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ABSTRACT. In this paper we study multi-point boundary value problems of fractional order with
the Riemann-Liouville and Caputo fractional derivatives. The existence results are obtained using

the Schauder fixed point theorem.
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1. PRELIMINARIES

The results of this paper involve both the Riemann-Liouville [14, 16] and the
Caputo [2, 8, 14] fractional differential operators. For the recent and classical results in
the theory and applications applications of linear and nonlinear differential equations
of fractional order we refer the reader to the monographs and works [1, 3, 4, 6, 8, 9,
10, 11, 12, 14, 15, 16]. Observations on the applicability of various fractional order
derivatives to the practical scenarios arising in physics and engineering can be found
in [13, 14]. In the introductory session we present the preliminaries on the Riemann-
Liouville and Caputo fractional derivatives. Among several studies concerning initial
and boundary value problems with the Caputo operator we mention [5, 7]. The
second section contains the existence criteria obtained using the Schauder fixed point

theorem.

The Riemann-Liouville fractional integral of order o > 0 of a function v €
LP(0,1), 1 < p < oo, is the integral

1 u(t) = % /0 (t — 5)°u(s) ds. (1)

«

The Riemann-Liouville fractional derivative of order av > 0, n = [a| + 1, is defined by

Dult) = rorar () [ 0=t )
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For o < 0, it is convenient to introduce the notation I§, = Dy. It is well-known

[14, 16] that if ¢ is an integrable function, then

Doy 15y 9(t) = g(t). (3)

If an integrable function u has the fractional derivative Dg, u, 1 < a < 2, which is

also integrable, then

N N o ta—l o ta—2
15, Dgu(t) = u(t) — D0+1u(0)@ — Doy ZU(O)W
— u(t) - D (0 ()
- o BT T Ty
If, in particular, v € C[0, 1], then
u(t) = DS 1u(0)—F o + 1§, DG u(t). (4)

For 1 < a < 2, we study the integro-differential equation
Dy,u(t) = f(t,u®),u'(t), te(0,1). (5)
We assume throughout the note that

(H1> f S C([Ov 1] X R27R)7
(Hs) f(s,0,0) is not identically zero on [0, 1].

We seek solutions of (5) that satisfy the boundary condition

ru(n) = u(l), "t #1, (6)
where 0 < n < 1. In addition, we impose the condition

where v > 1 — a.
By a solution of the boundary value problem (5)—(7) we understand a function
u € C[0,1]NC* (0, 1] with D§, u € C0, 1] satisfying the equation (5) and the conditions
(6) and (7).
Since o +y > 1, for g = Dy, u € C'0, 1], we have by the semigroup property
I3, I5 () = L5 g (1)

(see, e.g., [14, 16]) that

o ta—i—’y—l N
I u(t) = Dg; lu(O)m + Io:ﬁfg(t)-

The right side of the above equation vanishes at t = 0, which is consistent with (7).
From (4) and (6),
1 B K,Sa_l

D5 u(0) +I5, g(1) = u(l) = ku(§) = T()

F(Oé) Dg‘;lu(O) + KI((]I—FQ(&)’
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so that
D u(0) = 1 (5, (6) — T 9(1)
and
) = s (T50€) — T (1) + Tt
Then
o) = S (g a9 - To) + o)

Replacing ¢ with the inhomogeneous term of (5), we obtain that if u € C[0,1]NC*(0, 1]
is a solution of the fractional differential equation (5) satisfying (6) and (7), then
u € C[0,1] N C'(0,1] is a solution of the integral equation

) = 1oy (KT FCu()(©) = T D) + B S u)O: (9
The converse is also true in view of (3).

Since the solvability of the boundary value problem (5)—(7) is equivalent to estab-

lishing the existence of a solution of the integral equation (8), we define the mapping

Tu(t) = ﬁ /0 (t— $)°=1 F(s, u(s), u/(s)) ds

ta—l

3 . /
- [(a)(1 — k€2-1) ("/0 (€ —5)* f(s,u(s), u'(s)) ds

_/0 (1 _g)a‘lf(s,u(s),u’(s))dS),

for t € [0,1]. Note that

') = =y [ (¢ = 9" s ute) (o)) ds

ta—2

3 - ,
* D(a —1)(1 — k€a1) <“/0 (§—8)* fs,u(s),u'(s)) ds

_/0 (1 _s)“‘lf(s,u(s),u’(s))d8>,

for t € (0,1], so that Tu € C[0,1] N C*(0,1]. Also

1

13
o 70T = pe T e (K/o (€= ) flo ule),ws) ds

—/0 (1-— s)a_lf(s,u(s),u'(s))ds>

exists.
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Consider the Banach space

X ={ueC[0,1]NC'0,1] : lim #*~*u'(t) exists}

t—0t

with the weighted norm |lu|| = max{]||ulo, [|t*~*u/||o}, where || - ||o is the sup-norm
and [[27%v]|o = supye o g [~ 0 ()]

The Caputo fractional derivative [2, 8, 14] with n = [a] 4 1, is defined in terms

of the Riemann-Liouville fractional derivative by

n—1 u(k)
Dgyu(t) = (D&r [“(3) - Z ky(O) Sk]) (t)

1

= - — s)" ™ (s) ds
_ F(n_@/m(t ) (s)ds, te[o,1] (9)

where the last identity holds if u € AC™[0,1] = {u : [0,1] — R : vV € AC0,1]}.

In addition to the differential equation (5), we investigate the equation
Dg,u(t) = ft,u(t), u'(t)), te(0,1), (10)
where 1 < o < 2, subject to the boundary conditions
ru(§) =u(l), w§#1, (11)

and

u(0) = 0. (12)
The operator (9) has the following properties (see [8, 14]).

Theorem 1.1. Let u € AC™[0,1] (or u € C™[0,1]), a € (n —1,n) and v € C[0, 1].
Then, fort € [0,1],

(a) I Dg,ult) = u(t) — Spy Lu®(0);
(b) D(?+[(?+U(t> = v(t).

For g € C[0,1] and Dg, u = g, from Lemma 1.1 (a) it follows that

15 g(t) = u(t) — u(0) — tu'(0).

Using (11),

so that
—— (kl59(6) — I5,9(1)), te[0,1]. (13)
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Using Lemma 1.1 and the equation (13) we can show that the solvability of boundary
value problem (10)—(12) in the class AC?[0, 1] is equivalent the the existence of a fixed
point of the operator T": C'*[0, 1] — C*[0, 1] defined by

Su(t) = ﬁ /0 (t — $)°1 F(s, u(s), u/(s)) ds
13
+ m </<a/0 (€ —5)* 1 f(s,u(s),u(s))ds
— /0 (1 —5)"'f(s,u(s),u(s)) ds), (14)

for t € [0,1]. To this end, note that

(Su)'(t) = =——

1 ¢ a—1 !
+ m (FL/O (& —35)"f(s,u(s),u'(s))ds

- [0 st ds>,
for t € [0,1], so that Su € C1[0,1]. Moreover, given t;,t; € [0,1] with ¢; < t,,
(Su)/(t) — (Su) (1)
< iy 0= 9 = =) st
b = 9 uls) o)) ds

t1

SO H20t —t)* =57 <2C(t — 1)

which shows that (Su) € AC|0, 1].
Define Y = C'0, 1] with the norm |lu| = max{]|Julo, |[v/[o}, a Banach space.

The next lemma is easy to prove.

Lemma 1.2. The mappings T : X — X and S :Y — Y are completely continuous.

2. MAIN RESULTS

The first existence result is obtained for the boundary value problem (5)—(7).

By (H1) for A, B > 0, C(A, B) = sup{|f(t,z,y)| : 0 < t < 1,]a] < A,£2-2y] <
B} < 0.
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Theorem 2.1. Let the assumptions (Hy) and (Hs) be satisfied. Assume that there
exist constants A, B > 0 such that

! <1+|1+ﬂ) C(A,B) < A

m 1_K§a—1|
" ! (o= D)1+ |rJe)
o — + |k|&*
m<a+ TR )C(A,B)gB,

Then the boundary value problem (5)—(7) has a nontrivial solution.

Proof. Let A, B > 0 and define
D={ueX:|ult) <At () <B foraltel01]}.

Then D is a closed and convex subset of X.
Let uw € D, then
1

[Tu(t)] < @/0 (t = 5)""Hf(s,u(s), u(s))| ds

o1 3 - /
T = we ] (‘“‘/o (& = )71 (s u(s). (5)) ds

1 1+ |k[EY
A B
Mot D) ( i —msa—w) cl4.5)
S A7
and
t2—a

BT (O] < o [ (=9l ()] ds

(@ —

1 ¢ a—1 !
+ INa— 1)1 — k€1 <|'L€| /0 () | f(s,uls),u'(s))| ds

+/O (1 =) f (s, u(s),u'(s))] dS)
1 (= 1)(1 + |x[€*)
o (1 + ) C(A, B)

all — rge ]

N

T
B,

VAN

for all t € [0,1].
It follows from the inequalities above that Tu € D. Hence T': D — D. Since

D is convex and T is completely continuous by Lemma 1.2, by the Schauder fixed
point theorem 7" has a fixed point. By the arguments in Section 1, the fixed point is a

solution of the boundary value problem (5)—(7). By (Hz) the solution is nontrivial. O
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The next existence result concerns the boundary value problem (10), (6), and

(11).

By (C}), for A, B > 0, C(A, B) = sup{|f(t,z,y)| : 0 <t < 1,|z| < A, |yl < B} <

.

Theorem 2.2. Let the assumptions (Hy) and (Hs) be satisfied. Assume that there

exist constants A, B > 0 such that

[(a) 1 — kg |1 — k¢

Then the boundary value problem (5)—(7) has a nontrivial solution.

Proof. Let A, B > 0 and define is a closed and convex subset of Y, D, by
D={ueY :|u(t) <A ()| <Bforall t €[0,1]}.

Let uw € D, then

1 ! a—1 1
| Su(?)] S@/O (t = 5)* [ f(s,uls), u'(s))] ds

+/0 (1—S)C“_l\f(&U(SM'(S))\d8>

1 1+ |k[E™
SCER) (” \1—%\)“‘43)

and

|(Su)' ()] < ﬁfo (t =) f (s, u(s), u(s))| ds

1 ¢ ol ,
*m('“'/o (€= a1l ule), ()] ds
+/0 (1= 8)* M f(s,u(s),u'(s))| dS)

1 1+ |k|&™
SCESY (‘“* |1—n§|)O(A’B)

< B.

The rest of the proof is identical to that of Theorem 2.1.

1 1+ |k[E> 1 1+ |k|E~

(15)
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