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This paper studies existence and uniqueness results in a Banach space for a three-point bound-

ary value problem involving a fractional differential equation given by

cDqx(t) = f(t, x(t)), t ∈ [0, T ], 0 < q < 1,

αx(0) + βx(T ) = γx(η), 0 < η < T, α + β 6= γ.

The contraction mapping principle and Krasnoselskii’s fixed point theorem are employed to establish

the results.
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1. INTRODUCTION

In recent years, the application of fractional calculus in physics, continuum me-

chanics, signal processing, and electromagnetics, with few examples of applications in

bioengineering are high lighted in the literature. The methods of fractional calculus,

when defined as a Laplace, Sumudu or Fourier convolution product, are suitable for

solving many problems in emerging biomedical research. The electrical properties

of nerve cell membranes and the propagation of electrical signals are well character-

ized by differential equations of fractional order. The fractional derivative accurately

describes natural phenomena that occur in such common engineering problems as

heat transfer, electrode/electrolyte behavior, and sub-threshold nerve propagation.

Application of fractional derivatives to viscoelastic materials establishes, in a natural

way, hereditary integrals and the power law stress-strain relationship for modeling

biomaterials. Fractional operations by following the original approach of Heaviside,

demonstrate the basic operations of fractional calculus on well-behaved functions such
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as step, ramp, pulse, and sinusoidal of engineering interest, and can easily be applied

in electrochemistry, physics, bioengineering, and biophysics.

The differential equations involving Riemann-Liouville differential operators of

fractional order occur in the mathematical modelling of several phenomena in the

fields of physics, chemistry, engineering, etc. For details, see [3–6, 11] and the refer-

ences therein. In consequence, the subject of fractional differential equations is gaining

much importance and attention, see for example [1–2, 7–10, 12–15] and the references

therein. The definition of Riemann-Liouville fractional derivative, which did certainly

play an important role in the development of theory of fractional derivatives and in-

tegrals, could hardly produce the physical interpretation of the initial conditions

required for the initial value problems involving fractional differential equations. The

same difficulty arises for the boundary conditions of the boundary value problems. It

was Caputo’s definition of fractional derivative:

cDqx(t) =
1

Γ(n − q)

∫ t

t0

(t − s)n−q−1x(n)(s)ds, n − 1 < q < n,

which solved this problem. In fact, Caputo’derivative becomes the conventional n-

th derivative as q → n and the initial conditions for fractional differential equations

retain the same form as that of ordinary differential equations with integer derivatives.

Another difference is that the Caputo derivative for a constant is zero while the

Riemann-Liouville fractional derivative of a constant is nonzero.

In this paper, we prove some existence and uniqueness results for the following

three-point fractional boundary value problem
{

cDqx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 0 < q < 1,

αx(0) + βx(T ) = γx(η), 0 < η < T, α + β 6= γ,
(1.1)

where cDq denotes Caputo fractional derivative of order q, f : [0, T ] × X → X and

α, β, γ are real constants. Here, (X, ‖ · ‖) is a Banach space and C = C([0, T ], X)

denotes the Banach space of all continuous functions from [0, T ] → X endowed with

a topology of uniform convergence with the norm denoted by ‖ · ‖C.

In passing, we remark that the boundary condition in (1.1) appear in certain

problems of physics where the controllers at the boundary points dissipate or add

energy according to a censor located at an intermediate position.

As argued in [8], the three-point boundary value problem (1.1) is equivalent to

the following nonlinear integral equation

x(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds

−
1

(α + β − γ)Γ(q)

[

β

∫ T

0

(T − s)q−1f(s, x(s))ds − γ

∫ η

0

(η − s)q−1f(s, x(s))ds

]

,
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where Γ is Gamma function. Now, we state a known result due to Krasnoselskii which

is needed to prove the existence of at least one solution of (1.1).

Theorem 1.1. Let M be a closed convex and nonempty subset of a Banach space X.

Let A, B be the operators such that (i) Ax + By ∈ M whenever x, y ∈ M (ii) A is

compact and continuous (iii) B is a contraction mapping. Then there exists z ∈ M

such that z = Az + Bz.

2. MAIN RESULTS

Theorem 2.1. Let f : [0, T ] × X → X be a jointly continuous function satisfying

(A1) ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, T ], x, y ∈ X;

(A2) ‖f(t, x)‖ ≤ µ(t), ∀(t, x) ∈ [0, T ] × X.

where µ ∈ L1([0, T ], R+). Then the three-point boundary value problem (1.1) has a

unique solution provided

L ≤
Γ(q + 1)

2

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

−1

.

Proof. Define Θ : C → C by

(Θx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds −
1

(α + β − γ)Γ(q)

×[β

∫ T

0

(T − s)q−1f(s, x(s))ds − γ

∫ η

0

(η − s)q−1f(s, x(s))ds], t ∈ [0, T ].

Setting supt∈[0,T ] ‖f(t, 0)‖ = M and choosing

r ≥
2M

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

,

we show that ΘBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(Θx)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1[‖f(s, x(s))‖ds

+
1

|α + β − γ|Γ(q)

[

|β|

∫ T

0

(T − s)q−1‖f(s, x(s))‖ds

+|γ|

∫ η

0

(η − s)q−1‖f(s, x(s))‖ds

]

≤
1

Γ(q)

∫ t

0

(t − s)q−1(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖)ds

+
1

|α + β − γ|Γ(q)

[

|β|

∫ T

0

(T − s)q−1(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖)ds

+|γ|

∫ η

0

(η − s)q−1(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖)‖ds

]
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≤ (Lr + M)
1

Γ(q)

∫ t

0

(t − s)q−1ds + (Lr + M)
1

|α + β − γ|Γ(q)

×

[

|β|

∫ T

0

(T − s)q−1ds + |γ|

∫ η

0

(η − s)q−1ds

]

≤ (Lr + M)
1

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

≤ r.

Now, for x, y ∈ C and for each t ∈ [0, T ], we obtain

‖(Θx)(t) − (Θy)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s)) − f(s, y(s))‖ds

+
1

|α + β − γ|Γ(q)

[

|β|

∫ T

0

(T − s)q−1‖f(s, x(s)) − f(s, y(s))‖ds

+ |γ|

∫ η

0

(η − s)q−1‖f(s, x(s)) − f(s, y(s))‖ds

]

≤ L‖x − y‖C

1

Γ(q)

∫ t

0

(t − s)q−1ds

+ L‖x − y‖C

1

|α + β − γ|Γ(q)

[

|β|

∫ T

0

(T − s)q−1ds

+ |γ|

∫ η

0

(η − s)q−1ds

]

≤
L

Γ(q + 1)
[T q(1 +

|β|

|α + β − γ|
) + ηq |γ|

|α + β − γ|
]‖x − y‖C

≤ Λα,β,γ,L,T,q‖x − y‖C,

where

Λα,β,γ,L,T,q =
L

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

,

which depends only on the parameters involved in the problem. As Λα,β,γ,L,T,q < 1,

therefore Θ is a contraction. Thus, the conclusion of the theorem follows by the

contraction mapping principle (Banach fixed point theorem).

Theorem 2.2. Assume that (A1) − (A2) hold with

L(T q|β| + ηq|γ|)

Γ(q + 1)|α + β − γ|
< 1.

Then the three-point boundary value problem (1.1) has at least one solution on [0, T ].

Proof. Let us fix

r ≥
‖µ‖L1

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

,
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and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds,

(Ψx)(t) = −
1

(α + β − γ)Γ(q)

[

β

∫ t

0

(t − s)q−1f(s, x(s))ds − γ

∫ η

0

(η − s)q−1f(s, x(s))ds

]

.

For x, y ∈ Br, we find that

‖Φx + Ψy‖ ≤
‖µ‖L1

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

≤ r.

Thus, Φx + Ψy ∈ Br. It follows from the assumption (A1) that Ψ is a contraction

mapping for

L(T q|β| + ηq|γ|)

Γ(q + 1)|α + β − γ|
< 1.

Continuity of f implies that the operator Φ is continuous. Also, Φ is uniformly

bounded on Br as

‖Φx‖ ≤
‖µ‖L1T q

Γ(q + 1)
.

Now we prove the compactness of the operator Φ. Since f is bounded on the compact

set Ω = [0, T ] × Br, we define sup(t,x)∈Ω ‖f(t, x)‖ = fmax, and consequently we have

‖(Φx)(t1) − (Φx)(t2)‖ = ‖
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds‖ ≤
fmax

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,

which is independent of x. So Φ is relatively compact on Br. Hence, By Arzela

Ascoli Theorem, Φ is compact on Br. Thus all the assumptions of Theorem 1.1 are

satisfied and the conclusion of Theorem 1.1 implies that the three-point boundary

value problem (1.1) has at least one solution on [0, T ].

Example 1. Consider the following three-point boundary value problem
{

cD
1

2 x(t) = 1
16

(t sin x(t) − x(t) cos t), t ∈ [0, 1],

x(0) + x(1) = x(1
2
).

(2.1)

Here, f(t, x(t)) = 1
16

(t sin x(t) − x(t) cos t), α = 1, β = 1, γ = 1, T = 1, η = 1
2
. It

can easily be verified that ‖f(t, x) − f(t, y)‖ ≤ 1
8
‖x − y‖ which implies that (A1) is

satisfied with L = 1
8
. Further,

2L

Γ(q + 1)

[

T q

(

1 +
|β|

|α + β − γ|

)

+ ηq |γ|

|α + β − γ|

]

= 0.763661 < 1.

Thus, by Theorem 2.1, the three-point boundary value problem (2.1) has a unique

solution on [0, 1].
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