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1. INTRODUCTION

The theory of fractional differential equations has been recently developed and

the existing fundamental results have been presented in a unified way in a research

monograph [4]. This provides us with an advantage to understand and appreciate the

intricacies involved so as to pave the way for further development of this important

subject as an independent branch of nonlinear analysis.

In a recent paper, [3] we have discussed the relation between the solutions of

fractional differential equations and the solutions of ordinary differential equations.

Since the properties of solutions of ODEs is relatively easier to investigate due to its

well developed theory, the advantage of the relationship between the two systems is

quite clear. In this paper, we shall consider multi-order fractional differential equa-

tions, develop needed mechanism of generalized spaces, utilize the method of vector

Lyapunov functions and use the modified procedure discussed in [3] to study stability

theory of multi-order fractional differential systems by relating them to the corre-

sponding ordinary differential systems. We believe that the mechanism developed in

this paper would be very useful to investigate further multi-order systems to obtain

various other results.

2. MULTI-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS

The systems of fractional differential equations where every component of the

vector x ∈ R
n, has the same arbitrary order derivative 0 < q < 1. They are studied

utilizing the Euclidean norm in R
n to obtain the estimates on the solutions in order to

investigate the qualitative properties of solutions as a whole [4]. However, if each com-

ponent has a different arbitrary order derivative such that Dq1x1, D
q2x2, . . . , D

qnxn or

certain groups of components have the same order, then the foregoing investigation
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cannot apply for such a decomposition. We need to develop a mechanism to handle

the situation of multi-order fractional differential systems. For this purpose, we need

to first define the concept of a generalized space with a generalized norm whose val-

ues are in Rk
+ for some k > 1 and split the multi-order fractional differential system

suitably to yield as much information as possible.

We begin with the following definition [1].

Definition 1. Let E be a real vector space. A generalized norm for E is a mapping

| · |G : E → Rk
+ denoted by

|x|G = (α1(x), α2(x), . . . , αk(x)),

such that

(a) |x|G ≥ 0, that is, αi(x) ≥ 0 for all i = 1, 2, . . . , k;

(b) |x|G = 0 if and only if x = 0, that is, αi(x) = 0 for all i, if and only if x = 0;

(c) |λx|G = |λ||x|G, that is, αi(λx) = |λ|αi(x);

(d) |x + y|G ≤ |x|G + |y|G, which means, αi(x + y) ≤ αi(x) + αi(y).

One can also define αi(x) = |xni
|, where

k
∑

i=1

ni = n, when E is R
n, to split the system

in R
n into k-subsystems, each of which will have ni components for each i.

For each x ∈ E and ǫ ∈ Rk
+, ǫ > 0, let

Bǫ(x) = [y ∈ E : ‖y − x‖G < ǫ].

Then [Bǫ(x) : x ∈ E, ǫ ∈ Rk
+, ǫ > 0] is a basis for a topology on E.

Remark 2.1. It is not difficult to see that every generalized normed space (E, ‖ ·‖G)

has an equivalent (ordinary) norm. For example in R
2, ‖x‖G = (|x1|, |x2|) and ‖x‖ =

max(|x1|, |x2|) are equivalent. For purely algebraic and topological considerations, it

is immaterial whether we view E as a generalized norm space or an ordinary norm

space. Such concepts as convexity, closure, completeness and compactness remain the

same. We do, however, have more flexibility working with generalized spaces.

We shall need the following terminology.

Definition 2. An A-matrix is a nonnegative matrix S such that I − S is positive

definite.

A positive definite matrix S will be any n× n matrix such that x. Sx > 0 for all

x ∈ R
n. We will use the following properties of a positive definite matrix S:

(i) det S > 0,

(ii) all the principal minors of S are positive definite,

(iii) if all the off-diagonal elements of S are non-positive then S−1 is nonnegative,



MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS 461

(iv) If S ≥ 0, then
∞
∑

n=0

Sn converges if and only if for some m, I − Sm is positive

definite in which case (I − S)−1 =
∞
∑

n=0

Sn.

We now state the Schauder fixed point theorem and contraction mapping theorem

in a generalized normed space.

Theorem 2.1. Let E be a generalized Banach space and let F ⊂ E be closed and

convex. If T : F → F is completely continuous, then T has a fixed point.

Proof. In view of Remark 2.1, we may view E as an ordinary Banach space with

an equivalent ordinary norm. Then Theorem 2.1 becomes the classical Schauder-

Tychonoff theorem.

Definition 3. Let E be a real vector space. A generalized metric for E is a mapping

d : E × E → Rk
+ such that

(a) d(x, y) = d(y, x)

(b) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(c) d(x, z) ≤ d(x, y) + d(y, z), where x, y, z are any elements of E.

Theorem 2.2. Let E be a complete generalized metric space and let T : E → E such

that

d(Tx, Ty) ≤ Sd(x, y),

where S is a nonnegative matrix such that for some m, Sm is an A-matrix. Then T

has a unique fixed point x∗. Further for any x ∈ E

x∗ = lim
n→∞

T nx

and

d(x∗, T nx) ≤ Sn(1 − S)−1d(Tx, x).

We leave the proof as an exercise.

Corollary 2.3. Let E be a complete generalized metric space and let T : E → E such

that

d(Tx, Ty) ≤ Sd(x, y),

where S is a nonnegative matrix. If there is an x0 ∈ E such that
∞
∑

n=0

Snd(Tx0, x0)

converges, then T has a fixed point x∗ such that

x∗ = lim
n→∞

T nx0.
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We note that one needs to employ Theorems 2.1 and 2.2 in this frame work

to yield existence and uniqueness results for the multi-order fractional differential

systems. We do not prove these results and leave it to the readers for proving them.

Let us consider the general type of multi-order fractional differential system given

by

cDqx = f(t, x), x(t0) = x0, (1)

where cDq is the Caputo derivative. Let n =
k
∑

i=1

ni, we split the system (1) such

that for i = 1, 2, . . . , k, we can represent n-system (1) into k-subsystems, each group

consists of ni components for each i. Then we have

cDqixni
= fni(t, xn1, xn2, . . . , xni, . . . , xnk), xni(t0) = x0ni. (2)

Clearly, each group consists of ni components of the same order fractional derivative

and have different number of components. We therefore have k-groups, each not

necessarily having the same number of components of the vector. Hence utilizing

k-valued generalized norm would help to obtain properties of each group which could

be different.

If we employ the usual norm, we can not do so, because if one component has

an unwanted property, we get the same for all, even though all other components

may have a good property that is desired. This remark is also true even when all the

components have the same arbitrary order. In fact, we cannot utilize the usual norm

in the multi-order case. We can now state the following comparison result to deal

with the case of (2), whose proof is similar to the proof of Theorem 4.2.2 in [4] with

suitable modifications of the corresponding existence of extremal results.

Theorem 2.4. Assume that for each i = 1, 2, . . . , k,

(i) Vi ∈ C(R+ × Rni, Rk
+), each Vi(t, x) is locally Lipschitzian in x and

cD
qi

+Vi(t, xni
) ≤ gi(t, V1, V2, . . . , Vk), i = 1, 2, . . . , k,

where cD
qi

+Vi is the generalized derivative as usual [2] for each i and g ∈ C(R+

×Rk
+, Rk

+) and g(t, u) is quasimonotone nondecreasing in u for each t;

(ii) the maximal solution ri(t, t0, u0i) of the fractional differential system

cDqiui = gi(t, ui), ui(t0) = u0i ≥ 0 (3)

exists on [t0,∞). Then Vi(to, x0ni
) ≤ u0i implies

Vi(t, xni
(t)) ≤ ri(t, t0, u0i), t ≥ t0. (4)

We note that, the system (3), is such that each component ui has the fractional

derivative of order qi, which is the order for the group of ni. components.
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Having at our disposal the estimate (4), we can prove the following result so that

one can extend to other situations appropriately. The type of multi-order systems

defined above cover a variety of situations since they are general enough.

Theorem 2.5. Let the conditions of Theorem 2.4 hold. Suppose further

bi(|xni|) ≤ Vi(t, xni) ≤ ai(|xni|), (5)

where bi, ai are K-class functions. Then if the comparison fractional differential sys-

tem (3) has different qualitative property for each ui component, i = 1, 2, . . . , k, the

corresponding group of ni components ni of x ∈ R
n, would have the same property.

Proof. Since we employ different components of the generalized norm of any solution

x(t, t0, x0) of the IVP(2) and the corresponding i = 1, 2, . . . , k, components of the

comparison IVP (3), each group of ni components being represented by a component

ui of (3), it is not difficult to mimic the proof of earlier proofs of Lyapunov method.

Nonetheless, since the comparison IVP (3) is also the similar type of multi-order

system, albeit easier, it is difficult to find the properties of the solutions of (3).

Consequently, if we can relate such multi-order systems to a system of ODE, with

order one, we can utilize the well known theory of such non-fractional ODE, it would

be very helpful for the described theory of fractional differential systems, even simpler

ones. This approach is discussed in the next section.

3. STABILITY OF MULTI-ORDER SYSTEMS VIA ODEs

Let us follow the procedure outlined in [3] to the comparison fractional differential

system (3), written in a vector form, for convenience,

cDqu = g(t, u) u(t0) = u0 ≥ 0. (6)

We recall that the use of Lyapunov function V (t, x) demands r(t, t0, u0), the maximal

solution of the IVP (6) to be necessarily nonnegative for t ≥ t0, and therefore, we

need to consider only the nonnegative solutions of (6). We wish to find desirable

estimates on the solutions u(t, t0, u0) of (6) in terms of solutions of certain ordinary

differential systems that are comparatively easier to determine, because a lot of theory

is well known for such ODEs. Our aim is therefore to obtain upper bounds for any

solution u(t, t0, u0) of the IVP (6) so that we can draw conclusions that are interesting

and useful to us for the original multi-order fractional differential system (1) via the

solutions of (6). As indicated above, we modify the technique developed in [3] suitably.

Let us first assume that the solutions x(t, t0, x0) of (1) exist and unique for t ≥

t0. We shall also suppose that the solutions u(t, t0, u0) of the comparison fractional

differential system (6) also exist and are unique for t ≥ t0. Then we can utilize the



464 V. LAKSHMIKANTHAM AND S. LEELA

relation

cDqu(t) =
1

Γ(1 − q)

t
∫

t0

(t − s)−q d

ds
u(s)ds, (7)

to connect the IVP (6) to certain ODE to be obtained. Let us proceed (first tem-

porarily) to suppose that

u′(t) = u′(s) + φ(t, s, q), ′ =
d

dt
, (8)

where the function φ(t, s, q) will be chosen later in an appropriate manner depending

on our requirements. Then we get

cDqu(t) =
1

Γ(1 − q)

t
∫

t0

(t − s)−q[u′(t) − φ(t, s, q)]ds,

which reduces to

cDqu(t) =
u′(t)(t − t0)

1−q

Γ(2 − q)
− η(t, t0, q), (9)

where

η(t, t0, q) =
1

Γ(1 − q)

t
∫

t0

(t − s)−qφ(t, s, q)ds.

Using the IVP (6), we arrive at

u′(t) = G(t, u) + η̃(t, t0, q), u(t0) = u0 ≥ 0, (10)

where

G(t, u) = g(t, u)(t− t0)
q−1Γ(2 − q),

η̃(t, t0, q) = η(t, t0, q)(t− t0)
q−1Γ(2 − q).

}

(11)

By imposing various suitable estimates on η̃(t, t0, q), and choosing g(t, u) appropri-

ately, we can get bounds on u(t, t0, u0) by means of the solutions of the corresponding

ordinary differential system (10). As one possible simple choice, let us suppose that

g(t, u) = −λ(t, t0)u, φ(t, t0, q) ≤ k(t − t0)
q, (12)

where λ(t, t0) ≥ 0 is continuous, and k > 0 is a constant. Then using (9),(10) and

(11), we have a differential inequality, componentwise,

u′(t) ≤ Γ(2 − q)[−λ(t, t0)u(t)(t − t0)
q−1 +

k(t − t0)

Γ(1 − q)
], u(t0) = u0 ≥ 0. (13)

We now choose λ(t, t0) = (t−t0)1−q

Γ(2−q)
λ0, λ0 > 0, so that the corresponding comparison

system becomes

v′(t) = −λ0v + k0(t − t0), v(t0) = u0 ≥ 0, k0 =
kΓ(2 − q)

Γ(1 − q)
, (14)
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whose solution is

v(t) = u0e
−λ0(t−t0) +

t
∫

t0

e−λ0(t−s)k0(s − t0)ds, t ≥ t0. (15)

By the usual comparison theorem, Corollary 1.7.1 in [2], this implies that

u(t) ≤ v(t), t ≥ t0,

and consequently, in view of the estimate (4) of solutions x(t, t0, x0) of the original

multi-system (1), we get

V (t, xni
(t)) ≤ u(t) ≤ v(t), t ≥ t0. (16)

In view of the assumption on the vector V (t, x) supposed in (5), and the fact that all

solutions v(t, t0, u0) are bounded by k0

λ0

, we see that all solutions x(t, t0, x0) are also

bounded. It is not difficult to see that v(t) ≤ k0

λ0

, t ≥ t0.

If, on the other hand, we suppose that not all components of φ(t, t0, q) satisfy the

same estimate, but, we find that

φi(s, t, q) ≤ ki(t − s)q, i = 1, 2, . . . , k0,

φi(s, t, q) ≤ ki(t)(t − s)q, i = k0 + 1, . . . , k.

}

(17)

where the functions ki(t) satisfy the condition

lim
t→∞

t+1
∫

t

(

s
∫

t0

k(σ)dσ)ds → 0, (18)

we get the same estimate for v(t) ≤ k̃
λ0

as before, for the first i = 1, 2, . . . , k0, com-

ponents. However, for the rest of k0 + 1, k0 + 2, . . . , k, components of v(t), it follows

that |xni
(t, t0, x0)| → 0 as t → ∞, where ni ranges from nk0+1 to nk. The rest of

|xni
(t, t0, x0)| ≤ N , t ≥ t0, where ni ranges from n1, . . . , nk0

and N is a suitable con-

stant depending on ki

λ0

and the K-class functions bni, ani ranging from n1, . . . , nk. For

the proof of the first part we need to follow the complicated arguments of Theorem

2.14.6 in [2], which result because of the condition (4.8.13) in [2]. Thus we see a

given system could have different qualitative behavior for different groups of compo-

nents, which can only be detected using the generalized norm and several Lyapunov

functions. Even though such a varied behavior can happen for ordinary differential

system, it is more common in multi-order systems of fractional differential equations.
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