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1. INTRODUCTION

First-order fuzzy differential equations have been considered, for instance, in [1]–

[10]. A detailed analysis of first-order linear fuzzy initial value problems is included

in [11], where the exact expression of the solution is obtained (whenever it exists).

Higher order linear ordinary differential equations with fuzzy initial conditions are

studied in [12] under two different points of view, some results on existence and

uniqueness of solution for two-point boundary value problems relative to second order

fuzzy differential equations are given in [6, 13, 14] and, besides, [15, 16] include some

results on higher order fuzzy differential equations with crisp initial conditions. For

the study of some numerical methods for fuzzy differential equations, see [2], and

[17]–[20]. On the other hand, the basic theory concerning metric spaces of fuzzy sets

can be found in [1]. In the following, we consider Em the space of fuzzy subsets of

R
m

u : R
m −→ [0, 1],

satisfying the following properties:
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i): u is normal: there exists x0 ∈ R
m with u(x0) = 1.

ii): u is fuzzy convex: for all x, y ∈ R
m and λ ∈ [0, 1],

u(λx + (1 − λ)y) ≥ min{u(x), u(y)}.

iii): u is upper-semicontinuous.

iv): [u]0 = {x ∈ Rm : u(x) > 0} is a compact set.

The level sets of u,

[u]a = {x ∈ R
m : u(x) ≥ a}, a ∈ (0, 1],

and [u]0 are nonempty compact convex sets in R
m (see [1]). In Em, we consider the

distance

d(u, v) = sup
a∈[0,1]

dH ([u]a, [v]a) , u, v ∈ Em,

with dH the usual Hausdorff distance for nonempty compact convex subsets of R
m.

The metric space (Em, d) is complete (see [1]). The distance d satisfies the following

properties:

d(u + w, v + w) = d(u, v), u, v, w ∈ Em,

d(λ u, λ v) = λ d(u, v), u, v ∈ Em, λ > 0,

d(u + w, v + z) ≤ d(u, v) + d(w, z), u, v, w, z ∈ Em.

For u, v ∈ Em, if there exists w ∈ Em such that u = v + w, then w is called the

Hukuhara-difference of u and v, which is denoted by u − v. Note that, if u, v ∈ E1

are such that u + v = χ{0}, then u and v are crisp (real) and u = −v. We say that a

function f : [t0, T ] −→ Em is differentiable (in the sense of Hukuhara) at t ∈ [t0, T ] if

the Hukuhara-differences

f(t + h) − f(t), f(t) − f(t − h)

exist for h > 0 small enough and there exists f ′(t) ∈ Em such that

lim
h→0+

f(t + h) − f(t)

h
, lim

h→0+

f(t) − f(t − h)

h

exist and are equal to f ′(t). These limits are taken in the space (Em, d), and if

t is t0 or T , then we consider the corresponding one-sided derivative. Some other

approaches to fuzzy differentiability are included in [3, 21, 22]. We say that a fuzzy

function f : [t0, T ] −→ Em is strongly measurable if, forall a ∈ (0, 1], the set-valued

mapping

fa : [t0, T ] −→ PK(Rm),

given by

fa(t) = [f(t)]a,

is Lebesgue-measurable, considering the space of nonempty, compact, convex subsets

of R
m, PK(Rm), endowed with the topology generated by the Hausdorff distance dH .
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The integral of f over [t0, T ], denoted by
∫
[t0,T ]

f(t) dt or
∫ T

t0
f(t) dt, is defined level

wise by
[∫

[t0,T ]

f(t) dt

]a

=

∫

[t0,T ]

fa(t) dt

=

{∫

[t0,T ]

g(t) dt : g : [t0, T ] −→ R
m is a measurable selection for fa

}
,

for a ∈ (0, 1]. We say that f is integrable over [t0, T ] if
∫
[t0,T ]

f(t) dt ∈ Em. The

continuity of f : [t0, T ] −→ Em implies the integrability of f . Besides, for f , g

integrable functions, d(f, g) is integrable (see [1], and [4, 6] for details) and

d

(∫
f,

∫
g

)
≤
∫

d(f, g).

In [23], an existence and uniqueness result for fuzzy differential systems is proved,

showing some applications to the solvability of first-order fuzzy linear systems and

higher-order fuzzy differential equations and systems. In this reference, it is also

analyzed the structure of the set of solutions for fuzzy differential systems. The

approach of this reference uses the metric d0 in (Em)n given by

d0(U, V ) =
n∑

i=1

d(ui, vi),

where U = (u1, . . . , un), V = (v1, . . . , vn) ∈ (Em)n, and

d(x, y) = sup
a∈[0,1]

dH([x]a, [y]a), ∀x, y ∈ Em,

with dH the usual Hausdorff distance between nonempty compact convex subsets

of R
m. This paper is also devoted to the study of the existence and uniqueness

of solution for initial value problems associated to fuzzy differential systems, and

to its application to first-order fuzzy linear systems, as well as higher-order fuzzy

differential equations and systems. However, in this case, we use vector valued metric

and generalized metric spaces, which makes it necessary to apply some fixed point

results included in [24] as the generalized Contraction Theorem.

2. GENERALIZED FUZZY SPACES

Definition 1. Let E be a real fuzzy space. A generalized metric for E is a mapping

d : E × E −→ R
n such that

a): d(x, y) = d(y, x).

b): d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y.

c): d(x, z) ≤ d(x, y) + d(y, z), where x, y, z are any elements of E.



4 J. J. NIETO, R. RODRIGUEZ-LOPEZ, AND D. N. GEORGIOU

In Definition 4.5.3 [24], it is considered that E is a real vector space, but the

vectorial structure of E is not essential for the validity of the existence results we use

in our procedure. In our study, we consider as generalized metric space the cartesian

product of a finite number of copies of the fuzzy space Em. If x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ (Em)n, then we say that x ≤ y if and only if xi ≤ yi, for all i = 1, . . . , n,

where ≤ represents the partial ordering in Em given by:

u, v ∈ Em, u ≤ v ⇐⇒ [u]a ⊆ [v]a, ∀a ∈ [0, 1].

Em is not a real vector space, but it has the structure of a cone over R. We consider

fuzzy differential systems of the type

y′(t) = F (t, y(t)), t ≥ t0,

y(t0) = y0,

where F ∈ C (R+ × (Em)n, (Em)n), y0 ∈ (Em)n.Here, (Em)n = Em× n)· · · ×Em, and

y0 = (y01, y02, . . . , y0n), y0i ∈ Em, ∀i = 1, . . . , n. We take the generalized metric space

((Em)n, D), where

D(U, V ) = (d(u1, v1), d(u2, v2), . . . , d(un, vn)) ∈ R
n
+.

Note that (Em, d) is a complete metric space, thus ((Em)n, D) is a complete general-

ized metric space. In this context, we say that F satisfies a generalized contractivity

condition if

D(F (t, U), F (t, V )) ≤ S D(U, V ),

where S = (sij) is an n × n matrix with sij ≥ 0, for all i, j and, for some k > 1, Sk

is an A-matrix, that is, I − Sk is positive definite, where I is the identity matrix. If

we define

‖ · ‖0 : (Em)n −→ (R+)n

x = (x1, x2, . . . , xn) −→ ‖(x1, x2, . . . , xn)‖0 = D(x, (χ{0})
n)

= (d(x1, χ{0}), d(x2, χ{0}), . . . , d(xn, χ{0})),

then, by the properties of distance d, ‖ · ‖0 satisfies that

• ‖x‖0 ≥ 0, for every x ∈ (Em)n.

• ‖x‖0 = 0 if and only if x = (χ{0})
n.

• ‖λx‖0 = |λ|‖x‖0, for every λ ∈ R and x ∈ (Em)n.

• ‖x + y‖0 ≤ ‖x‖0 + ‖y‖0, for every x, y ∈ (Em)n.

Here, we denote by 0 = (0, . . . , 0). Thus, ‖ · ‖0 is a generalized norm for (Em)n

(this space has not a vectorial structure). The following results are essential to our

procedure.

Theorem 2.1 (Theorem 4.5.2 [24]). Let (E, d) be a complete generalized metric space

and let T : E −→ E be such that d(Tx, Ty) ≤ Sd(x, y), where S is a nonnegative



FUZZY DIFFERENTIAL SYSTEMS 5

matrix such that for some k, Sk is an A-matrix. Then T has a unique fixed point x∗.

Furthermore, for any x ∈ E, x∗ = limj→∞ T jx and

d(x∗, T jx) ≤ (I − S)−1Sjd(Tx, x).

Theorem 2.2 (Corollary 4.5.1 [24]). Let (E, d) be a complete generalized metric space

and let T : E −→ E be such that d(Tx, Ty) ≤ Sd(x, y), where S is a nonnegative

matrix. If there exists an x0 ∈ E such that
∑∞

j=0 Sjd(Tx0, x0) converges, then T has

a fixed point x∗ such that x∗ = limj→∞ T jx0.

3. FIRST ORDER FUZZY DIFFERENTIAL SYSTEMS

Consider a fuzzy differential system of the type

(1)






y′
i(t) = Fi(t, y1(t), . . . , yn(t)), t ∈ [t0, T ], i = 1, 2, . . . , n,

yi(t0) = bi, i = 1, 2, . . . , n,

where Fi : [t0, T ] × (Em)n −→ Em, i = 1, . . . , n, and b1, b2, . . . , bn ∈ Em, which can

be written as {
Y ′ = F (t, Y ),

Y (t0) = b̄,

where b̄ = (b1, . . . , bn), F : [t0, T ]×(Em)n −→ (Em)n,Y = (y1, . . . , yn) , and F (t, Y ) =

(F1(t, Y ), . . . , Fn(t, Y )). If F is ‘linear’, then we get

(2)






y′
i(t) =

n∑

j=1

αi,j(t)yj(t), i = 1, 2, . . . , n,

yi(t0) = bi, i = 1, 2, . . . , n.

where

αi,j : [t0, T ] −→ R, i, j = 1, 2, . . . , n.

Equivalently, 


y′
1
...

y′
n


 = A(t)




y1

...

yn


 ,

where

(3) A(t) =




α1,1(t) · · · α1,n(t)
...

. . .
...

αn,1(t) · · · αn,n(t)


 ,

and the product of a real n × n matrix by a fuzzy n-dimensional vector is defined

by using the operations in Em. Our approach uses generalized distances. In the
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following, we use that ((Em)n, D) is a complete generalized metric space. Next, we

prove some auxiliary results.

Lemma 1. Consider J = [t0, T ] a bounded interval,

C(J, Em) = {x : J −→ Em : x is continuous},

and

D̃(x, y) = (H(x1, y1), . . . , H(xn, yn)), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (C(J, Em))n,

where

H(z, w) = sup
t∈J

{
d(z(t), w(t))e−ρt

}
, z, w ∈ C(J, Em),

and ρ > 0. Then the space ((C(J, Em))n, D̃) is a complete generalized metric space.

Lemma 2. The space of functions x : J −→ Em of class Cr (r ∈ N) in the sense

of Hukuhara (continuous and existing x′, . . . , x(r continuous) (Cr(J, Em), H̄) is a

complete metric space, where

H̄(x, y) =
r∑

i=0

H
(
xi, yi

)
, x, y ∈ Cr(J, Em),

where x(0 = x and xi denotes the ith-derivative of x in the sense of Hukuhara.

The proof can be derived similarly to the results in [16].

Lemma 3. ((Cr(J, Em))n, H̃) is a complete generalized metric space, where

H̃(U, V ) = (H̄(u1, v1), H̄(u2, v2), . . . , H̄(un, vn)),

for U = (u1, . . . , un), V = (v1, . . . , vn) ∈ (Cr(J, Em))n.

The following result extends to fuzzy differential systems the results given in[4] for

fuzzy differential equations, and our approach is based on generalized metric spaces.

Theorem 3.1. Consider system (1), that is, Y ′ = F (t, Y ), where

F : [t0, T ] × (Em)n −→ (Em)n

is continuous,Y = (y1, . . . , yn), and F (t, Y ) = (F1(t, Y ), . . . , Fn(t, Y )) . Suppose that

there exists S = (sij) an n×n matrix with sij ≥ 0, for all i, j and such that, for some

k > 1, Sk is an A-matrix, and that the following condition holds, for t ∈ J = [t0, T ],

u, v ∈ (C(J, Em))n, and j = 1, 2, . . . , n,

(4)

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds ≤
n∑

i=1

sjid(ui(t), vi(t)).

Then, for a given initial condition b̄ = (b1, . . . , bn) ∈ (Em)n, system (1) has a unique

solution.
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Proof: Let J = [t0, T ], and consider the complete generalized metric space

((C(J, Em))n, D̃) (see Lemma 1). Define the operator

G : (C(J, Em))n −→ (C(J, Em))n

u −→ Gu,

by Gu = (G1u, . . . , Gnu), where

[Giu](t) = bi +

∫ t

t0

Fi(s, u(s)) ds, t ∈ J, i = 1, . . . , n.

Here, u = (u1, . . . , un), ui : J −→ Em continuous, and u(s) = (u1(s), . . . , un(s)). We

prove that, for an appropriate ρ > 0, G satisfies conditions in Theorem 2.1 (Theorem

4.5.2 [24]). The generalized contraction Theorem provides the existence of a unique

fixed point u for G, which is the unique solution to problem (1), and satisfying that,

for any u0 ∈ (C(J, Em))n, limj→∞ Gj(u0) = u, and

D̃(u, Gju0) ≤ (I − S)−1SjD̃(Gu0, u0).

To this purpose, we check that D̃(Gu, Gv) ≤ SD̃(u, v). Note that S is a nonnegative

matrix such that, for some k > 1, Sk is an A-matrix, that is, nonnegative with I −Sk

positive definite. Since

D̃(Gu, Gv) = (H(G1u, G1v), . . . , H(Gnu, Gnv)),

then, for every j = 1, 2, . . . , n and u, v ∈ (C(J, Em))n, we get

H(Gju, Gjv) = sup
t∈J

d

(
bj +

∫ t

t0

Fj(s, u(s)) ds, bj +

∫ t

t0

Fj(s, v(s)) ds

)
e−ρt

≤ sup
t∈J

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds e−ρt

≤ sup
t∈J

n∑

i=1

sjid(ui(t), vi(t))e
−ρt

=

n∑

i=1

sji sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

=

n∑

i=1

sjiH(ui, vi) = (SD̃(u, v))j.

This proves that G satisfies a generalized contractive condition and the result fol-

lows. �

Remark 1. Condition (4) in Theorem 3.1 can be replaced by the more general

condition: There exists ρ > 0 such that

(5) sup
t∈J

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds e−ρt ≤
n∑

i=1

sji sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

,

for every u, v ∈ (C(J, Em))n and j = 1, 2, . . . , n.
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Theorem 3.2. Consider system (1), that is, Y ′ = F (t, Y ), where

F : [t0, T ] × (Em)n −→ (Em)n

is continuous, Y = (y1, . . . , yn), and F (t, Y ) = (F1(t, Y ), . . . , Fn(t, Y )). Suppose

that there exists S = (sij) an n × n matrix with sij ≥ 0, for all i, j, and that, for

some k > 1, Sk is an A-matrix. Suppose also that the following condition holds, for

t ∈ [t0, T ] and U, V ∈ (Em)n,

(6) D (F (t, U), F (t, V )) ≤ S D(U, V ),

that is, for every j = 1, 2, . . . , n,

d (Fj(t, U), Fj(t, V )) ≤
n∑

i=1

sjid(ui, vi).

Then, for a given initial condition b̄ = (b1, . . . , bn) ∈ (Em)n, system (1) has a unique

solution.

Proof: Following the proof of Theorem 3.1, and, using (6), we obtain, for every

j = 1, 2, . . . , n and u, v ∈ (C(J, Em))n, that

H(Gju, Gjv) ≤ sup
t∈J

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds e−ρt

≤ sup
t∈J

∫ t

t0

n∑

i=1

sjid(ui(s), vi(s)) ds e−ρt

≤
n∑

i=1

sji sup
t∈J

{
d(ui(t), vi(t)) e−ρt

}
sup
t∈J

∫ t

t0

eρs ds e−ρt

=

n∑

i=1

sji

1 − e−ρ(T−t0)

ρ
H(ui, vi)

=

(
S

1 − e−ρ(T−t0)

ρ
D̃(u, v)

)

j

.

This shows that

D̃(Gu, Gv) ≤ S

(
1 − e−ρ(T−t0)

ρ

)
D̃(u, v), u, v ∈ (C(J, Em))n.

Now, for α =
1 − e−ρ(T−t0)

ρ
> 0, αS satisfies the following properties:

• αS is nonnegative.

• (αS)k = αkSk is nonnegative.

• For α small enough, I − (αS)k = I − αkSk is positive definite. Indeed,

xt(I − αkSk)x = xtx − αkxtSkx.
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Since I − Sk is positive definite, then xt(I − Sk)x > 0, for x 6= 0, which implies

that xtx > xtSkx, for x 6= 0, and hence

xt(I − αkSk)x = xtx − αkxtSkx > xtx − αkxtx

= (1 − αk)xtx = (1 − αk)‖x‖2
2.

This expression is clearly positive if x 6= 0 and αk < 1.

Since

lim
ρ→+∞

1 − e−ρ(T−t0)

ρ
= 0,

the proof is concluded choosing ρ > 0 with α = 1−e−ρ(T−t0)

ρ
< 1. �

Theorem 3.3. Consider system (1), that is,Y ′ = F (t, Y ), where

F : [t0, T ] × (Em)n −→ (Em)n

is continuous,Y = (y1, . . . , yn), and F (t, Y ) = (F1(t, Y ), . . . , Fn(t, Y )) . Suppose that

(7) D (F (t, U), F (t, V )) ≤ S D(U, V ),

for t ∈ [t0, T ] and U, V ∈ (Em)n, where S = (sij) is a n× n nonnegative matrix such

that there exists ρ > 0 satisfying that

Sk

(
1 − e−ρ(T−t0)

ρ

)k

is an A-matrix, for some k > 1.

Then, for a given initial conditionb̄ = (b1, . . . , bn) ∈ (Em)n, system (1) has a unique

solution.

Theorem 3.4. Consider system (1) and G the operator defined in the proof of Theo-

rem 3.1. If there exists S = (sij) an n × n matrix with sij ≥ 0, for all i, j, and there

exists g ∈ (C(J, Em))n such that
∞∑

j=0

SjD̃(Gg, g) converges, then G has a fixed point

x∗ such that x∗ = lim
j→∞

Gjg.

Remark 2. Note that

(D̃(Gg, g))i = sup
t∈J

d

(
bi +

∫ t

t0

Fi(s, g(s)) ds, gi(t)

)
e−ρt, i = 1, 2, . . . , n.

Lemma 4. If M =




1 · · · 1
...

. . .
...

1 · · · 1


 ∈ Mn×n is the constant matrix whose coefficients

are equal to 1, and k ∈ N, thenM k =




nk−1 · · · nk−1

...
. . .

...

nk−1 · · · nk−1


.
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The proof can be easily completed by induction in k. Concerning the existence

of solution for linear systems (2), we can deduce some results.

Theorem 3.5. If the maps αi,j : [t0, T ] −→ R,i, j = 1, 2, . . . , n, are continuous, then,

for each fixed initial condition, system (2) has a unique solution ȳ = (y1, . . . , yn).

Proof: System (2) can be written in terms of system (1), taking

F (t, Y ) =




F1(t, Y )
...

Fn(t, Y )


 = A(t)




y1

...

yn


 ,

for A(t) given in (3). By hypothesis, F is a continuous function. We check that

condition (5) holds. Indeed, for every j = 1, 2, . . . , n,

Fj(t, Y ) = αj,1(t)y1 + · · ·+ αj,n(t)yn.

For every t ∈ J = [t0, T ], u, v ∈ (C(J, Em))n, u(s) = (u1(s), . . . , un(s)), v(s) =

(v1(s), . . . , vn(s)), s ∈ J , and j = 1, 2, . . . , n,

sup
t∈J

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds e−ρt

= sup
t∈J

∫ t

t0

d

(
n∑

i=1

αj,i(s)ui(s),
n∑

i=1

αj,i(s)vi(s)

)
ds e−ρt

≤ sup
t∈J

∫ t

t0

{
n∑

i=1

|αj,i(s)|d(ui(s), vi(s))

}
ds e−ρt

= sup
t∈J

{
n∑

i=1

∫ t

t0

|αj,i(s)|d(ui(s), vi(s)) ds

}
e−ρt

≤
n∑

i=1

sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

sup
t∈J

{∫ t

t0

|αj,i(s)|eρs ds e−ρt

}

≤
n∑

i=1

sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

sup
t∈J

K
1 − e−ρ(t−t0)

ρ

=

n∑

i=1

sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

K
1 − e−ρ(T−t0)

ρ
,

where |αi,j(t)| ≤ K, for every t ∈ J and i, j ∈ {1, 2, . . . , n}, since αi,j is continuous

in the compact interval J , for i, j ∈ {1, 2, . . . , n}. Note that condition (5) is satisfied

taking

sji = K
1 − e−ρ(T−t0)

ρ
, i, j = 1, 2, . . . , n,

thus S is a constant matrix, which is equal to S = K 1−e−ρ(T−t0)

ρ
(1), where (1) is

the matrix whose coefficients are equal to 1. It is clear that S is nonnegative. We

have to find k ∈ N, k > 1, and ρ > 0 such that I − Sk is positive definite. We
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prove that there exists ρ > 0 such that I − S2 is positive definite. Note that S2 =(
K 1−e−ρ(T−t0)

ρ

)2

(1)2 = (β) = β(1) is a constant matrix whose coefficients are equal

to β :=
(
K 1−e−ρ(T−t0)

ρ

)2

n, and that

I − S2 =




1 − β −β · · · −β

−β 1 − β
. . . −β

...
. . .

. . .
...

−β · · · −β 1 − β




.

We check that, for β > 0 small enough (ρ > 0 large enough), I − S2 is positive

definite. Indeed,

(
x1 · · · xn

)
(I − S2)




x1

...

xn




=
(

x1 · · · xn

)




(1 − β)x1 − βx2 − · · · − βxn

−βx1 + (1 − β)x2 − · · · − βxn

...

−βx1 − βx2 − · · · − βxn−1 + (1 − β)xn




=
(

x1 · · · xn

)




x1 − β
∑n

i=1 xi

x2 − β
∑n

i=1 xi

...

xn − β
∑n

i=1 xi




= x2
1 − βx1

n∑

i=1

xi + x2
2 − βx2

n∑

i=1

xi + · · ·+ x2
n − βxn

n∑

i=1

xi

=
n∑

i=1

x2
i − β

n∑

i=1

xi

n∑

j=1

xj =
n∑

i=1

x2
i − β

(
n∑

i=1

xi

)2

.

Hence xt(I − S2)x > 0 if and only if (
∑n

i=1 xi)
2

< 1
β

∑n

i=1 x2
i , that is,

∑n

i=1 xi <

1√
β

(
∑n

i=1 x2
i )

1
2 . Due to the equivalence of the norms ‖ · ‖1 and ‖ · ‖2 in R

n,

n∑

i=1

xi ≤
n∑

i=1

|xi| = ‖x‖1 ≤ R‖x‖2, where R > 0.

If β > 0 is small enough, 0 < β <
(

1
R

)2
, then R < 1√

β
, and taking x 6= 0, then

‖x‖2 > 0, and
n∑

i=1

xi ≤
n∑

i=1

|xi| = ‖x‖1 ≤ R‖x‖2 <
1√
β
‖x‖2.
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The proof is complete taking into account that

lim
ρ→+∞

K2

(
1 − e−ρ(T−t0)

ρ

)2

n = 0,

since n is fixed. Hence, there exists a unique solution ȳ. Note that I − S is also

positive definite. Besides, for any u ∈ (C(J, Em))n,

D̃(ȳ, Gj(u)) ≤




1 − K 1−e−ρ(T−t0)

ρ
· · · −K 1−e−ρ(T−t0)

ρ
...

. . .
...

−K 1−e−ρ(T−t0)

ρ
· · · 1 − K 1−e−ρ(T−t0)

ρ




−1

×
(

K

ρ

)j

(1 − e−ρ(T−t0))j




nj−1 · · · nj−1

...
. . .

...

nj−1 · · · nj−1


 D̃(Gu, u),

where Gu is defined in the proof of Theorem 3.1. On the other hand, according to

Theorem 3.3,

d

(
n∑

i=1

αj,i(t)ui,

n∑

i=1

αj,i(t)vi

)
≤

n∑

i=1

|αj,i(t)|d(ui, vi) ≤
n∑

i=1

Kd(ui, vi),

and

D (F (t, U), F (t, V )) ≤




K · · · K
...

. . .
...

K · · · K


 D(U, V ),

for t ∈ [t0, T ], and U = (u1, . . . , un), V = (v1, . . . , vn) ∈ (Em)n, where K ≥ 0 is such

that |αi,j(t)| ≤ K, ∀t ∈ [t0, T ], i, j = 1, 2, . . . , n, and we have proved that there exists

ρ > 0 with

(
1 − e−ρ(T−t0)

ρ

)



K · · · K
...

. . .
...

K · · · K


 =

K

ρ

(
1 − e−ρ(T−t0)

)




1 · · · 1
...

. . .
...

1 · · · 1




is an A-matrix. �

A similar result is valid for F (t, Y ) = A(t)Y + σ(t), for σ : J −→ (Em)n a

continuous function, as established in [23]. Under the hypotheses of Theorem 3.5, if

b̄ = (b1, . . . , bn) is the initial condition, then the sequence {ḡj}j∈N defined byḡ0(t) = b̄,

and

ḡj(t) = b̄ +

∫ t

t0

A(s)ḡj−1(s) ds, t ∈ [t0, T ], j = 1, 2, . . .

converges towards the unique solution to problem (2) with initial condition b̄, and the

convergence is in the generalized distance D̃. On the other hand, for system (1), we
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can define ḡ0(t) = b̄, and

ḡj(t) = b̄ +

∫ t

t0

F (s, ḡj−1(s)) ds, t ∈ J = [t0, T ], j = 1, 2, . . . ,

obtaining a sequence which approximates the unique solution to problem (1) relative

to the initial condition b̄.

4. HIGHER ORDER FUZZY DIFFERENTIAL EQUATIONS

In this section, we analyze higher-order fuzzy differential equations by reducing

them to a first-order system. The following result refers to the ‘linear’ case.

Lemma 5. If αi : [t0, T ] −→ R are continuous, for i = 0, 1, . . . , n − 1, σ ∈
C([t0, T ], Em), and bi ∈ Em, for i = 0, 1, . . . , n − 1, then equation

(8)

{
y(n(t) = αn−1(t)y

(n−1)(t) + · · ·+ α0(t)y(t) + σ(t), t ∈ [t0, T ],

y(t0) = b0, . . . , y(n−1)(t0) = bn−1,

has a unique solution.

Proof: It follows easily by taking y1 = y, y2 = y′, . . . , yn = y(n−1) in equation

(8), which leads to the system





y′
1 = y2,

y′
2 = y3,

. . .

y′
n−1 = yn,

y′
n = α0(t)y1 + · · ·+ αn−1(t)yn + σ(t),

or 


y′
1
...

y′
n−1

y′
n




= A(t)




y1

...

yn−1

yn




+




χ{0}
...

χ{0}

σ(t)




,

where

A(t) =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

α0(t) α1(t) · · · αn−2(t) αn−1(t)




.

The conclusion is derived applying Theorem 3.5. �

The following result analyzes nth-order fuzzy differential equations by reduc-

ing them to n-dimensional first-order fuzzy differential systems. Obviously, the ith-

derivative of y, yi, is considered in the sense of Hukuhara.
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Corollary 1. Suppose that b0, b1, b2, . . . , bn−1 ∈ Em, f : [t0, T ] × (Em)n −→ Em is

continuous, and that there exist real numbers M1, M2, . . . , Mn ≥ 0 such that

(9) d(f(t, u1, u2, . . . , un), f(t, v1, v2, . . . , vn)) ≤
n∑

i=1

Mi d(ui, vi),

for all t ∈ [t0, T ], u1, u2, . . . , un, v1, v2, . . . , vn ∈ Em. Then the initial value problem

for the higher-order fuzzy differential equation

(10)





y(n(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)), t ∈ [t0, T ],

y(t0) = b0, y′(t0) = b1, . . . , y(n−1)(t0) = bn−1

has a unique solution on [t0, T ].

Proof: By the change of variable y1 = y, y2 = y′, . . . , yn = y(n−1), problem (10)

is written as Y ′ = F (t, Y ), Y (t0) = (b0, . . . , bn−1) ∈ (Em)n, where Y = (y1, . . . , yn),

and F is the continuous function given by

F (t, Y ) = F (t, y1, . . . , yn) = (y2, y3, . . . , yn, f(t, y1, y2, . . . , yn)).

To check assumption (5), take u, v ∈ (C(J, Em))n, then, for j = 1, 2, . . . , n − 1, we

get

sup
t∈J

∫ t

t0

d (Fj(s, u(s)), Fj(s, v(s))) ds e−ρt

= sup
t∈J

∫ t

t0

d(uj+1(s), vj+1(s)) ds e−ρt

≤ sup
t∈J

{
d(uj+1(t), vj+1(t)) e−ρt

}
sup
t∈J

∫ t

t0

eρs ds e−ρt

= sup
t∈J

{
d(uj+1(t), vj+1(t)) e−ρt

}
sup
t∈J

1 − e−ρ(t−t0)

ρ

= sup
t∈J

{
d(uj+1(t), vj+1(t)) e−ρt

} 1 − e−ρ(T−t0)

ρ

=

n∑

i=1

sji sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

,

where

sj(j+1) =
1 − e−ρ(T−t0)

ρ
, sji = 0, i 6= j + 1.

Finally, for j = n,

sup
t∈J

∫ t

t0

d (Fn(s, u(s)), Fn(s, v(s))) ds e−ρt

= sup
t∈J

∫ t

t0

d(f(s, u1(s), . . . , un(s)), f(s, v1(s), . . . , vn(s))) ds e−ρt
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≤ sup
t∈J

∫ t

t0

n∑

i=1

Mid(ui(s), vi(s)) ds e−ρt

≤
n∑

i=1

Mi sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

sup
t∈J

∫ t

t0

eρs ds e−ρt

=

n∑

i=1

Mi sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

sup
t∈J

1 − e−ρ(t−t0)

ρ

=

n∑

i=1

Mi

1 − e−ρ(T−t0)

ρ
sup
t∈J

{
d(ui(t), vi(t))e

−ρt
}

≤
n∑

i=1

K

ρ
(1 − e−ρ(T−t0)) sup

t∈J

{
d(ui(t), vi(t))e

−ρt
}

,

where K = max
i=1,...,n

Mi. Hence, we choose

sni =
K

ρ
(1 − e−ρ(T−t0)), i = 1, 2, . . . , n.

In consequence, taking α = 1−e−ρ(T−t0)

ρ
> 0, the matrix S can be written as

S =




0 α 0 · · · 0

0 0 α · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 α

Kα Kα · · · Kα Kα




= α




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

K K · · · K K




.

For this choice, S is nonnegative and Sk = αk




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

K K · · · K K




k

is nonneg-

ative, for k ∈ N. If K = 0, then Mi = 0, for all i, and S =




0 α 0 · · · 0

0 0 α · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 α

0 0 · · · 0 0




is

such that det(S) = 0. However, in this case, the Lipschitz condition (9) implies that

d(f(t, u1, u2, . . . , un), f(t, v1, v2, . . . , vn)) = 0, for all t ∈ [t0, T ], and u1, u2, . . . , un,

v1, v2, . . . , vn ∈ Em, so that f is a function of the variable t (independent of u1, . . . , un)

and the equation is easily solvable. Assume that K > 0. We check that I − S2 is

positive definite. Indeed,
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S2 = α2




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

K K · · · K K




2

= α2




0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · · · · 0 1

K K · · · · · · K K

K2 K + K2 · · · · · · K + K2 K + K2




,

and

I−S2 =




1 0 −α2 0 · · · 0

0 1 0 −α2 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · · · · 0 −α2

−Kα2 −Kα2 · · · · · · 1 − Kα2 −Kα2

−K2α2 −(K + K2)α2 · · · · · · −(K + K2)α2 1 − (K + K2)α2




.

Note that, for n = 2,

S2 = α2

(
K K

K2 K + K2

)
,

and

I − S2 =

(
1 − Kα2 −Kα2

−K2α2 1 − (K + K2)α2

)
.

To prove that the matrix I − S2 is positive definite,

xt(I − S2)x =
(

x1 · · · xn

)
(I − S2)




x1

...

xn




=
(

x1 · · · xn

)




x1 − α2x3

x2 − α2x4

...

xn−2 − α2xn

xn−1 − Kα2

n∑

i=1

xi

xn − K2α2

n∑

i=1

xi − Kα2
n∑

i=2

xi
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=

n∑

i=1

x2
i − α2

n−2∑

i=1

xixi+2 − Kα2

n∑

i=1

xixn−1 − K2α2

n∑

i=1

xixn − Kα2

n∑

i=2

xixn,

with the exception of the case n = 2, for which the term −α2
∑n−2

i=1 xixi+2 makes no

sense. Last expression is positive if and only if

n∑

i=1

x2
i > α2

n−2∑

i=1

xixi+2 + Kα2
n∑

i=1

xixn−1 + K2α2
n∑

i=1

xixn + Kα2
n∑

i=2

xixn,

which can be obtained, for x 6= 0, if α > 0 is small enough, that is, if ρ > 0 is large

enough. Indeed,

α2
n−2∑

i=1

xixi+2 + Kα2
n∑

i=1

xixn−1 + K2α2
n∑

i=1

xixn + Kα2
n∑

i=2

xixn

≤ α2

{
n−2∑

i=1

|xi||xi+2| + K

n∑

i=1

|xi||xn−1| + K2
n∑

i=1

|xi||xn| + K

n∑

i=2

|xi||xn|
}

≤ α2(1 + 2K + K2)

(
n∑

i=1

|xi|
)2

= α2(1 + 2K + K2)‖x‖2
1

≤ α2(1 + 2K + K2)R2‖x‖2
2 = α2(1 + 2K + K2)R2

n∑

i=1

|xi|2

= α2(1 + 2K + K2)R2
n∑

i=1

x2
i ,

where we have taken into account the existence of repeated terms of the type xixj,

and R > 0 is such that ‖x‖1 ≤ R‖x‖2. Considering x 6= 0, then ‖x‖2 > 0, and it

suffices to take 0 < α < 1
R
√

1+2K+K2 to finish the proof, since α2(1+2K +K2)R2 < 1,

and, for x 6= 0,

α2(1 + 2K + K2)R2
n∑

i=1

x2
i <

n∑

i=1

x2
i .

On the other hand, α =
1 − e−ρ(T−t0)

ρ
> 0, thus we can choose α > 0 small enough,

taking ρ > 0 large enough. By Theorem 3.1 (and Remark 1), there exists a unique

solution to Y ′ = F (t, Y ), corresponding to the initial condition Y (t0) = (b0, . . . , bn−1)

and, therefore, a unique solution to problem (10). �

Note that condition (9) coincides with Condition (7) in [23].

Remark 3. If we use Theorem 3.3 in the proof of Corollary 1, we can easily check

that

D (F (t, U), F (t, V )) ≤ S D(U, V ),

for t ∈ [t0, T ] and U, V ∈ (Em)n, where

sj(j+1) = 1, sji = 0, i 6= j + 1, for j = 1, 2, . . . , n − 1,
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sni = K = max{Mi, i = 1, 2, . . . , n}, i = 1, 2, . . . , n.

Indeed, for t ∈ [t0, T ], and U = (u1, . . . , un), V = (v1, . . . , vn) ∈ (Em)n,

d (Fj(t, U), Fj(t, V )) = d(uj+1, vj+1) =
n∑

i=1

sjid(ui, vi),

for j = 1, 2, . . . , n − 1, and

d (Fn(t, U), Fn(t, V )) = d(f(t, U), f(t, V )) ≤
n∑

i=1

Mid(ui, vi) ≤
n∑

i=1

Kd(ui, vi).

Finally, S is nonnegative and there exists ρ > 0 such that

S

(
1 − e−ρ(T−t0)

ρ

)
=

(
1 − e−ρ(T−t0)

ρ

)




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

K K · · · K K




is an A-matrix.

Similarly to [23], and as a particular case, uniqueness of solution can be deduced

for the following equation

(11)





y(n(t) = q1y(t) + q2y
′(t) + · · ·+ qny(n−1)(t) + σ(t), t ∈ [t0, T ],

y(t0) = b0, y′(t0) = b1, . . . , y(n−1)(t0) = bn−1,

with σ ∈ C([t0, T ], Em), q1, q2, . . . , qn ∈ R, b0, b1, . . . , bn−1 ∈ Em.

5. HIGHER-ORDER FUZZY DIFFERENTIAL SYSTEMS

We consider the higher order fuzzy differential system




U (r = F (t, U, U ′, . . . , U (r−1), t ∈ [t0, T ],

U(t0) =




b1

...

bn


 = B,

U ′(t0) =




b′1
...

b′n


 = B′,

...

U (r−1(t0) =




br−1
1
...

br−1
n


 = Br−1,
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with r ∈ N, (r ≥ 2), B, B ′, . . . , Br−1 ∈ (Em)n, and F : [t0, T ] × [(Em)n]r −→ (Em)n

continuous. The system is written componentwise as

(12)





u
(r
1 (t) = F1(t, U(t), U ′(t), . . . , U (r−1(t)), t ∈ [t0, T ],

...

u
(r
n (t) = Fn(t, U(t), U ′(t), . . . , U (r−1(t)), t ∈ [t0, T ],

ui(t0) = [U(t0)]i = bi,

u′
i(t0) = [U ′(t0)]i = b′i,

...

u
(r−1
i (t0) = [U (r−1(t0)]i = br−1

i ,





i = 1, 2, . . . , n,

where Fi : [t0, T ] × (Em)nr −→ Em, and bi, b′i, . . . , b
r−1
i ∈ Em, i = 1, 2, . . . , n. Using

the change of variable

X1 = U, X2 = U ′, . . . , Xr = U (r−1 ∈ (Em)n

and X̄ = (X1, . . . , Xr) ∈ (Em)nr, the higher-order fuzzy differential system is written

as the nr-dimensional first-order fuzzy differential system
{

X̄ ′ = F̄ (t, X̄) = F̄ (t, X1, X2, . . . , Xr), t ∈ [t0, T ],

X̄(t0) =
(
b1, . . . , bn, b′1, . . . , b

′
n, . . . , br−1

1 , . . . , br−1
n

)
∈ (Em)nr,

with F̄ : [t0, T ] × (Em)nr −→ (Em)nr a continuous function given by

F̄ (t, X̄) = F̄ (t, X1, X2, . . . , Xr) = (X2, X3, . . . , Xr, F (t, X1, X2, . . . , Xr)).

In the following result, we analyze sufficient conditions for the existence of a unique

solution to this system, given a fixed initial condition.

Theorem 5.1. If there exist constants Mil ≥ 0, for i = 1, . . . , n, l = 1, . . . , nr such

that

d
(
Fi(t, X̄), Fi(t, Ȳ )

)
≤

nr∑

l=1

Mild(X̄l, Ȳl),

for every i = 1, 2, . . . , n, then problem (12) has a unique solution.

Proof: We prove that condition (6) in Theorem 3.2 holds, that is, for t ∈ [t0, T ] and

X̄, Ȳ ∈ (Em)nr, then

D
(
F̄ (t, X̄), F̄ (t, Ȳ )

)
≤ S D(X̄, Ȳ ),

where S = (sij) is an (nr) × (nr) matrix with sij ≥ 0, for all i, j, and such that, for

some k > 1, Sk is an A-matrix, or, equivalently, for t ∈ [t0, T ], X̄, Ȳ ∈ (Em)nr, and

every j = 1, 2, . . . , nr,

d
(
F̄j(t, X̄), F̄j(t, Ȳ )

)
≤

nr∑

i=1

sjid(X̄i, Ȳi).
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Take j ∈ {pn + 1, . . . , (p + 1)n}, where p = 0, 1, . . . , r − 2, then

d
(
F̄j(t, X̄), F̄j(t, Ȳ )

)
= d

(
X̄j+n, Ȳj+n

)
=

nr∑

i=1

sjid(X̄i, Ȳi),

by choosing

sj(j+n) = 1, sji = 0, i 6= j + n.

For j ∈ {(r − 1)n + 1, . . . , rn}, then j − (r − 1)n ∈ {1, . . . , n}, and

d
(
F̄j(t, X̄), F̄j(t, Ȳ )

)
= d

(
Fj−(r−1)n(t, X̄), Fj−(r−1)n(t, Ȳ )

)

≤
nr∑

i=1

M(j−(r−1)n)id(X̄i, Ȳi) =

nr∑

i=1

sjid(X̄i, Ȳi),

where

sji = M(j−(r−1)n)i, i = 1, . . . , nr.

For simplicity, we choose K = max{Mil, i = 1, 2, . . . , n, l = 1, 2, . . . , nr}, and, thus,

sji = K, for j ∈ {(r − 1)n + 1, . . . , rn}, i = 1, 2, . . . , nr.

In consequence, the matrix S can be chosen as

S =




θ I θ · · · θ θ

θ θ I · · · θ θ

θ θ θ
. . . θ θ

...
...

...
. . .

. . .
...

θ θ θ · · · θ I

K̂ K̂ K̂ · · · K̂ K̂




,

where K̂ is the n × n constant matrixK̂ =




K · · · K
...

. . .
...

K · · · K


. It is clear that S is a

nonnegative matrix. Accordingly to Theorem 3.3, we prove that there exist ρ > 0 and

k > 1 (k ∈ N) such that Sk
(

1−e−ρ(T−t0)

ρ

)k

is an A-matrix. Take α = 1−e−ρ(T−t0)

ρ
> 0.

We check that, for α > 0 small enough, (αS)2 is an A-matrix. Indeed,(αS)2 = α2S2,

and

S2 =




θ θ I θ · · · θ θ

θ θ θ I · · · θ θ

θ θ θ θ
. . . θ θ

...
...

...
. . .

. . .
. . .

...

θ θ θ · · · θ θ I

K̂ K̂ K̂ · · · · · · K̂ K̂

K̂2 K̂ + K̂2 K̂ + K̂2 · · · · · · K̂ + K̂2 K̂ + K̂2




,
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where

K̂2 = K2




1 · · · 1
...

. . .
...

1 · · · 1




2

= K2




n · · · n
...

. . .
...

n · · · n


 .

Hence, the matrix I − (αS)2 is the following:



I θ −α2I θ · · · θ θ

θ I θ −α2I · · · θ θ

θ θ I θ
. . . θ θ

...
...

. . .
. . .

. . .
. . .

...

θ θ θ · · · I θ −α2I

−α2K̂ −α2K̂ −α2K̂ · · · · · · I − α2K̂ −α2K̂

−α2K2n(1) −α2B −α2B · · · · · · −α2B I − α2B




,

whereB = K̂ + K̂2 = K[1 + Kn](1), and (1) represents the n × n constant matrix


1 · · · 1
...

. . .
...

1 · · · 1


. For r = 2, we obtain

S2 =

(
K̂ K̂

K̂2 K̂ + K̂2

)
, I − (αS)2 =

(
I − α2K̂ −α2K̂

−α2K2n(1) I − α2B

)
.

To check that I − (αS)2 is positive definite, for α > 0 small, we take

X̄ =
(
x1, . . . , xn, xn+1, . . . , x2n, . . . , xn(r−1)+1, . . . , xnr

)t
,

and then, forj = 1, 2, . . . , n(r − 2),

((I − (αS)2)X̄)j = xj − α2xj+2n,

forj = n(r − 2) + 1, . . . , n(r − 1),

((I − (αS)2)X̄)j = xj − α2K

nr∑

i=1

xi,

and, finally, for j = n(r − 1) + 1, . . . , nr,

((I − (αS)2)X̄)j = xj − α2K2n

nr∑

i=1

xi − α2K

nr∑

i=n+1

xi.

This implies that

X̄ t(I − (αS)2)X̄

=

n(r−2)∑

j=1

xj

(
xj − α2xj+2n

)
+

n(r−1)∑

j=n(r−2)+1

xj

(
xj − α2K

nr∑

i=1

xi

)
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+

nr∑

j=n(r−1)+1

xj

(
xj − α2K2n

nr∑

i=1

xi − α2K

nr∑

i=n+1

xi

)

=
nr∑

i=1

x2
i − α2

n(r−2)∑

j=1

xjxj+2n − α2K

n(r−1)∑

j=n(r−2)+1

xj

(
nr∑

i=1

xi

)

−α2K2n

nr∑

j=n(r−1)+1

xj

(
nr∑

i=1

xi

)
− α2K

nr∑

j=n(r−1)+1

xj

(
nr∑

i=n+1

xi

)

=

nr∑

i=1

x2
i − H.

Note that, if r = 2, a similar expression is obtained, with the particularity that the

term −α2
∑n(r−2)

j=1 xjxj+2n makes no sense. The previous inequality is positive if and

only if

nr∑

i=1

x2
i > α2

n(r−2)∑

j=1

xjxj+2n + α2K

n(r−1)∑

j=n(r−2)+1

xj

(
nr∑

i=1

xi

)

+α2K2n

nr∑

j=n(r−1)+1

xj

(
nr∑

i=1

xi

)
+ α2K

nr∑

j=n(r−1)+1

xj

(
nr∑

i=n+1

xi

)
= H.

Since, in this expression, we find terms of the type xixj with repeated indexes, then

H ≤ |H|

≤ α2

n(r−2)∑

j=1

|xj||xj+2n| + α2K

n(r−1)∑

j=n(r−2)+1

|xj|
(

nr∑

i=1

|xi|
)

+α2K2n

nr∑

j=n(r−1)+1

|xj|
(

nr∑

i=1

|xi|
)

+ α2K

nr∑

j=n(r−1)+1

|xj|
(

nr∑

i=n+1

|xi|
)

≤ α2(1 + 2K + K2n)

(
nr∑

i=1

|xi|
)2

= α2(1 + 2K + K2n)‖x‖2
1

≤ α2(1 + 2K + K2n)R2‖x‖2
2 = α2(1 + 2K + K2n)R2

nr∑

i=1

x2
i .

In consequence, if x 6= 0, then ‖x‖2 > 0, and

H ≤ α2(1 + 2K + K2n)R2
nr∑

i=1

x2
i <

nr∑

i=1

x2
i ,

provided that

α2(1 + 2K + K2n)R2 < 1,

that is, 0 < α < 1
R
√

1+2K+K2n
, which is obtained taking ρ > 0 large enough. Using

Theorem 3.3, we deduce the existence of a unique solution to system (12) (for each

fixed initial condition). Similar conclusions can be obtained using Theorem 3.1. �
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