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ABSTRACT. We establish results concerning the global existence, uniqueness, and controllability

of mild solutions for a neutral functional stochastic differential equations with variable delay in a real

separable Hilbert space. The results are obtained by imposing a so-called Caratheódory condition

on the nonlinearities, which is weaker than the classical Lipschitz condition. Examples illustrating

the applicability of the general theory are also provided.
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1. INTRODUCTION

In this paper we are concerned with the existence, uniqueness, and controllability

of mild solutions to neutral functional stochastic differential equations with variable

time delay of the form

d [X (t) + g (t, X (ρ (t)))] = [AX (t) + f (t, X (ρ (t)))] dt

+σ (t, X (ρ (t))) dW (t) , t ∈ [0, T ](1.1)

X (t) = φ (t) , t ∈ [−r, 0] ,

where A is the infinitesimal generator of a strongly continuous semigroup of bounded

linear operators {S (t) : t ≥ 0} in a separable Hilbert space H, W (t) is a Wiener

process on a separable Hilbert space K, X(t) is a state process, g : [0, T ] ×H → H,

f : [0, T ] ×H → H and σ : [0, T ] ×H → L0
2 are given functions to be specified later,

ρ : [0,∞) → [−r,∞) is a suitable delay function, φ : [−r, 0] × Ω → H is the initial

datum.

For ordinary SDEs there are some articles which have dealt with existence and

uniqueness of solution under non-Lipschitz coefficients, see Yamada [6], Taniguchi

[25], Rodkina [24]. Recently, many results on the existence and uniqueness of mild

solutions of various type of evolution equations in Hilbert spaces have been obtained
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without assuming a Lipschitz condition, see [3], [7], [8], [9], [27], [22]. Qualitative

theory of neutral stochastic differential (delay) equations in finite dimensional spaces

have recently been studied intensively, see Kolmanovskii V.B. and Nosov V.R. [10],

and Mao X. [17]- [21], Kolmanovskii V. et al. [11], Liu K., and Xia X. [12]. Recently

Mahmudov [15] studied existence of mild solutions to neutral stochastic differential

equations in Hilbert spaces. On the other hand controllability concepts of stochastic

equations are studied in the papers [2], [5], [13], [14], [16].

So far little is known about the neutral stochastic functional evolution equations

in Hilbert spaces and the aim of this paper is to close this gap. In this paper mo-

tivated by the above mentioned papers we will study the existence, uniqueness, and

controllability of solutions of equation (1.1) with non-Lipschitz coefficients by using

a Picard type iteration. In particular we can see that the Lipschitz condition is a

special case of the proposed conditions and to all appearance the result is new even

when f and σ satisfy the Lipschitz condition.

The results presented in the current manuscript constitute a continuation and

generalization of existence, uniqueness, and controllability results from [3], [7], [8], [9],

[27], [22], [5], [13], [14], [16] in two ways. Firstly, we incorporate a so-called variable

delay function (1.1). Secondly, more importantly, we replace the Lipschitz growth

conditions by more general Caratheódory-type conditions of the type introduced by

[24] and subsequently adapted in [3], [9], [7], [15].

The following is the outline of the paper. First, we make precise the necessary

notation, function spaces, and definitions, and gather certain preliminary results in

Section 2. We then formulate the main results in Section 3, while we devote Section

4 and 5 to the proof of the main results. Section 6 is devoted to a discussion of some

concrete example.

2. PRELIMINARIES

In this section we mention few results and notations needed to establish our re-

sults. For details, we refer the reader to [4], [23] and the references therein. Through-

out this paper, H and K shall denote real separable Hilbert spaces with respective

norms ‖·‖ and ‖·‖K . Let (Ω,FT , P ) be a complete probability space equipped with

a normal filtration {Ft : t ≥ 0} generated by the Q-Wiener process W on (Ω,FT ,P)

with the linear bounded covariance operator such that trQ < ∞. We assume that

there exists a complete orthonormal system {ek} in K, a bounded sequence of non-

negative real numbers λk such that Qek = λkek, k = 1, 2, ... and a sequence {βk} of

independent Brownian motions such that

〈W (t) , e〉 =
∞
∑

k=1

√

λk 〈ek, e〉βk (t) , e ∈ K, t ∈ [0, T ] .
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Let L0
2 = L2

(

Q1/2K,H
)

be the space of all Hilbert-Schmidt operators from Q1/2K to

H with the inner product 〈Ψ,Φ〉L0

2

= tr [ΨQΦ∗] . Lp (Ω,FT , H) is the Hilbert space of

all FT -measurable square integrable variables with values in a Hilbert space H.

Lp
F
([0, T ] , H) is the Hilbert space of all p-integrable and Ft -adapted processes

with values in H. We recall that f is said to be Ft -adapted if f (t, ·) : Ω → H is

Ft -measurable, a.e. t ∈ [0, T ] . Let Hp denote the Banach space of all H-valued Ft

-adapted processes X (t, ω) : [0, T ] × Ω → H which are continuous in t for a.e. fixed

ω ∈ Ω and satisfy

‖X‖
Hp

=

{

E

(

sup
t∈[0,T ]

‖X (t, ω)‖p

)}1/p

<∞, p > 2.

p and r are conjugate indices:
1

p
+

1

r
= 1. For brevity, we suppress the dependence

of all mappings on ω throughout the manuscript.

Let A be the infinitesimal generator of an analytic semigroup S (t) inH. If A is the

infinitesimal generator of an analytic semigroup then A−αI is invertible and generates

a bounded analytic semigroup. for α > 0 large enough. This allows to reduce the

general case in which A is the infinitesimal generator of an analytic semigroup to

the case in which semigroup is bounded and the generator is invertible. Hence for

convenience, we suppose that ‖S (t)‖ ≤ M for t ≥ 0 and 0 ∈ ρ (A) , where ρ (A)

is the resolvent set of A. It follows that for 0 < α ≤ 1, (−A)α can be defined as

a closed linear invertible operator with its domain D (−A)α being dense in H. We

denote by Hα the Banach space D (−A)α endowed with norm ‖x‖α = ‖(−A)α x‖

which is equivalent to the graph norm of (−A)α .

Lemma 2.1. [23]The following properties hold.

1. If 0 < β < α ≤ 1 then Hα ⊂ Hβ and the imbedding is compact whenever the

resolvent operator of A is compact.

2. For every 0 < α ≤ 1 there exists Cα > 0 such that

‖(−A)α S (t)‖ ≤
Cα

tα
, t > 0.

Lemma 2.2. [4] Let p > 2, T > 0 and let Φ be an L0
2-valued, predictable process such

that E
∫ T

0
‖Φ (s)‖p

L0

2

ds <∞. Then there exists a constant MT > 0 such that

E sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

S (t− s) Φ (s) dW (s)

∥

∥

∥

∥

p

≤MT E

∫ T

0

‖Φ (s)‖p

L0

2

ds.

Lemma 2.3. Let u, ψ and χ be real continuous functions defined on [a, b] , χ (t) ≥ 0

for t ∈ [a, b]. We suppose that on [a, b] we have the inequality

u (t) ≤ ψ (t) +

∫ t

a

χ (s) u (s) ds.
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If ψ is differentiable, then

u (t) ≤ ψ (a) exp

(
∫ t

a

χ (s) ds

)

+

∫ t

a

exp

(
∫ t

s

χ (r) dr

)

ψ′ (s) ds

for all t ∈ [a, b].

3. MAIN RESULTS

The following are the main assumptions assumed in the manuscript.

(A1): A is the infinitesimal generator of an analytic semigroup {S (t) , t > 0} on

H.

(A2): (f, σ) : [0, T ] ×H → H × L0
2 are Ft-measurable mappings satisfying:

(i): There exist some K : [0,∞) → [0,∞) such that

(a): K is continuous, nondecreasing, and concave,

(b): ‖f (t, x)‖p + ‖σ (t, x)‖p

L0

2

≤ K (‖x‖p), for all (t, x) ∈ [0, T ] ×H.

(ii): There exist some N : [0,∞) → [0,∞) such that

(a): N is continuous, nondecreasing and concave, and N(0) = 0,

(b): ‖f (t, x) − f (t, y)‖p + ‖σ (t, x) − σ (t, y)‖p
L0

2

≤ N (‖x− y‖p), for all

(t, x) , (t, y) ∈ [0, T ] ×H.

(A3): The function N of (A2)(ii) is such that if a nonnegative, continuous func-

tion z(t) satisfies z(0) = 0 and

z (t) ≤ D

∫ t

0

N (z (s)) ds,

for all t ∈ [0, T ] , where D > 0, then z(t) = 0, for all t ∈ [0, T ].

(A4): For any fixed T > 0, β > 0 the initial-value problem

(3.1) u′ (t) = βK (u) , u (0) = u0 ≥ 0,

has a global solution on [0, T ].

(A5): ρ : [0,∞) → [−r,∞) is a continuously differentiable function of delay sat-

isfying the conditions that

ρ′ (t) ≥ 1, −r ≤ ρ (t) ≤ t, for r > 0 and t ≥ 0.

(Observe that there exists a constant k > 0 such that ρ−1 (t) ≤ t+k, for all t ≥

−r.)

(A6): The function φ (t) : [−r, 0] × Ω → H is an F0-measurable random variable

independent of W with almost surely continuous paths.

(A7): There exist positive constants
1

p
< β < 1, l, Mg such that g is Hβ-valued,

(−A)β g is continuous and
∥

∥

∥
(−A)β g (t, x)

∥

∥

∥

p

≤ l (‖x‖p + 1) , (t, x) ∈ [0, T ] ×H,
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∥

∥

∥
(−A)β g (t, x1) − (−A)β g (t, x2)

∥

∥

∥

p

≤Mg ‖x1 − x2‖
p , (t, xi) ∈ [0, T ] ×H.

(A8): Constants Mg and l satisfy the following inequalities

4p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

Mg < 1, 5p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

l < 1.

(A9): For each 0 ≤ t < T, the operator α
(

αI + ΓT
t

)−1
→ 0 as α → 0+ in

the strong operator topology, where ΓT
t =

∫ T

t
S (T − s)BB∗S∗ (T − s) ds is the

controllability Grammian. Observe that the linear deterministic system

x′(t) = Ax(t) +Bu (t) , 0 ≤ t ≤ T,

x(0) = x0 ∈ H,

corresponding to (1.1) is approximately controllable on [t, T ] if and only if the operator

α
(

αI + ΓT
t

)−1
→ 0 strongly as α→ 0+ (see [13], [14]).

Definition 3.1. A continuous stochastic process X : [−r, T ] × Ω → H is a mild

solution of (1.1) if the following conditions are satisfied:

(i) X(t) is measurable and Ft-adapted, for all −r ≤ t ≤ T ,

(ii)
∫ T

0
‖X(s)‖2 ds <∞, a.s.,

(iii) X satisfies the integral equation

X (t) = S (t) (X (0) + g (0, φ)) − g (t, X (ρ (t)))

−

∫ t

0

AS (t− s) g (s,X (ρ (s))) ds+

∫ t

0

S (t− s) f (s,X (ρ (s))) ds

+

∫ t

0

S (t− s) σ (s,X (ρ (s))) dW (s) , 0 ≤ t ≤ T,(3.2)

X (t) = φ (t) , t ∈ [−r, 0] .

Theorem 3.2 (Existence and uniqueness). If the coefficients f, g, σ satisfy (A1)-

(A8), then the equation (1.1) has a unique mild solution on [0, T ].

Corollary 3.3. Suppose that (A7) and (A8) are satisfied. Further suppose that the

following conditions are satisfied:

(C1) ‖f (t, x) − f (t, y)‖p + ‖σ (t, x) − σ (t, y)‖p
L0

2

≤ α(t)ρ (‖x− y‖p) , p > 2,

(C2) ‖f (t, 0)‖ , ‖σ (t, 0)‖L0

2

∈ Lp ([0, T ] , R+) for all t ∈ [0, T ] and x, y ∈ H, where

α(t) ≥ 0 is locally integrable and ρ(u) is a continuous concave nondecreasing

function from R+ to R+ such that ρ(0) = 0, ρ(u) > 0 for u > 0 and
∫

0+
1

ρ(u)
= ∞.

Then the equation (1.1) has a unique mild solution on [0, T ].

Consider the following control system

X (t) = S (t) (X (0) + g (0, X (0))) − g (t, X (t))
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−

∫ t

0

AS (t− s) g (s,X (s)) ds+

∫ t

0

S (t− s) [Bu (s) + f (s,X (ρ (s)))] ds

+

∫ t

0

S (t− s) σ (s,X (ρ (s))) dW (s) , 0 ≤ t ≤ T,(3.3)

X (t) = φ (t) , t ∈ [−r, 0] ,

where u (t) is a control, B is a bounded linear operator from a separable Hilbert space

U to H,

Definition 3.4. The system (3.3) is approximately controllable on [0, T ] if R(T ) =

Lp (Ω,FT , H), where

R(T ) = {X(T ; u) : X (t, u) is a mild solution of (1.1)

corresponding to u ∈ Lp
F
(0, T ;U)

}

.

Theorem 3.5 (Controllability). Assume that conditions (A1)-(A9) hold. If the func-

tions f, σ, and (−A)β g are uniformly bounded on their appropriate domains, the

function g (T, x) and the semigroup {S (t) : t > 0} is compact, then the system (1.1)

is approximately controllable on [0, T ].

4. EXISTENCE AND UNIQUENESS RESULTS

4.1. Simple Equation. For any (f, σ) ∈ Lp
F
([0, T ] , H) × Lp

F
([0, T ] , L0

2) look at the

following equation

d [X (t) + g (t, X (ρ (t)))] = [AX (t) + f (t)] dt + σ (t) dW (t) ,

X (t) = ϕ (t) , t ∈ [−r, 0](4.1)

and define the following operator Ψ : Hp → Hp

(ΨX) (t) = S (t) (X (0) + g (0, X (0))) − g (t, X (ρ (t)))

−

∫ t

0

AS (t− s) g (s,X (ρ (s))) ds+

∫ t

0

S (t− s) f (s) ds

+

∫ t

0

S (t− s) σ (s) dW (s)

= S (t) (X (0) + g (0, X (0))) +

4
∑

i=1

Ii (t) .(4.2)

Lemma 4.1. Under the condition (A7) the equation (4.1) has a unique mild solution

in Hp if

4p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

Mg < 1.
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Proof. To see that Ψ (Hp) ⊂ Hp, let X ∈ Hp. Standard computations involving the

Hōlder inequality yield the following estimates:

E sup
s∈[0,t]

‖S (s) (X (0) + g (0, X (0)))‖p ≤Mp
SE ‖X (0) + g (0, X (0))‖p ,

E ‖I1‖
p
t ≤

∥

∥

∥
(−A)−β

∥

∥

∥

p

l [E ‖X (ρ)‖p
t + 1] ,

E ‖I2‖
p
t ≤ E

(
∫ t

0

∥

∥

∥
(−A)1−β S (t− s) (−A)β g (s,X (ρ (s)))

∥

∥

∥
ds

)p

≤

(
∫ t

0

∥

∥

∥
(−A)1−β S (t− s)

∥

∥

∥

r

ds

)p/r ∫ t

0

E
∥

∥

∥
(−A)β g (s,X (ρ (s)))

∥

∥

∥

p

ds

≤

(

∫ t

0

Cr
1−β

(t− s)(1−β)r
ds

)p/r

l

∫ t

0

[E ‖X (ρ (s))‖p + 1] ds

≤

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p/r

l

∫ t

0

[E ‖X (ρ (s))‖p + 1] ds, β > 1 −
1

r
=

1

p
,

E ‖I3‖
p
t ≤ T p−1Mp

S

∫ t

0

E ‖f (s)‖p ds,

E ‖I4‖
p
t ≤MT

∫ t

0

E ‖σ (s)‖2
L0

2

ds.

Thus the above inequalities together imply that E ‖ΨX‖p
T <∞. Since Ft-measurability

of (ΨX) (t) is easily verified, we conclude that Ψ is well defined. Next, we prove that

Ψ has a unique fixed point. Indeed, for any X, Y ∈ Hp, standard computations yield

E ‖ΨX − ΨY ‖p
t ≤ 4p−1

∥

∥

∥
(−A)−β

∥

∥

∥

p

MgE ‖X − Y ‖p
t

+4p−1

(

Cr
1−βt

r(β−1)+1

r (β − 1) + 1

)p/r

Mg

∫ t

0

E ‖X (ρ (s)) − Y (ρ (s))‖p ds

≤



4p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

Mg + 4p−1

(

Cr
1−βt

r(β−1)+1

r (β − 1) + 1

)p/r

Mp
g t



E ‖X − Y ‖p
t

= γ (t)E ‖X − Y ‖p
t .

By assumption (A8) the first term of γ (t) is less that 1. Then there exists 0 < T1 ≤ T

such that 0 < γ (T1) < 1 and the operator Ψ is a contraction on Hp and therefore has

a unique fixed point, which is a mild solution of (4.1) of on [0, T1]. This procedure

can be repeated in order to extend the solution to the entire interval [0, T ] in finitely

many steps, thereby completing the proof.

Next we define the operator Φ : Lp
F
([0, T ] , H) × Lp

F
([0, T ] , L0

2) → Hp as follows

Φ (f, σ) = X,
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X (t) = S (t) (X (0) + g (0, X (0))) − g (t, X (ρ (t)))

−

∫ t

0

AS (t− s) g (s,X (ρ (s))) ds+

∫ t

0

S (t− s) f (s) ds(4.3)

+

∫ t

0

S (t− s)σ (s) dW (s) ,

where X is a mild solution of the equation (4.1).

Lemma 4.2. Under the conditions (A1)-(A8) the operator Φ satisfies the following:

there exist positive constants MΦ,MΦ, D0 such that

E ‖Φ (f1, σ1) − Φ (f2, σ2)‖
p
t

≤MΦ

∫ t

0

[

E ‖f1 (s) − f2 (s)‖p + E ‖σ1 (s) − σ2 (s)‖p

L0

2

]

ds,(4.4)

E ‖Φ (f, σ)‖p
t

≤ D0 +MΦ

∫ t

0

[

E ‖f (s)‖p + E ‖σ (s)‖p

L0

2

]

ds,(4.5)

for all (f, σ) , (f1, σ1) , (f2, σ2) ∈ Lp
F([0, T ] , H) × Lp

F([0, T ] , L0
2), p > 2.

Proof. Indeed, for any (f1, σ1) , (f2, σ2) ∈ Lp
F([0, T ] , H) × Lp

F([0, T ] , L0
2), such that

Φ (f1, σ1) = X = S (t) (X (0) + g (0, X (0))) +
4
∑

i=1

I1
i ,

Φ (f2, σ2) = Y = S (t) (X (0) + g (0, X (0))) +
4
∑

i=1

I2
i

we have

E ‖Φ (f1, σ1) − Φ (f2, σ2)‖
p
t

≤ 4p−1
4
∑

i=1

E
∥

∥I1
i − I2

i

∥

∥

p

t
.(4.6)

Standard computations yield

(4.7) E
∥

∥I1
1 − I2

1

∥

∥

p

t
≤
∥

∥

∥
(−A)−β

∥

∥

∥

p

MgE ‖X − Y ‖p
t ,

E
∥

∥I1
2 − I2

2

∥

∥

p

t

≤ E

(
∫ t

0

∥

∥

∥
(−A)1−β S (t− s) (−A)β [g (s,X (ρ (s))) − g (s, Y (ρ (s)))]

∥

∥

∥
ds

)p

≤

(
∫ t

0

∥

∥

∥
(−A)1−β S (t− s)

∥

∥

∥

r

ds

)p/r

×

∫ t

0

E
∥

∥

∥
(−A)β [g (s,X (ρ (s))) − g (s, Y (ρ (s)))]

∥

∥

∥

p

ds
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≤

(

∫ t

0

Cr
1−β

(t− s)(1−β)r
ds

)p/r

Mg

∫ t

0

E ‖X (ρ (s)) − Y (ρ (s))‖p ds

≤

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p−1

Mg

∫ t

0

E ‖X (ρ (s)) − Y (ρ (s))‖p ds, β > 1 −
1

r
=

1

p
,

(4.8)

(4.9) E
∥

∥I1
3 − I2

3

∥

∥

p

t
≤ T p−1Mp

S

∫ t

0

E ‖f1 (s) − f2 (s)‖p ds,

(4.10) E
∥

∥I1
4 − I2

4

∥

∥

p

t
≤ MT

∫ t

0

E ‖σ1 (s) − σ2 (s)‖p

L0

2

ds.

Using (4.7)-(4.10), along with (4.6), gives rise to

E ‖X − Y ‖p
t

≤ 4p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

MgE ‖X − Y ‖p
t

+ 4p−1

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p/r

Mg

∫ t

0

E ‖X (ρ (s)) − Y (ρ (s))‖p ds

+ 4p−1T p−1Mp
S

∫ t

0

E ‖f1 (s) − f2 (s)‖p ds+ 4p−1MT

∫ t

0

E ‖σ1 (s) − σ2 (s)‖p

L0

2

ds

or, equivalently

E ‖X − Y ‖p
t ≤ D1

∫ t

0

E ‖X − Y ‖p
r dr

+D2

∫ t

0

E ‖f1 (s) − f2 (s)‖p ds +D3

∫ t

0

E ‖σ1 (s) − σ2 (s)‖p

L0

2

ds,

where

C1 = 4p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

Mg, C2 = 4p−1

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p/r

D1 = C2Mg/ (1 − C1) , D2 = 4p−1T p−1Mp
S/ (1 − C1) ,

D3 = 4p−1MT / (1 − C1) .

By Lemma 2.3

E ‖X − Y ‖p
t

≤

∫ t

0

exp (D1 (t− s))
[

D2E ‖f1 (s) − f2 (s)‖p +D3E ‖σ1 (s) − σ2 (s)‖p

L0

2

]

ds.

Now (4.4) follows with MΦ = exp (D1T ) (D2 +D3) . Similarly, standard computations

yield (Φ (f, σ) = X)

E ‖Φ (f, σ)‖p
t ≤ C1 + C2E ‖X‖p

t + C3

∫ t

0

E ‖X‖p
s ds
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+ C4

∫ t

0

E ‖f (s)‖p ds+ C5

∫ t

0

E ‖σ (s)‖p

L0

2

ds,(4.11)

where

C1 = 5p−1Mp
SE ‖x0 + g (0, x0)‖

p + 5p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

l

+ 5p−1

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p/r

T l,

C2 = 5p−1
∥

∥

∥
(−A)−β

∥

∥

∥

p

l, C3 = 5p−1

(

Cr
1−βT

r(β−1)+1

r (β − 1) + 1

)p/r

l,

C4 = 5p−1Mp
ST

p−1, C5 = 5p−1MT .

Now we solve the inequality (4.11) for E ‖X‖p
t and apply to the obtained inequality

the Gronwall lemma to get (4.5) with

D1 =
C1

1 − C2

, D2 =
C3

1 − C2

, D3 =
C4

1 − C2

, D4 =
C5

1 − C2

,

MΦ = exp (D2T )max (D3, D4) , D0 = D1 exp (D2T ) .

4.2. Proof of Theorem 3.2. To prove the result concerning the existence and

uniqueness of mild solutions to (1.1) we now construct an approximation sequence

using a Picard type iteration. For any fixed T > 0, let X0 be a solution of (4.3) with

f = 0, σ = 0 defined by

X0 (t) = S (t) (X (0) + g (0, φ)) − g (t, X0 (ρ (t)))

−

∫ t

0

AS (t− s) g (s,X0 (ρ (s))) ds,

and let Xn be a sequence defined recursively by

Xn (t) = S (t) (X (0) + g (0, φ)) − g (t, Xn (ρ (t)))

−

∫ t

0

AS (t− s) g (s,Xn (ρ (s))) ds+

∫ t

0

S (t− s) f (s,Xn−1 (ρ (s))) ds(4.12)

+

∫ t

0

S (t− s) σ (s,Xn−1 (ρ (s))) dW (s) , t ∈ [0, T ] .

By Lemma 4.1 the equation (1.1) has a unique solution and it is clear that Xn =

Φ (f (·, Xn−1 (ρ (·))) , σ (·, Xn−1 (ρ (·)))) , where Φ is defined by (4.3).

Lemma 4.3. Under the conditions (A1)-(A6) the operator Π : Hp → Hp, where

(ΠX) (t) = [Φ (f (·, X (ρ (·))) , σ (·, X (ρ (·))))] (t) ,
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is well defined and there are positive constants MΦ,MΦ, D0 such that

E ‖ΠX‖p
t ≤ D0 +MΦ

∫ t

0

K (E ‖X‖p
s) ds,(4.13)

E ‖ΠX − ΠY ‖p
t ≤MΦ

∫ t

0

N (E ‖X − Y ‖p
s) ds,(4.14)

for all t ∈ [0, T ].

Proof. By Lemma 4.2 we have

E sup
s∈[0,t]

‖(ΠX) (s) − (ΠY ) (s)‖p

≤MΦ

∫ t

0

[E ‖f (s,X (ρ (s))) − f (s, Y (ρ (s)))‖p

+ E ‖σ (s,X (ρ (s))) − σ (s, Y (ρ (s)))‖p

L0

2

]

ds

≤MΦ

∫ t

0

N (E ‖X (ρ (s)) − Y (ρ (s))‖p) ds

≤MΦ

∫ t

0

N (E ‖X − Y ‖p
s) ds.

So (4.14) is proved. (4.13) can be proved in a similar manner. The proof is completed.

Lemma 4.4. Under the conditions (A1) and (A2), the sequence {Xn : n ≥ 0} satisfies

the following inequality for all 0 ≤ t ≤ T :

(4.15) E ‖Xn‖
p
t ≤ u (t) .

Proof. It follows from Lemma 4.3 that

(4.16) E ‖Xn‖
p
t ≤M1 +M2

∫ t

0

K (E ‖Xn−1‖
p
s) ds,

where M1 and M2are positive constants independent of n. Let u (t) be the global

solution of the equation (3.1) with u0 ≥ max (M1,E ‖X0‖
p
T ) and with u = M2. We

will establish inequality (4.15) using mathematical induction. To begin, note that for

n = 0 the inequality (4.15) holds by the definition of u. Indeed, we have

u (t) = u0 +M2

∫ t

0

K (u (s)) ds

≥ max (M1,E ‖X0 (t)‖p
T ) +M2

∫ t

0

K (u (s)) ds ≥ E ‖X0‖
p
T .

Next, suppose that

E ‖Xn−1‖
p
t ≤ u (t) , for all 0 ≤ t ≤ T.
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Then, from (3.1) and (4.16), we conclude that

u (t) − E ‖Xn‖
p
t ≥M2

∫ t

0

[K (u (s)) −K (E ‖Xn−1‖
p
s)] ds ≥ 0.

Hence, (4.15) holds for all n (thanks to (A2)).

Lemma 4.5. Under the conditions (A1) and (A2), {Xn : n ≥ 1} is a Cauchy se-

quence in Hp.

Proof. Define the sequence of functions rn : [0, T ] → R by

rn (t) = sup
m≥n

E ‖Xm+n −Xn‖
p
t , t ∈ [0, T ] , n ≥ 1.

Note that for each n ≥ 1, rn is well-defined, uniformly bounded, and monotone

nondecreasing (in t). Since {rn : n ≥ 1}is a monotone nonincreasing sequence, for

each t ∈ [0, T ], there exists a monotone nondecreasing function r : [0, T ] → R such

that

(4.17) lim
n→∞

rn (t) = r (t) .

It follows from Lemma 4.3 that for any n,m ≥ 1,

E ‖Xm −Xn‖
p
t ≤ MΦ

∫ t

0

N (E ‖Xm−1 −Xn−1‖
p
s) ds,

from which we subsequently obtain

r (t) ≤ rn (t) ≤MΦ

∫ t

0

N (rn−1 (s)) ds,

for any n ≥ 1. Using (4.17), together with the Lebesgue dominated convergence

theorem, then yields

r (t) ≤MΦ

∫ t

0

N (r (s)) ds.

But, E ‖Xm+n −Xn‖
p
T ≤ rn (T ) and limn→∞ rn (T ) = r (T ) = 0. Therefore,

limm,n→∞ E ‖Xm+n −Xn‖
p
T = 0, so that {Xn, n ≥ 1} is indeed a Cauchy sequence in

Hp. This completes the proof.

Theorem 4.6. If the conditions (A1)-(A7) hold, then (1.1) has a unique mild solution

in Hp.

Proof. The completeness of Hp guarantees the existence of a process X such that

lim
n→∞

E ‖Xn −X‖p
T = 0.

Further, we may infer from (A2) that

N (E ‖Xn −X‖p
t ) → N (0) = 0,

and hence,

lim
n→∞

E ‖ΠXn − ΠX‖p
t = 0.



NEUTRAL FSDES IN HILBERT SPACES 65

Thus, X is a fixed point of Π which is, in fact, a mild solution to (1.1) on [0, T ].

Further, if X, Y ∈ Hp are two fixed points of Π, then

E ‖ΠX − ΠY ‖p
t ≤MΦ

∫ t

0

N (E ‖X − Y ‖p
s) ds,

so that (A3) would imply that E ‖ΠX − ΠY ‖p
T = 0. Consequently, X = Y in Hp.

Hence, Π has a unique fixed point.

5. CONTROLLABILITY RESULT (PROOF OF THEOREM 3.5)

It is known that (see [5]) for any h ∈ Lp (Ω,FT , H) there exists ϕ ∈ Lp
F
(Ω;L2 (0, T ;L0

2))

such that

h = Eh+

∫ T

0

ϕ (s) dW (s) .

Now, using this presentation for any (α, h, Z) ∈ (0,∞) × Lp (Ω,FT , H) × Hp, we

define the control function by

uα (t, Z) = B∗S∗ (T − t)
(

αI + ΓT
0

)−1

× (Eh− S(T ) (φ (0) + g (0, φ (0))) + g (T, Z (T )))

+B∗S∗ (T − t)

∫ t

0

(

αI + ΓT
s

)−1
ϕ (s) dW (s)

+B∗S∗ (T − t)

∫ t

0

(

αI + ΓT
s

)−1
AS(T − s)g (s, Z (s)) ds

−B∗S∗ (T − t)

∫ t

0

(

αI + ΓT
s

)−1
S(T − s)f (s, Z (ρ (s))) ds(5.1)

−B∗S∗ (T − t)

∫ t

0

(

αI + ΓT
s

)−1
S(T − s)σ (s, Z (ρ (s))) dW (s).

To present the result concerning the approximate controllability of mild solutions

of (3.3), we fix α > 0 and consider the following equation

Z(t) = S (t) (φ (0) + g (0, φ (0))) − g (t, Z (t))

+Γt
0S

∗ (T − t)
(

αI + ΓT
0

)−1
(Eh− S(T ) (φ (0) + g (0, φ (0))) + g (T, Z (T )))

−

∫ t

0

[

I − Γt
sS

∗ (T − t)
(

αI + ΓT
s

)−1
S(T − t)

]

AS (t− s) g (s, Z (s)) ds

+

∫ t

0

[

I − Γt
sS

∗ (T − t)
(

αI + ΓT
s

)−1
S(T − t)

]

S (t− s) f (s, Z (ρ (s))) ds(5.2)

+

∫ t

0

[

I − Γt
sS

∗ (T − t)
(

αI + ΓT
s

)−1
S(T − t)

]

S (t− s) σ (s, Z (ρ (s))) dW (s)

+

∫ t

0

Γt
sS

∗ (T − t)
(

αI + ΓT
s

)−1
ϕ (s) dW (s) ,
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The equation (5.2) is naturally obtained by inserting the control (5.1) into the

mild solution of (1.1).

Let Zα be a solution of (5.2). Writing this equation at t = T yields

Zα (T ) = h− α
(

αI + ΓT
0

)−1
(Eh− S(T ) (φ (0) + g (0, φ (0)))

+ (−A)−β (−A)β
)

g (T, Zα (T ))

−α

∫ T

0

(

αI + ΓT
s

)−1
(−A)1−β S (T − s) (−A)β g (s, Zα (s)) ds

−α

∫ T

0

(

αI + ΓT
s

)−1
S (T − s) f (s, Zα (ρ (s))) ds

−α

∫ T

0

(

αI + ΓT
s

)−1
[S(T − s)σ (s, Zα (ρ (s))) − ϕ (τ)] dw(τ)

)

.(5.3)

By our assumption

‖f (s, Zα (ρ (s)))‖p + ‖σ (s, Zα (ρ (s)))‖p
Q +

∥

∥

∥
(−A)β g (s, Zα (s))

∥

∥

∥

p

≤ N1

in [0, T ] × Ω. Then there is a subsequence, still denoted by
{

f (s, Zα (ρ (s))) , σ (s, Zα (ρ (s))) , (−A)β g (s, Zα (s))
}

,

weakly converging to, say, (f (s, ω) , σ (s, ω) , g (s, ω)) in H×L0
2×H. The compactness

of S(t), t > 0 implies that

(5.4)











S (T − s) f (s, Zα (ρ (s))) → S (T − s) f (s) ,

S (T − s)σ (s, Zα (ρ (s))) → S (T − s)σ (s)

S (t) (−A)β g (s, Zα (s)) → S (t) g (s) in [0, T ] × Ω.

Using the formula (5.3) one can show that Zα (T ) is a bounded sequence and so we

may assume that Zα (T ) → z∗ weakly in H. On the other hand by the assumption

(A9), for all 0 ≤ τ < T

(5.5) α
(

αI + ΓT
s

)−1
→ 0 strongly as α→ 0+,

and moreover

(5.6)
∥

∥

∥
α
(

αI + ΓT
s

)−1
∥

∥

∥
≤ 1.

Thus from (5.3)-(5.6) by the Lebesgue dominated convergence theorem it follows that

E ‖Zα (T ) − h‖p ≤ 9p−1
∥

∥α(α + ΓT
0 )−1 (Eh− S(T ) (φ (0) + g (0, φ (0))))

∥

∥

p

+9p−1E
∥

∥α(α + ΓT
0 )−1g (T, Zα (T ))

∥

∥

p

+9p−1E

(
∫ T

0

∥

∥α(α+ ΓT
s )−1

∥

∥

∥

∥

∥
(−A)1−β S (T − s− δ)S (δ)

[

(−A)β g (s, Zα (s)) − g (s)
]∥

∥

∥
ds
)p
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+9p−1E

(
∫ T

0

∥

∥α(α+ ΓT
s )−1AS(T − s)g (s)

∥

∥ ds

)p

+9p−1E

(
∫ T

0

∥

∥α(α+ ΓT
s )−1

∥

∥ ‖S(T − s) [f (s, Zα (ρ (s))) − f (s)]‖ ds

)p

+9p−1E

(∫ T

0

∥

∥α(α+ ΓT
s )−1S(T − s)f (s)

∥

∥ ds

)p

+9p−1E

(
∫ T

0

∥

∥α(α+ ΓT
s )−1

∥

∥

2
‖S(T − s) [σ (s, Zα (ρ (s))) − σ (s)]‖2

Q ds

)p/2

+9p−1E

(∫ T

0

∥

∥α(α+ ΓT
s )−1S(T − s)σ (s)

∥

∥

2

Q
ds

)p/2

+9p−1E

(
∫ T

0

∥

∥α(α + ΓT
s )−1ϕ (s)

∥

∥

2

Q
ds

)p/2

→ 0 as α→ 0+.

This gives the approximate controllability. Theorem is proved.

6. APPLICATIONS

In this section, we illustrate the obtained result. Let H = L2 [0, π] and A be

defined as follows

Az = z′′

with domain

D (A) = {z (·) ∈ L2 [0, π] : z′′ ∈ L2 [0, π] , z (0) = z (π) = 0} .

Recall that A is the infinitesimal generator of a strongly continuous semigroup S (t) , t >

0, on H which is analytic and self-adjoint, the eigenvalues are −n2, n ∈ N, with corre-

sponding normalized eigenvectors en (ξ) := (2/π)1/2 sin (nξ) . Moreover the following

hold :

(a) {en : n ∈ N} is an orthonormal basis of X.

(b) If z ∈ D (A) then A (z) = −
∑∞

n=1 n
2 〈z, en〉 en.

(c) For z ∈ H, (−A)−1/2 z =
∑∞

n=1
1
n
〈z, en〉 en.

(d) The operator (−A)1/2 is given as (−A)1/2 z =
∑∞

n=1 n 〈z, en〉 en on the space

D
[

(−A)1/2
]

= {z ∈ H :
∑∞

n=1 n 〈z, en〉 en ∈ H} .

Consider the neutral system

d

[

x (t, ξ) +

∫ π

0

b (θ, ξ) r (t, x (t, θ)) dθ

]

=

[

∂2

∂ξ2
x (t, ξ) + p (t, x (t− h, ξ))

]

dt(6.1)

+q (t, x (t− h, ξ)) dβ (t) ,

x (t, 0) = x (t, π) = 0, t ≥ 0,(6.2)
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x (s, ξ) = ϕ (ξ) ∈ L2 [0, π] , 0 ≤ ξ ≤ π, −h ≤ s ≤ 0, h > 0,(6.3)

where (p, q, r) : [0, b] × R → R3 is a continuous function, β (t) is a Brownian motion.

To write the initial-boundary value problem (6.1)− (6.3) in the abstract form we

assume the following.

(H1) The function b is measurable and
∫ π

0

∫ π

0

b2 (θ, ξ) dθdξ <∞.

(H2) The function (∂/∂ξ) b (θ, ξ) is measurable, b (θ, 0) = b (θ, π) = 0, and let

L1 =

[

∫ π

0

∫ π

0

(

∂

∂ξ
b (θ, ξ)

)2

dθdξ

]1/2

< 1.

Define f, g, σ : [0, b] ×H → H by

g (t, x) (ξ) = B (x) (ξ) =

∫ π

0

b (θ, ξ) r (t, x (t, θ)) dθ,

f (t, x (ρ (t))) (ξ) = p (t, x (t− h, ξ)) , σ (t, x (ρ (t))) (ξ) = q (t, x (t− h, ξ))

From (H1) it is clear that B is bounded linear operator on H. Furthermore,

B (z) ∈ D
[

(−A)1/2
]

, and
∥

∥

∥
(−A)1/2B

∥

∥

∥
≤ L1. In fact from the definition of B and

(H2) it follows that

〈B (x) , en〉 =

∫ π

0

[
∫ π

0

b (θ, ξ)x (θ) dθ

]

en (ξ) dξ

=
1

n

(

2

π

)1/2〈∫ π

0

∂

∂ξ
b (θ, ξ)x (θ) dθ, cos (nξ)

〉

=
1

n

(

2

π

)1/2

〈B1 (x) , cos (nξ)〉 ,

where B1 (x) =
∫ π

0

∂

∂ξ
b (θ, ξ)x (θ)dθ. From (H2) we know that B1 : H → H is a

bounded linear operator with ‖B1‖ ≤ L1. Hence
∥

∥

∥
(−A)1/2 B (x)

∥

∥

∥
= ‖B1 (x)‖ , which

implies the assertion.

(H3) The functions f and σ satisfy the conditions (C1) and (C2).

Thus the problem (6.1) − (6.3) can be written in the abstract form

d (x (t) + g (t, x (t))) = [Ax (t) + f (t, x (ρ (t)))] dt + σ (t, x (ρ (t))) dβ (t) ,

x (0) = x0, t ∈ [0, T ] ,

and all the conditions of Corollary 3.3 are satisfied. Thus by Corollary 3.3 the problem

(6.1)-(6.3) has a unique mild solution.
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