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1. INTRODUCTION

In this paper we investigate the collapse in finite time of solutions to the following

initial boundary value problem known as the Euler-Bernoulli beam problem

(1)































utt + ∆2u = a |u|p−1 u, x ∈ Ω, t > 0

u = ∂u
∂υ

= 0, x ∈ Γ1, t > 0

∆u = 0, x ∈ Γ0, t > 0
∂∆u
∂υ

= b
Γ(β)

∫ t

0
(t − s)β−1 us(s)ds, x ∈ Γ0, t > 0

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω

where Ω is a bounded domain in Rn with smooth boundary Γ such that Γ = Γ0 ∪ Γ1

and Γ0 ∩ Γ1 =. The constants a and b are positive. The exponent p is greater than

1. The initial data u0 (x) and u1 (x) are given functions, ∂/∂υ denotes the outward

normal derivative and Γ(β) is the usual Euler gamma function. The power β in the

integral term is such that 0 < β < 1.

This problem describes the damping of transversal vibrations of a beam. Controls

are forces or torques applied on a portion of the boundary of the beam. This feedback

is intended to reduce the effect of reflected waves.
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Note that the integral term in (1) is the fractional derivative (in the sense of

Caputo) of order 1 − β (see [16]) defined by

∂1−β
t w (t) = Iβ d

dt
w (t) , 0 < β < 1

where Iγ, γ > 0 denotes the Riemann-Liouville fractional integral

Iγw (t) =
1

Γ(γ)

∫ t

0

(t − s)γ−1 w (s) ds.

The reader is referred to the books [15–17] for more on derivatives and integrals of

fractional order.

In [8], the present authors have proved an exponential growth result for a similar

problem to (1) where the polynomial source is at the boundary and competes with

the fractional damping in the same portion of the boundary. Namely, the following

problem has been investigated










































utt − h∆utt + ∆2u = 0, x ∈ Ω, t > 0

u =
∂u

∂υ
= 0, x ∈ Γ1, t > 0

∆u = ut, x ∈ Γ0, t > 0

∂∆u

∂υ
− h

∂utt

∂υ
+ a |u|p−1 u =

b

Γ(β)

t
∫

0

(t − s)β−1 utds +
∂ut

∂υ
, x ∈ Γ0, t > 0

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) x ∈ Ω.

It is clear that here the situation is somehow favorable. Indeed, as both the source

and the damping are acting on the same location, one does not have the difficulties

of passing from one part of the boundary or the domain to another. In the present

work we have to find a way to go from part of the boundary to the whole domain

or vice-versa. In addition, in [8] an exponential growth result is proved in an infinite

time interval. That is when time goes to infinity, whereas in the present work we

prove a stronger result. We prove that solutions blow up in finite time.

For the wave equation without the source term (that is a = 0) a similar problem

has been studied by Mbodje and Montseny [12] and recently by Mbodje [11]. In both

papers the problem is first converted into a coupled wave-diffusion system called

an augmented system which may be put in the operator theoretical form Ẋ(t) =

AX(t). Then, they apply the well-known techniques in the semigroup theory to prove

existence and uniqueness and LaSalle’s invariance principle to derive an asymptotic

decay of solutions. In [11], the same problem but with an exponentially modified

kernel tβ−1e−δt/Γ(β), 0 < β < 1, δ > 0 (see [17]) has been reconsidered. In addition

to the well-posedness, the asymptotic convergence towards zero and a decay rate of

convergence, the author proves that solutions cannot decay uniformly exponentially

to zero. An interesting problem is also studied in [14].
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A closely related problem to ours is when the damping acts in the whole do-

main rather than on the boundary or part of the boundary. This problem has been

investigated by Matignon et al. [10] using the same method mentioned above. An

asymptotic decay result has been proven but without a precise decay rate. The prob-

lem with a strong fractional derivative (and a = 0) has been studied by the second

author (Tatar) in [19]. Solutions are proved to be asymptotically convergent to the

stationary solution zero in an exponential manner. The case a 6= 0 is considered in

[13]. The same problem as in [10] (with an internal fractional damping and a poly-

nomial source) has been treated in a series of papers [6, 18–20, 1]. In these papers

the authors established several results on exponential growth and blow up in finite

time. Finally, we mention here that the case Ω = Rn and with h(t, x) |u|p as nonlinear

source has been discussed in [7].

In this work we prove that solutions of the problem (1) with fractional boundary

feedback may blow up in finite time. In fact, it is shown that for any fixed T > 0 we

can find initial data whose associated solution blows up in a finite time T∗ < T . The

standard existing methods and techniques do not apply to this problem because of

the singularity present in the definition of the fractional derivative.

The remaining part of the paper is organized as follows: In the next section we

prepare some material which will be needed in the sequel. Section 3 is devoted to the

statement and proof of our result on blow up in finite time.

2. PRELIMINARIES

In this section we prepare some definitions and some lemmas which will be needed

in the proof of our result. We assume, without loss of generality, that a = 1 (in fact

we could do the same with b). Let us define the classical energy associated to problem

(1) by

E(t) :=

∫

Ω

{

1

2
u2

t +
1

2
|∆u|2 − 1

p + 1
|u|p+1

}

dx.

It is easily seen that

dE(t)

dt
= − b

Γ(β)

∫

Γ0

ut

∫ t

0

(t − s)β−1 utds dσ.

This shows that there is no guarantee that the system is dissipative with respect to

the classical energy. Replacing t by s and s by z then integrating from 0 to t, we get

E(t) − E(0) = − b

Γ(β)

∫ t

0

∫

Γ0

ut

∫ s

0

(s − z)β−1 uz(z)dz dσ ds.

Hence, E(t) ≤ E (0) for all t ≥ 0, because tβ−1, 0 < β < 1, is a positive definite

function. We will also need the following inequality.
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Lemma 2.1 (Young inequality, see [2]). Let f ∈ Lp(R) and g ∈ Lq(R) with 1 ≤
p, q ≤ ∞ and 1

r
= 1

p
+ 1

q
− 1 ≥ 0. Then f ∗ g ∈ Lr(R) and

‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

Lemma 2.2 (See [9]). Let Ω be a bounded open set in Rn with smooth boundary, then

‖u‖
H

(1−θ)s1+θs2
0 (Ω)

≤ c (θ, s1, s2) ‖u‖1−θ
H

s1
0
‖u‖θ

H
s2
0

for all si > 0, 0 < θ < 1. In particular (when the Poincaré inequality is valid), we

have

‖u‖Hθ
0 (Ω) ≤ c (θ) ‖u‖1−θ

2 ‖∇u‖θ
2

for 0 < θ < 1.

Lemma 2.3 (See [9]). Let Ω be a bounded open set in Rn with smooth boundary Γ0,

then

‖u‖l,Γ0
≤ C(l, s, Ω) ‖u‖Hs(Ω)

for all l ≥ 2 and s = n
2
− n−1

l
> 0.

Remark 2.4. Notice that by Hölder inequality and Lemma 2, we have ‖u‖m,Γ0
≤

C(l, s, Ω) ‖u‖Hs(Ω) for 0 < s < 1 and s ≥ n
2
− n−1

m
. Moreover, a combination of the

previous two lemmas yield ‖u‖m,Γ0
≤ C ‖u‖1−θ

2 ‖∇u‖θ
2, for 0 < θ < 1.

3. BLOW UP IN FINITE TIME

This section contains the statement and proof of our result. To deal with the

nonlinear source we need the embedding H1
0 ↪→ Lp and therefore we assume that

2 ≤ p < 2n/(n − 2) if n ≥ 3 and p ≥ 2 if n = 1, 2. Concerning the existence and

uniqueness of a local solution, (u, ut) ∈ H2(Ω)×L2(Ω) and u ∈ C0((0, Tm), H2
0 (Ω))∩

C1((0, Tm), L2(Ω)) (where H2
0 (Ω) := {v ∈ H2(Ω) : v = ∂v/∂υ = 0 on Γ1}), we refer

the reader to the papers [11,12] and also to [3].

Theorem 3.1. Let u be a solution of (1) with 0 < β < 1 and p > 3. Then, for every

fixed T > 0 there exist sufficiently large initial data u0, u1 and 0 < T ∗ < T for which

u blows up at T ∗.

Proof. Let us define

H(t) =

∫ t

0

∫

Ω

{

1

p + 1
|u|p+1 − 1

2
u2

t −
1

2
|∆u|2

}

dx ds + (kt + l)

∫

Ω

u2
0dx,

where k and l are positive constants to be determined later. Clearly,

H
′

(t) =
∫

Ω

{

1
p+1

|u|p+1 − 1
2
u2

t − 1
2
|∆u|2

}

dx + k
∫

Ω
u2

0dx

= k
∫

Ω
u2

0dx − E(t) ≥ k
∫

Ω
u2

0dx − E(0).
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We can already choose k > E(0)/
∫

Ω
u2

0dx so that

(2) k

∫

Ω

u2
0dx − E(0) = H

′

(0) > 0.

In this way H
′

(t) > 0 and

(3)

H
′

(0) − H
′

(t) = E(t) − E(0) = − b

Γ(β)

∫ t

0

∫

Γ0

us

∫ s

0

(s − z)β−1 uz(z)dz dσ ds ≤ 0.

The main idea of the proof is to come up with a functional Φ (t) which satisfies an

inequality of the form Φ
′

(t) ≥ CΦω (t) with ω > 1. This implies blow up in finite

time of the solution. This argument has been used in [3] for the wave equation with

an internal dissipation of the form |ut|m−1 ut. Here we shall use a different functional

which allows us to include a larger class of initial data. In doing so, several difficulties

arouse when dealing with the nonlocal term given by the fractional damping and which

contains a singular kernel. The functional we suggest is the following

(4) Φ (t) = H1−γ (t) +
ε

2

[
∫

Ω

u2dx −
∫

Ω

u2
0dx

]

where ε > 0 and 0 < γ = p−1
2(p+1)

< 1. At t = 0, we have

(5) Φ (0) = H1−γ (0) =

(

l

∫

Ω

u2
0dx

)1−γ

and the derivative of Φ (t) is

(6) Φ
′

(t) = (1 − γ)H−γ (t)H
′

(t) + ε

∫

Ω

uutdx.

We perform a differentiation and then an integration on (6) with respect to t to arrive

at

(7)

Φ
′

(t) = (1 − γ) H−γ (t) H
′

(t) + ε

∫

Ω

u0u1 dx + ε

∫ t

0

∫

Ω

u2
sdx ds + ε

∫ t

0

∫

Ω

uussdx ds.

The objective behind this is to be able to use the properties of positive definite

functions. We can have an idea on the last term in (7) by a multiplication of the

equation in (1) by u. It appears that

(8)
∫ t

0

∫

Ω
uuttdx ds = −

∫ t

0

∫

Ω
|∆u|2 dx ds − b

Γ(β)

∫ t

0

∫

Γ0
u

∫ s

0
(s − z)β−1 uz(z)dz dσ ds

+
∫ t

0

∫

Ω
|u|p+1 dx ds.

Let us denote tβ−1

Γ(β)
by kβ(t), and for fixed t, we define the extensions by 0 as follows

Lw (τ) =

{

w (τ) , if τ ∈ [0, t]

0, if τ ∈ R\ [0, t]



114 S. LABIDI AND N. TATAR

(this extension depends of course on t but this dependence is not mentioned for

notational convenience), and

Lkβ (τ) =

{

kβ (τ) , if τ > 0

0, if τ ≤ 0.

It is easily seen that

1
Γ(β)

∫ t

0
u (s)

∫ s

0
(s − z)β−1 uz (z) dz ds

=
∫ +∞

−∞
Lu (s)

∫ +∞

−∞
Lkβ (s − z) (Luz) (z) dz ds.

Moreover, by Parseval theorem (see [2,5]), we get

∫ +∞

−∞
Lu (s)

∫ +∞

−∞
Lkβ (s − z) (Luz) (z) dz ds

=
∫ +∞

−∞
F (Lu) (σ)F (Lkβ ∗ Luz)(σ)dσ,

where F (f) denotes the usual Fourier transform of f . Since the Fourier transform

of the convolution gives the product of the Fourier transforms and the fact that (see

[17])

kγ+η(t) = (kγ ∗ kη)(t)

for all 0 < γ, η < 1, we can split the right hand side of the previous identity into two

terms and apply the Cauchy-Schwarz inequality and the Young inequality to obtain

∫ +∞

−∞
Lu (s)

∫ +∞

−∞
Lkβ (s − z) Lutdz ds

≤
(

∫ +∞

−∞

∣

∣F (Lkβ/2)F (Lu)
∣

∣

2
dσ

)
1
2
(

∫ +∞

−∞

∣

∣F (Lkβ/2)F (Lut)
∣

∣

2
dσ

)
1
2

≤ 1
4δ

∫ +∞

−∞

∣

∣F (Lkβ/2)F (Lu)
∣

∣

2
dσ + δ

∫ +∞

−∞

∣

∣F (Lkβ/2)F (Lut)
∣

∣

2
dσ,

for some δ > 0. Further, by Theorem 16.5.1 in [4], we find

(9)
∫ +∞

−∞
Lu (s)

∫ +∞

−∞
Lkβ (s − z) Lutdz ds ≤ 1

cos(βπ/2)

[

δ
∫ +∞

−∞
Lut(s)(Lkβ ∗ Lut)(s)ds

+ 1
4δ

∫ +∞

−∞
Lu(s)(Lkβ ∗ Lu)(s)ds

]

.

Gathering (7), (8) and (9), we get

Φ
′

(t) ≥ (1 − γ)H−γ (t)H
′

(t) + ε
∫

Ω
u0u1dx + ε

∫ t

0

∫

Ω
u2

sdx ds

−ε
∫ t

0

∫

Ω
|∆u|2 dx ds + ε

∫ t

0

∫

Ω
|u|p+1 dx ds − bε

cos(βπ/2)

×
[

δ
∫

Γ0

∫ +∞

−∞
Lus(s)(Lkβ ∗ Luz)(s)ds dσ + 1

4δ

∫

Γ0

∫ +∞

−∞
Lu(s)(Lkβ ∗ Lu)(s)ds dσ

]

.

Thanks to (3), we can write that

(10)

Φ
′

(t) ≥
[

(1 − γ)H−γ (t) − εδ

cos(βπ
2 )

]

H
′

(t) + εδ
cos(βπ/2)

H
′

(0) + ε
∫

Ω
u0u1dx

+ε
∫ t

0

∫

Ω
u2

t dx ds − ε
∫ t

0

∫

Ω
|∆u|2 dx ds + ε

∫ t

0

∫

Ω
|u|p+1 dx ds

− bε
4δ cos(βπ/2)

∫

Γ0

∫ +∞

−∞
Lu(s)(Lkβ ∗ Lu)(s)ds dσ.
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For the last term in the right hand side of (10), the Cauchy-Schwarz inequality yields

I =
∫

Γ0

∫ +∞

−∞
Lu(s)(Lkβ ∗ Lu)(s)ds dσ

≤
∫

Γ0

(

∫ +∞

−∞
|Lu|2 ds

)
1
2
(

∫ +∞

−∞
(Lkβ ∗ Lu)2(s)ds

)
1
2
dσ.

Furthermore, appealing to Lemma 1 (Young inequality), we see that

I =
∫

Γ0

∫ +∞

−∞
Lu(s)(Lkβ ∗ Lu)(s)ds dσ ≤

(

∫ t

0
(t − s)β−1ds

)(

∫

Γ0

∫ +∞

−∞
|Lu|2 ds dσ

)

≤ tβ

β

∫

Γ0

∫ +∞

−∞
|Lu|2 ds dσ

Back to (10), we find

Φ
′

(t) ≥
[

(1 − γ) H−γ (t) − εδ
cos(βπ/2)

]

H
′

(t) + εδ
cos(βπ/2)

H
′

(0)

+ε
∫

Ω
u0u1dx + ε

∫ t

0

∫

Ω
u2

t dx ds − ε
∫ t

0

∫

Ω
|∆u|2 dx ds + ε

∫ t

0

∫

Ω
|u|p+1 dx ds

− bεtβ

4δβ cos(βπ/2)

∫

Γ0

∫ t

0
|u|2 ds dσ.

As H (t) 6= 0 for all t ≥ 0, then taking δ = M cos (βπ/2)H−γ(t), we get

(11)

Φ
′

(t) ≥ [(1 − γ) − Mε] H−γ (t) H
′

(t) + εMH−γ (t) H
′

(0) + ε
∫

Ω
u0u1dx

+ε
∫ t

0

∫

Ω
u2

t dx ds − ε
∫ t

0

∫

Ω
|∆u|2 dx ds + ε

∫ t

0

∫

Ω
|u|p+1 dx ds

− bεtβ

4Mβ cos2(βπ/2)
Hγ (t)

∫

Γ0

∫ t

0
|u|2 ds dσ.

Now comes the crucial step of estimating the last term in (11) by existing terms in

the inequality. By the definition of H (t), we have

(12)
J = Hγ (t)

∫

Γ0

∫ t

0
|u|2 ds dσ

≤
[

1
p+1

∫ t

0

∫

Ω
|u|p+1 dx ds + (kt + l)

∫

Ω
u2

0dx
]γ

∫

Γ0

∫ t

0
|u|2 ds dσ.

From Lemma 2 and Lemma 3 with θ = 1
2

(see also Remark 1) we derive

∫

Γ0

∫ t

0

|u|2 ds dσ ≤ C1

(
∫

Ω

∫ t

0

|u|2 ds dx

)

1
2
(

∫

Ω

∫ t

0

|∇u|2 ds dx

)

1
2

.

(13)
J ≤ C2(p−1)

2(p+1)

(

1
p+1

∫ t

0

∫

Ω
|u|p+1 dx ds + (kT + l)

∫

Ω
u2

0dx
)

+ p+3
2(p+1)

(

∫

Ω

∫ t

0
|u|2 ds dx

)
p+1
p+3

(

∫

Ω

∫ t

0
|∇u|2 ds dx

)
p+1
p+3

where C2 := C
2(p+1)

p−1

1 . The Hölder inequality allows us to write

(

∫

Ω

∫ t

0
|u|2 ds dσ

)
p+1
p+3 ≤

[

|Ω|
p−1
p+1 T

p−1
p+1

(

∫ t

0

∫

Ω
|u|p+1 dx ds

)
2

p+1

]

p+1
p+3

≤ A1

(

∫ t

0

∫

Ω
|u|p+1 dx ds

)
2

p+3

with A1 = (|Ω|T )
p−1
p+3 . Then (13) becomes

J ≤ (p−1)C2

2(p+1)

[

1
p+1

∫ t

0

∫

Ω
|u|p+1 dx ds + (kT + l)

∫

Ω
u2

0dx
]

+ (p+3)A1

2(p+1)

(

∫ t

0

∫

Ω
|u|p+1 dx ds

)
2

p+3
(

∫

Ω

∫ t

0
|∇u|2 ds dx

)
p+1
p+3

.
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Notice now that p+3
2

and p+3
p+1

are conjugate exponents. Therefore, applying once again

the Young inequality, we obtain

J ≤ (p−1)C2

2(p+1)

[

1
p+1

∫ t

0

∫

Ω
|u|p+1 dx ds + (kT + l)

∫

Ω
u2

0dx
]

+ (p+3)A1

2(p+1)

[

2
p+3

∫ t

0

∫

Ω
|u|p+1 dx ds + p+1

p+3

∫

Ω

∫ t

0
|∇u|2 ds dx

]

.

With the help of Poincaré inequality, we deduce that

(14) J ≤ A2

∫ t

0

∫

Ω

|u|p+1 dx ds + A3

∫ t

0

∫

Ω

|∆u|2 dx ds + A4

where A2 = (p−1)C2

2(p+1)2
+ A1

p+1
, A3 = CpA1

2
(Cp is the Poincaré constant) and A4 =

(p−1)C2

2(p+1)
(kT + l)

∫

Ω
u2

0dx. From the relations (14), (11) and the fact that H (t) and

H
′

(0) are positive, we infer that

(15)

Φ
′

(t) ≥ [(1 − γ) − Mε] H−γ (t) H
′

(t) + ε
∫

Ω
u0u1dx

+ε
∫ t

0

∫

Ω
u2

t dx ds − ε
∫ t

0

∫

Ω
|∆u|2 dx ds + ε

∫ t

0

∫

Ω
|u|p+1 dx ds

− εB1

M

∫

Ω

∫ t

0
|u|p+1 ds dx − εB2

M

∫

Ω

∫ t

0
|∆u|2 ds dx − εB3

M

where B1 = bT βA2

4β cos2(βπ/2)
, B2 = bT βA3

4β cos2(βπ/2)
and B3 = bT βA4

4β cos2(βπ/2)
. Choosing ε such that

0 < ε ≤ 1−γ
M

, (15) implies that

(16)
Φ

′

(t) ≥ ε
∫

Ω
u0u1dx + ε

∫ t

0

∫

Ω
u2

t dx ds − ε
(

1 + B2

M

) ∫ t

0

∫

Ω
|∆u|2 dx ds

+ε
(

1 − B1

M

) ∫

Ω

∫ t

0
|u|p+1 ds dx − εB3

M
.

Let us add and substract 4εH(t) to the right hand side of (16), we find

Φ
′

(t) ≥ 4εH (t) + ε
∫

Ω
u0u1dx + 3ε

∫ t

0

∫

Ω
u2

t dx ds

+
(

1 − B1

M
− 4

p+1

)

ε
∫

Ω

∫ t

0
|u|p+1 ds dx

+
(

1 − B2

M

)

ε
∫ t

0

∫

Ω
|∆u|2 dx ds − 4ε (kT + l)

∫

Ω
u2

0dx − εB3

M
.

Select the initial data u0 and u1 such that

(17)











∫

Ω
u0u1dx − 4 (kT + l)

∫

Ω
u2

0dx − B3

M
≥ 0

p−3
p+1

− B1

M
≥ b̃ > 0

1 − B2

M
≥ 0

for some b̃ > 0. It suffices to select first u0 and u1 such that

(18)

∫

Ω

u0u1dx − 4 (kT + l)

∫

Ω

u2
0dx > 0

and then choose M large enough so that
∫

Ω

u0u1dx − 4 (kT + l)

∫

Ω

u2
0dx ≥ B3

M
> 0

and also the second and third conditions in (17) are satisfied.

Consequently,

(19) Φ
′

(t) ≥ 4εH (t) + 3ε

∫ t

0

∫

Ω

u2
t dx ds + εb1

∫

Ω

∫ t

0

|u|p+1 ds dx.
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On the other hand, we have

(20) Φ
1

1−γ

(t) ≤ 2
1

1−γ

[

H (t) + ε
1

1−γ

(
∫ t

0

∫

Ω

uutdx ds

)

1
1−γ

]

.

It is easy to see that, by the Cauchy-Schwarz inequality and Hölder inequality, we

have
∫ t

0

∫

Ω
uutdx ds ≤

∫ t

0

(∫

Ω
|u|2 dx

)

1
2
(∫

Ω
|ut|2 dx

)

1
2 ds

≤ C3

∫ t

0

(∫

Ω
|u|p+1 dx

)

1
p+1

(∫

Ω
|ut|2 dx

)

1
2 ds

≤ C3

(

∫ t

0

(∫

Ω
|u|p+1 dx

)

2
p+1 ds

)1/2 (

∫ t

0

∫

Ω
|ut|2 dx ds

)1/2

.

Moreover, because 2
(p+1)(1−2γ)

= 1, it follows that

(

∫ t

0

∫

Ω
uutdx ds

)
1

1−γ ≤ C4







∫ t

0

∫

Ω
|ut|2 dx ds +

(

∫ t

0

(∫

Ω
|u|p+1 dx

)

2
p+1 ds

)

1
1−2γ







≤ C4

{

∫ t

0

∫

Ω
|ut|2 dx ds + T µ

(

∫ t

0

∫

Ω
|u|p+1 dx ds

)
2

(p+1)(1−2γ)

}

,

where µ = p−1
(p+1)(1−2γ)

. This estimate, when used in (20), yields

Φ
1

1−γ

(t) ≤ 2
1

1−γ H (t) + 2
1

1−γ ε
1

1−γ C4

{
∫ t

0

∫

Ω

|ut|2 dx ds + T µ

∫ t

0

∫

Ω

|u|p+1 dx ds

}

and therefore with the help of (19) we see that

(21) Φ
1

1−γ

(t) ≤ KΦ
′

(t)

for some sufficiently large K (depending on T ). Integrating (21) over (0, t), we find

Φ
γ

1−γ

(t) ≥ 1

Φ−
γ

1−γ (0) − γ
K(1−γ)

t

Consequently, Φ (t) blows up at some time T ∗ ≤ K(1−γ)
γ

Φ−
γ

1−γ (0) < T . The last

inequality holds if Φ (0) is chosen so that Φ (0)
γ

1−γ > K(1−γ)
γT

that is if l is chosen so

that lγ > K (1 − γ) /γT
(∫

Ω
u2

0dx
)γ

.

proposition 3.2. The set of initial data u0 and u1 satisfying (2) and (18) is not

empty.

Proof. First, we show that we can find u0 such that

(22) 16 (kT + l)

∫

Ω

u2
0dx +

1

2

∫

Ω

|∆u0|2 dx < k

∫

Ω

u2
0dx +

1

p + 1

∫

Ω

|u0|p+1 dx.

Suppose for contradiction that we always have

k

∫

Ω

u2
0dx +

1

p + 1

∫

Ω

|u0|p+1 dx ≤ 16 (kT + l)

∫

Ω

u2
0dx +

1

2

∫

Ω

|∆u0|2 dx
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Let u0 = δv0 for an arbitrary δ > 0, then

kδ2

∫

Ω

v2
0dx +

δp+1

p + 1

∫

Ω

|v0|p+1 dx ≤ 16δ2 (kT + l)

∫

Ω

v2
0dx +

δ2

2

∫

Ω

|∆v0|2 dx.

Simplifying by δ2, we get

δp−1

p + 1

∫

Ω

|v0|p+1 dx ≤ 1

2

∫

Ω

|∆v0|2 dx + 16 (kT + l)

∫

Ω

v2
0dx.

Observe that the right hand side is independent on δ. This is impossible and hence

there exists u0 such that (22) holds. Select now u1 > 4
√

2 (kT + l) u0 such that

16 (kT + l)

∫

Ω

u2
0dx <

1

2

∫

Ω

u2
1dx < k

∫

Ω

u2
0dx +

1

p + 1

∫

Ω

|u0|p+1 dx − 1

2

∫

Ω

|∆u0|2 dx.

The second inequality means that (2) is satisfied and
∫

Ω

u0u1dx > 4
√

2 (kT + l)

∫

Ω

u2
0dx > 4 (kT + l)

∫

Ω

u2
0dx

implies that (18) holds.
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1968.

[10] D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping

of fractional order, in Proc. Fourth International Conference on Mathematical and Numerical

Aspects of Wave Propagation Phenomena, pages 638–640. INRIA-SIAM, Golden, Colorado,

June 1998.



EULER-BERNOULLI BEAM PROBLEM 119

[11] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control and

Information, (2005) 1–21.

[12] B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation, IEEE

Transactions on Automatic Control, Vol. 40, No. 2 (1995) 378–382.

[13] S. Messaoudi, B. Said-Houari and N.-e. Tatar, Global existence and asymptotic behavior for a

fractional differential equation, Appl. Math. Comp. 188 (2007), 1955–1962.

[14] G. Montseny, J. Audounet and D. Matignon, Fractional integrodifferential boundary control

of the Euler-Bernoulli beam, Publication du Département Traitement du Signal et de l’Image,
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