the proof of Theorem 3.2 in [8].

Theorem 3.1. Consider the system (2.6) assuming it has a unique solution. Sup-

pose for some fixed k ∈ Z
+ that {{yi,j}

Ni

j=0}
k
i=0 is obtained by some one-step explicit

numerically stable method for fractional differential equations with y0,0 = x(t0) and

yk,0 = yk−1,Nk−1
if k ≥ 1. Then

lim
h0,...,hk→0

yk,Nk
= x(tk+1). (3.1)

Proof. Fix k ∈ Z
+. For each i = 0, 1, . . . , k, let {zi,j}

Ni

j=0 be the numerical approxima-

tion to the fractional differential equation IVP






tiD
q
t xi(t) = fi(t, xi(t))

xi(ti) = x(ti)
(3.2)

generated by the one-step explicit numerically stable method for fractional differential

equations where zi,0 = x(ti). Note that the initial condition of (3.2) is the actual value

of x(ti). Choose ǫ > 0. For each i = 0, 1, . . . , k we will find a δ∗i > 0 such that hi < δ∗i
implies

|x(tk+1) − yk,Nk
| < ǫ,

where the hi values are allowable by regular partition of the [ti, ti+1]’s. By convergence

of the numerical method over [tk, tk+1] for (3.2), there exists a δ∗k > 0 such that if

hk < δ∗k then

|zk,Nk
− x(tk+1)| <

ǫ

2
.

By numerical stability there exists a δk > 0 such that

|zk,0 − yk,0| < δk (3.3)

implies

|zk,Nk
− yk,Nk

| <
ǫ

2
.

Therefore if hk < δ∗k and (3.3) holds then

|x(tk+1) − yk,Nk
| ≤ |x(tk+1) − zk,Nk

| + |zk,Nk
− yk,Nk

| <
ǫ

2
+

ǫ

2
= ǫ. (3.4)
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By convergence of the numerical method over [tk−1, tk] for (3.2), there exists a δ∗k−1 > 0

such that if hk−1 < δ∗k−1 then

|zk−1,Nk−1
− x(tk)| < δk/2.

By numerical stability there exists a δk−1 > 0 such that

|zk−1,0 − yk−1,0| < δk−1 (3.5)

implies

|zk−1,Nk−1
− yk−1,Nk−1

| < δk/2.

Therefore if hk−1 < δ∗k−1 and (3.5) holds then

|x(tk) − yk−1,Nk−1
| ≤ |x(tk) − zk−1,Nk−1

| + |zk−1,Nk−1
− yk−1,Nk−1

| <

δk/2 + δk/2 = δk. (3.6)

Continue inductively for each i = k − 2, . . . , 2, 1 to find a δ∗i > 0 such that if hi < δ∗i
then

|zi,Ni
− x(ti+1)| < δi+1/2.

By numerical stability there exists a δi > 0 such that

|zi,0 − yi,0| < δi (3.7)

implies

|zi,Ni
− yi,Ni

| < δi+1/2. (3.8)

Therefore if hi < δ∗i and (3.7) holds then

|x(ti+1) − yi,Ni
| ≤ |x(ti+1) − zi,Ni

| + |zi,Ni
− yi,Ni

| < δi+1/2 + δi+1/2 = δi+1.

In particular, there exists a δ∗1 > 0 such that if h1 < δ∗1 and (3.7) holds with i = 1

then

|x(t2) − y1,N1
| < δ2.

By convergence of the numerical method over [t0, t1] for (3.2), we may choose δ∗0 > 0

such that h0 < δ∗0 implies

|x(t1) − y0,N0
| < δ1. (3.9)

Suppose for each i = 0, . . . , k that hi < δ∗i . Since (3.9) is the same as (3.7) with i = 1,

we obtain (3.8) with i = 1. Since (3.8) with i = 1 implies (3.7) with i = 2, we obtain

(3.8) with i = 2. Continue inductively to obtain (3.3), and (3.4), proving (3.1).
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4. EXAMPLE- A HYBRID RELAXATION-OSCILLATION EQUATION

For q ∈ (0, 1) and A ∈ R, we will study the nonhomogeneous linear hybrid

fractional differential equation






(t0)D
q
t x(t) = λk(x(tk)) − Ax(t), t ∈ (tk, tk+1), tk = k + 1, λk(x) = x, k = 0, 1, 2, . . .

x(1) ∈ R,

(4.1)

where Dq is Grünwald-Letnikov fractional differentiation. (4.1) may be called a hybrid

relaxation-oscillation equation and it is based on (8.2) in Podlubny [9]. As an example

we will numerically solve (4.1) by piecewise application of a method motivated by

Section 8.3.1 of Podlubny [9]. The method will use changes of variable as well as

changes in time scale. Moreover, we will compare the numerical solution of (4.1) to

the exact solution.

First consider the nonhomogeneous linear fractional differential equation






0D
q
t z(t) = f(t) − Az(t), t > 0,

z(0) = 0, q ∈ (0, 1), A ∈ R,
(4.2)

where Dq is Grünwald-Letnikov fractional differentiation. (4.2) is called the relaxation-

oscillation equation. Applications are discussed in [7]. By the method given in (8.4)

of Podlubny [9], if h is an allowable step size over [0, T ] then a numerical solution of

(4.2) over [0, T ] is given by







zm = −Ahqzm−1 −
∑m

j=1(−1)j
(

q

j

)

zm−j + hqf(mh), 1 ≤ m ≤ T/h,

z0 = 0,
(4.3)

where the actual value z(mh) is approximated by zm in (4.3). As a slight generaliza-

tion of (4.2) consider the equation







t0D
q
t z(t) = f(t) − Az(t), t > t0,

z(t0) = 0, q ∈ (0, 1), A ∈ R.
(4.4)

Let w(t) = z(t + t0) for t ≥ 0. Then w(0) = z(t0) = 0 and w(t− t0) = z(t) for t ≥ t0.

By (2.2),

0D
q
t−t0

w(t − t0) =t0 Dq
t z(t).

Then (4.4) is equivalent to







0D
q
t−t0

w(t− t0) = f(t) − Aw(t − t0), t − t0 > 0,

w(0) = 0, q ∈ (0, 1), A ∈ R.
(4.5)
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Let F (t − t0) = f(t) and s = t − t0. Then (4.5) is equivalent to






0D
q
sw(s) = F (s) − Aw(s), s > 0,

w(0) = 0, q ∈ (0, 1), A ∈ R,
(4.6)

which is basically (4.2). A numerical solution of (4.6) may be found by adapting

(4.3). Therefore if h is an allowable step size over [t0, T ], then a numerical solution

of (4.4) over [t0, T ] is given by







zm = −Ahqzm−1 −
∑m

j=1(−1)j
(

q

j

)

zm−j + hqf(t0 + mh), 1 ≤ m ≤ (T − t0)/h,

z0 = 0,

(4.7)

where the actual value z(t0 + mh) is approximated by zm in (4.7). To solve (4.1)

over each [tk, tk+1] we convert (4.1) over each [tk, tk+1] to an equivalent equation of

the form (4.4) by letting z(t) = x(t) − x(tk). By this change of variable over each

[tk, tk+1], (4.1) becomes the equation






tkD
q
t z(t) = x(tk)

(

1 − A − t−q

Γ(1−q)

)

− Az(t), tk < t < tk+1, tk = k + 1,

z(tk) = 0, q ∈ (0, 1), A ∈ R.
(4.8)

To obtain (4.8) we used that

tkD
q
t x(tk) = x(tk) ·

t−q

Γ(1 − q)
.

Therefore if hk is an allowable step size over [tk, tk+1] then a numerical solution of

(4.8) over [tk, tk+1] is given by











































zk,m = −Ahq

kzk,m−1 −
∑m

j=1(−1)j
(

q

j

)

zk,m−j + hq

kyk,0

(

1 − A − (tk+mhk)−q

Γ(1−q)

)

,

1 ≤ m ≤ (tk+1 − tk)/hk,

y0,0 = x(t0),

yk,0 = zk−1,h
−1

k−1

+ yk−1,0 if k ≥ 1,

zk,0 = 0,

(4.9)

where zk,m approximates z(tk + mhk). Lastly, to find the approximate solution of

(4.1) we use (4.9) and

x(tk,m) = z(tk,m) + x(tk) ≈ zk,m + yk,0

over each [tk, tk+1]. The numerical solution of (4.1) using (4.9) with x(1) = 0.2,

A = 1, each hk = 0.01, and q = 0.5 is shown in Figure 1. Figure 3 show the numerical

solutions of (4.1) using (4.9) with x(1) = 0.2, A = 1, each hk = 0.01, and q = 0.1 to

q = 0.9 in steps of 0.1. The numerical solution of (4.1) using (4.9) with x(1) = 0.2,

A = −0.1, each hk = 0.01, and q = 0.5 is shown in Figure 2. Figure 4 show the
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numerical solutions of (4.1) using (4.9) with x(1) = 0.2, A = −0.1, each hk = 0.01,

and q = 0.1 to q = 0.9 in steps of 0.1.

The exact solution of (4.2) is given by (8.5) in Podlubny [9] as

z(t) =

∫ t

0

(t − τ)q−1Eq,q(−A(t − τ)q)f(τ)dτ, (4.10)

where Eu,v is the two-parameter Mittag-Leffler function. We will use (4.10) to find

the exact solution of (4.4). By applying (4.10) to (4.6) we get

w(s) =

∫ s

0

(s − τ)q−1Eq,q(−A(s − τ)q)F (τ)dτ. (4.11)

Since s = t − t0, (4.11) becomes

w(t− t0) =

∫ t−t0

0

(t − t0 − τ)q−1Eq,q(−A(t − t0 − τ)q)F (τ)dτ. (4.12)

Since w(t− t0) = z(t), we get

z(t) =

∫ t−t0

0

(t − t0 − τ)q−1Eq,q(−A(t − t0 − τ)q)F (τ)dτ. (4.13)

By letting U = t0 + τ , (4.13) becomes

z(t) =

∫ t

t0

(t − U)q−1Eq,q(−A(t − U)q)F (U − t0)dU =

∫ t

t0

(t − U)q−1Eq,q(−A(t − U)q)f(U)dU. (4.14)

Therefore, the exact solution of (4.4) is given by

z(t) =

∫ t

t0

(t − τ)q−1Eq,q(−A(t − τ)q)f(τ)dτ. (4.15)

As a result, the exact solution of (4.8) over [tk, tk+1] is given by

z(t) =

∫ t

tk

(t − τ)q−1Eq,q(−A(t − τ)q)x(tk)

(

1 − A −
τ−q

Γ(1 − q)

)

dτ. (4.16)

Since z(t) = x(t) − x(tk), we obtain the exact solution of (4.1) over each [tk, tk+1] as

x(t) = x(tk) +

∫ t

tk

(t − τ)q−1Eq,q(−A(t − τ)q)x(tk)

(

1 − A −
τ−q

Γ(1 − q)

)

dτ. (4.17)

The graphs of the exact solution (4.17) over [1, 5] appear identical to the graphs of

the numerical solutions of (4.1) in Figures 1 and 2.
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0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5

Figure 1. Numerical solution of (4.1) using (4.9) with x(1) = 0.2,

A = 1, each hk = 0.01, and q = 0.5. The graph of the exact solution of

(4.1) appears identical.

0.5

1

1.5

2

2.5

1 2 3 4 5

Figure 2. Numerical solution of (4.1) using (4.9) with x(1) = 0.2,

A = −0.1, each hk = 0.01, and q = 0.5. The graph of the exact

solution of (4.1) appears identical.
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Figure 3. Numerical solutions of (4.1) using (4.9) with x(1) = 0.2,

A = 1, each hk = 0.01, and q = 0.1 to q = 0.9 in steps of 0.1.
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4

x

Figure 4. Numerical solutions of (4.1) using (4.9) with x(1) = 0.2,

A = −0.1, each hk = 0.01, and q = 0.1 to q = 0.9 in steps of 0.1.
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