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ABSTRACT. Fractional analysis is applied to describe classical dynamical systems. Fractional

derivative can be defined as a fractional power of derivative. The infinitesimal generators {H, ·}
and L = G(q, p)∂q + F (q, p)∂p, which are used in equations of motion, are derivative operators.

We consider fractional derivatives on a set of classical observables as fractional powers of derivative

operators. As a result, we obtain a fractional generalization of the equation of motion. This fractional

equation is exactly solved for the simple classical systems. The suggested fractional equations

generalize a notion of classical systems to describe dissipative processes.
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1. INTRODUCTION

The analysis of non-integer order goes back to Leibniz, Liouville, Grunwald, Let-

nikov and Riemann. There are many books about fractional calculus and fractional

differential equations [1, 2, 3]. Derivatives of fractional order, and fractional differ-

ential equations have found many applications in recent studies in physics (see for

example [4, 5, 6] and references therein).

The classical variables, which are also called observables, are defined as functions

on the phase space. The dynamical description of system is given by an operator.

The natural description of the motion is in terms of the infinitesimal change of the

system. The infinitesimal operator of equation of motion is defined by some form of

derivation of functions.

Fractional derivative can be defined as a fractional power of derivative (see for

example [7, 8]). It is known that the infinitesimal generator {H, ·} and L = G(q, p)∂p+

F (q, p)∂p, which are used in the equation of motion, are derivations on an algebra

of classical observables. A derivation of an algebra M is a linear map L, which

satisfies L(AB) = (LA)B + A(LB) for all A, B ∈ M. In this paper, we consider

a fractional derivative as a fractional power of derivative. As a result, we obtain

a fractional generalization of the equation of motion. It allows us to generalized a

notion of classical Hamiltonian systems. Note that some fractional generalization

Received October 1, 2008 1083-2564 $15.00 c©Dynamic Publishers, Inc.



442 V. E. TARASOV

of gradient systems has been suggested in [9], and a generalization of Hamiltonian

systems is considered in [10]. The suggested fractional equation is exactly solved for

a free particle, harmonic oscillator and damped oscillator. A classical systems that is

presented by fractional equation can be considered as a dissipative system. Fractional

derivatives can be used as a possible approach to describe an interaction between the

system and an environment. Note that fractional dynamics can be considered with

low-level fractionality by some generalization of method suggested in [11, 12, 13].

In section 2, the fractional power of derivative and the fractional equation are

suggested. In section 3, the Cauchy problem for the fractional equation and the

properties of time evolution described by it are considered. In section 4, the solution

for simple examples of the fractional equation are derived.

2. FRACTIONAL DERIVATIVE AND FRACTIONAL EQUATIONS

Let us consider the classical systems

d

dt
qk = Gk(q, p),

d

dt
pk = Fk(q, p) (k = 1, . . . , n). (1)

A linear algebra M of classical observables is described by functions A = A(q, p) on

the phase space R
2n. Let L be a differential operator on M given by

L = −
(

Gk(q, p)
∂

∂qk
+ Fk(q, p)

∂

∂pk

)

. (2)

Here and later we mean the sum on the repeated index k from 1 to n. The equation

of motion for the classical observable has the form

d

dt
At = −LAt. (3)

Equations (1) are special cases of (3).

If the functions Gk(q, p) and Fk(q, p) satisfy the Helmholtz conditions

∂Gk

∂pl
− ∂Gl

∂pk
= 0, (4)

∂Gl

∂qk

+
∂Fk

∂pl

= 0, (5)

∂Fk

∂ql
− ∂Fl

∂qk
= 0, (6)

then the classical system (3) is a Hamiltonian system. In this case, Gk and Fk can

be represented in the form

Gk(q, p) =
∂H

∂pk
, Fk(q, p) = −∂H

∂qk
.
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If H = H(q, p) is a continuous differentiable function, then the condition (4), (5) and

(6) are satisfied. The equations of motion (3) for Hamiltonian system can be written

in the form
d

dt
At = −{H, At}, (7)

where { , } is the Poisson brackets

{A, B} =
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk
.

The time evolution of the Hamiltonian system is induced by the Hamiltonian H .

It is interesting to obtain fractional generalizations of equations (3) and (7). We

will consider here concept of fractional power for L. If L is a closed linear operator

with an everywhere dense domain D(L), having a resolvent R(z,L) = (zLI − L)−1

on the negative half-axis, then there exists [16, 17, 18] the operator

−(L)α =
sin πα

π

∫

∞

0

dz zα−1R(−z,L)L (8)

defined on D(L) for 0 < α < 1. The operator (L)α is a fractional power of the

operator L. It is known that the linear differential operator (2) is a closable operator

[17]. Note that

(L)α(L)β = (L)α+β

for α, β > 0, α + β < 1.

As a result, we obtain the equation

d

dt
At = −(L)αAt, (9)

where t is dimensionless variable. This is the fractional equation of motion. We can

define a fractional generalization of equation (7) by

d

dt
At = −({H, ·})αAt. (10)

Note that ({H, ·})α cannot be presented in the form {H ′, ·} with a function H ′.

Therefore, the fractional system described by (9) with L = {H, ·} are not Hamiltonian

systems. The systems will be called the fractional Hamiltonian systems (FHS). Usual

Hamiltonian systems can be considered as a special case of FHS. Note that another

fractional generalization of Hamiltonian systems has been suggested in [10].

3. SOLUTIONS OF FRACTIONAL EQUATIONS OF MOTION

3.1. Cauchy problem for fractional equations. If we consider the Cauchy prob-

lem for equation (3) in which the initial condition is given at the time t = 0 by A0,

then its solution can be written in the form

At = ΦtA0.
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The operator Φt is called the evolution operator. It is not hard to prove that the

following properties are satisfied:

ΦtΦs = Φt+s, (t, s > 0), Φ0 = I,

where IA = A for all A ∈ M. As a result, the operators Φt form a semi-group. Then

the operator L is called the generating operator, or infinitesimal generator, of the

semi-group {Φt, t ≥ 0}.
Let us consider the Cauchy problem for fractional equation (9) in which the initial

condition is given by A0. Then its solution can be presented [17, 18] as

At(α) = Φ
(α)
t A0,

where the operators Φ
(α)
t , t > 0, form a semi-group which will be called the fractional

semi-group. The operator (L)α is infinitesimal generator of the semi-group {Φ(α)
t , t ≥

0} that can be presented by

(L)α =
1

Γ(−α)

∫

∞

0

ds s−α−1(Φ
(α)
t − I).

This is the Balakrishnan equation [16, 17].

3.2. Properties of fractional evolution operator. Let us consider some proper-

ties of temporal evolution described by a fractional semi-group {Φ(α)
t , t ≥ 0}.

(1) The operators Φ
(α)
t can be constructed in terms of the operators Φt by the

Bochner-Phillips formula [14, 15, 17]:

Φ
(α)
t =

∫

∞

0

dsfα(t, s)Φs (t > 0). (11)

Here fα(t, s) is defined by

fα(t, s) =
1

2πi

∫ a+i∞

a−i∞

dz exp(sz − tzα), (12)

where a, t > 0, s ≥ 0, and 0 < α < 1. The branch of zα is so taken that Re(zα) > 0 for

Re(z) > 0. This branch is a one-valued function in the z-plane cut along the negative

real axis. The convergence of this integral is obviously in virtue of the convergence

factor exp(−tzα). By denoting the path of integration in (12) to the union of two

paths r exp(−iθ), and r exp(+iθ), where r ∈ (0,∞), and π/2 ≤ θ ≤ π, we can obtain

fα(t, s) =
1

π

∫

∞

0

dr exp(sr cos θ − trα cos(αθ))·

· sin(sr sin θ − trα sin(αθ) + θ). (13)

If we have a solution At of equation (3), then formula (11) gives the solution

At(α) =

∫

∞

0

ds fα(t, s)As, (t > 0) (14)
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of fractional equation (9). As a result, we can obtain solution of fractional equation

by using well-known solutions of usual equations.

(2) In classical mechanics, the most important is the class of real operators. Let

∗ be a complex conjugation. If Φt is a real operator on M, then

(ΦtA)∗ = Φt(A
∗)

for all A ∈ D(Φt) ⊂ M. A classical observable is a real-valued function. If Φt is a

real operator and A is a real-valued function A∗ = A, then the function At = ΦtA is

real-valued, i.e., (ΦtA)∗ = ΦtA. An operator, which is a map from a set of observables

into itself, should be real. All possible dynamics, i.e., temporal evolutions of classical

observables, should be described by real operators. Therefore the following statement

is very important. If Φt is a real operator, then Φ
(α)
t is real. The proof will follows

from the Bochner-Phillips formula, which gives

(Φ
(α)
t A)∗ =

∫

∞

0

ds f ∗

α(t, s)(ΦsA)∗, (t > 0).

Using (13), it is easy to see that f ∗

α(t, s) = fα(t, s) is a real-valued function. Then

(ΦtA)∗ = ΦtA
∗ leads to

(ΦtA)∗ = Φt(A
∗)

for all A ∈ D(Φ
(α)
t ) ⊂ M.

(3) Let Φt be a operator on M. An adjoint operator of Φt is a operator Φ̄t on

M∗, such that

(Φ̄t(A)|B) = (A|Φt(B))

for all B ∈ D(Φt) ⊂ M and some A ∈ M∗. The scalar product on M can be defined

by

(A|B) =

∫

R2n

dqdp [A(q, p)]∗B(q, p)

Then an operator Φ̄t is called adjoint if
∫

R2n

dqdp [(Φ̄tA)(q, p)]∗B(q, p) =

∫

R2n

dqdp [A(q, p)]∗(ΦtB)(q, p).

Let us give the basic statement regarding the adjoint operator. If Φ̄t is an adjoint

operator of Φt, then the operator

Φ̄
(α)
t =

∫

∞

0

dsfα(t, s)Φ̄s, (t > 0),

is an adjoint operator of Φ
(α)
t . We prove this statement by using the Bochner-Phillips

formula:
∫

R2n

dqdp (Φ̄
(α)
t A)∗B =

∫

∞

0

ds fα(t, s)

∫

R2n

dqdp (Φ̄sA)∗B =

=

∫

∞

0

ds fα(t, s)

∫

R2n

dqdp A∗(ΦsB) =

∫

R2n

dqdp A∗(Φ
(α)
t B).
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The semi-group {Φ̄t, t > 0} describes a temporal evolution of the distribution function

ρt(q, p) = Φ̄tρ0(q, p) by the Liouville equation

d

dt
ρt(q, p) = −L̄ρt(q, p),

where

L̄ = L + Ω(q, p), Ω(q, p) =

n
∑

k=1

(∂Gk

∂qk
+

∂Fk

∂pk

)

.

If Ω < 0, then the system is called dissipative. The semi-group {Φ̄(α)
t , t > 0} describes

the evolution of the density function

ρt(α, q, p) = Φ̄
(α)
t ρ0(q, p)

by the fractional equation
d

dt
ρt = −(L̄)αρt.

This is the fractional Liouville equation.

(4) It is known that Φ̄t is a real operator if Φt is real. Analogously, if Φ
(α)
t is a

real operator, then Φ̄
(α)
t is real.

(5) Let Φt, t > 0, be a positive one-parameter operator, i.e.,

ΦtA ≥ 0

for A ≥ 0. Using the Bochner-Phillips formula and the property

fα(t, s) ≥ 0 (s > 0),

it is easy to prove that

Φ
(α)
t A ≥ 0 (A ≥ 0),

i.e. the operators Φ
(α)
t are also positive.

4. EXAMPLES OF FRACTIONAL EQUATIONS OF MOTION

4.1. Fractional free motion of particle. Let us consider equation (3) for free

particle. Then

H =
1

2m
p2, L = {H, ·} =

p

m
∂q,

where p is dimensionless variable and m−1 has the action dimension. For A = q, and

A = p, equation (3) gives

d

dt
qt =

1

m
pt,

d

dt
pt = 0.

The well-known solutions of these equations are

qt = q0 +
t

m
p0, pt = p0. (15)
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Using these solutions and the Bochner-Phillips formula, we cab obtain solutions of

the fractional equations

d

dt
qt = − 1

mα
(p∂q)

α qt,
d

dt
pt = 0. (16)

in the form

qt(α) = Φ
(α)
t q0 =

∫

∞

0

dsfα(t, s)qs, pt(α) = p0,

where qs is given by (15). Then

qt(α) = q0 +
1

m
bα(t)p0, pt = p0,

where

bα(t) =

∫

∞

0

dsfα(t, s) s.

If α = 1/2, then we have

b1/2(t) =
t

2
√

π

∫

∞

0

ds
1√
s

e−t2/4s =
t2

2
,

and

qt(1/2) = q0 −
t2

2m2
p0, pt = p0. (17)

These equations describe a fractional free motion for α = 1/2.

4.2. Fractional equation for harmonic oscillator. Let us consider equation (3)

for harmonic oscillator. Then L = {H, ·}, where

H =
1

2m
p2 +

mω2

2
q2, (18)

where t and p are dimensionless variables. For A = q, and A = p, equation (3) gives

d

dt
qt =

1

m
pt,

d

dt
pt = −mω2qt. (19)

The well-known solutions of these equations are

qt = q0 cos(ωt) +
p0

mω
sin(ωt),

pt = p0 cos(ωt) − mωq0 sin(ωt). (20)

Using (20) and the Bochner-Phillips formula, we can obtain solution of the fractional

equations
d

dt
qt = −({H, ·})αqt,

d

dt
pt = −({H, ·})αpt, (21)

where H is defined by (18). It can be written in the form

d

dt
qt = − 1

mα

(

m2ω2q∂p − p∂q

)α

qt,

d

dt
pt = − 1

mα

(

m2ω2q∂p − p∂q

)α

pt.
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It is easy to see that these equations with α = 1 give Eqs. (19). The solutions of

fractional equations (21) have the forms

qt(α) = Φ
(α)
t q0 =

∫

∞

0

dsfα(t, s)qs,

pt(α) = Φ
(α)
t p0 =

∫

∞

0

dsfα(t, s)ps. (22)

Substitution of (20) into (22) gives

qt(α) = q0Cα(t) +
p0

mω
Sα(t), (23)

pt(α) = p0Cα(t) − mωq0Sα(t), (24)

where

Cα(t) =

∫

∞

0

ds fα(t, s) cos(ωs),

Sα(t) =

∫

∞

0

ds fα(t, s) sin(ωs).

Equations (23) and (24) describe solutions of fractional equations (21) for classical

harmonic oscillator.

If α = 1/2, then

C1/2(t) =
t

2
√

π

∫

∞

0

ds
cos(ωs)

s3/2
e−t2/4s,

S1/2(t) =
t

2
√

π

∫

∞

0

ds
sin(ωs)

s3/2
e−t2/4s.

These functions can be presented through the Macdonald function (see [19], Sec. 2.5.37.1.)

such that

C1/2(t) =

(

ωt2

4π

)1/4
[

e+πi/8K−1/2

(

2e+πi/4

√

ωt2

4

)

+ e−πi/8K−1/2

(

2e−πi/4

√

ωt2

4

)]

,

S1/2(t) = i

(

ωt2

4π

)1/4
[

e+πi/8K−1/2

(

2e+πi/4

√

ωt2

4

)

− e−πi/8K−1/2

(

2e−πi/4

√

ωt2

4

)]

,

where ω > 0, and Kα(z) is the Macdonald function [1], which is also called the

modified Bessel function of the third kind.

Note that fractional oscillators are an object of numerous investigations (see for

example [20, 21, 22, 23, 24, 25]) because of different applications.
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4.3. Fractional equation for damped oscillator. Let us consider oscillator with

linear friction
d

dt
qt =

1

m
pt,

d

dt
pt = −mω2qt − 2βpt, (25)

where β < ω. The solution of (25) has the form

qt = e−βt

[

q0 cos
(

√

ω2 − β2t
)

+
1

mω
p0 sin

(

√

ω2 − β2t
)

]

,

pt = e−βt
[

p0 cos
(

√

ω2 − β2t
)

− mωq0 sin
(

√

ω2 − β2t
)]

. (26)

The fractional equations has the form

d

dt
qt = −

(

(mω2q + 2βp)∂p −
p

m
∂q

)α

qt,

d

dt
pt = −

(

(mω2q + 2βp)∂p −
p

m
∂q

)α

pt.

It is easy to see that these equations with α = 1 give Eqs. (25). Using (26) and the

Bochner-Phillips formula, we obtain the solutions

qt(α) = q0Cα,β(t) +
1

mω
p0Sα,β(t),

pt(α) = p0Cα,β(t) − mωq0Sα,β(t), (27)

where

Cα,β(t) =

∫

∞

0

ds fα(t, s) e−βt cos(
√

ω2 − β2s),

Sα,β(t) =

∫

∞

0

ds fα(t, s) e−βt sin(
√

ω2 − β2s). (28)

These equations describe solutions of the fractional damped motion of classical har-

monic oscillator.
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