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ABSTRACT. Some new oscillation criteria are given for second order nonlinear differential equa-

tions with damping of the form (r (t) x′)
′

+ p (t) x′ + q (t) f (x) = 0. Our results are to develop

oscillation criteria without any restriction on the signs of p (t) and q (t). These results generalize

and extend some earlier results of Abdullah [1] and Zheng and Liu [12].
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1. INTRODUCTION

In this paper, we consider oscillatory properties for the second order nonlinear

differential equation with damped term

(1.1) (r (t) x′)
′
+ p (t)x′ + q (t) f (x) = 0, t ≥ t0 ≥ 0,

where r ∈ C ([t0,∞), (0,∞)), p, q ∈ C ([t0,∞), R), f ∈ C1 (R, R) such that xf(x) > 0

and f ′ (x) ≥ K > 0 for x 6= 0, K is a constant. As usual, a nontrivial solution

of (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise, it is said to

be nonoscillatory. Equation (1.1) is said to be oscillatory if all of its solutions are

oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient

conditions for the oscillation of solutions for different classes of second order differen-

tial equations [1–12]. Many results have been obtained for particular cases of (1.1),

such as the second order linear differential equation

(1.2) x′′ + p (t) x′ + q (t) x = 0, t ≥ t0 ≥ 0.

It is well known that equation (1.2) can be reduced via suitable Sturm-Liouville

transformation to the undamped equation. But, here an additional assumption is

added on p(t), that is p(t) assumed to be continuously differentiable. If introducing
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the Sturm-Liouville transformation

(1.3) y(t) = x(t) exp

(

−1

2

∫ t

t0

p(s)ds

)

for the equation (1.2), we have

(1.4) y′′ +

[

q(t) − p2(t)

4
− p′(t)

2

]

y = 0, t ≥ t0.

Oscillation criteria for the undamped differential equation

(1.5) y′′ + q(t)y = 0, t ≥ t0,

and more general differential equation

(1.6) (r (t) y′)
′
+ q(t)y = 0, t ≥ t0,

have been also extensively studied by many authors (see [2], [3], [4], [9] and references

cited therein). The known Fite [2], Leighton [4] and Wintner [9] criterion showed that

(1.7) lim
t→∞

Q(t) = lim
t→∞

∫ t

t0

q(s)ds = ∞

was sufficient for equation (1.5) to be oscillatory. Wintner [9] proved that

(1.8) lim
t→∞

1

t

∫ t

t0

Q(s)ds = ∞

was also an oscillation criterion for equation (1.5).

Although (1.3) is an oscillation-preserving transformation under the additional

assumption that p(t) is differentiable or at least p(t) is absolutely continuous so that

p′(t) is defined. But this superfluous condition was not assumed in Sobol’s paper (see

[7]). By using polar coordinates transformation, he proved that

(1.9) lim
t→∞

[

Q(t) − p(t)

2
− 1

4

∫ t

t0

p2(s)ds

]

= ∞

was sufficient for equation (1.2) to be oscillatory. Wong [10] noticed this point and

gave several oscillation criteria for equation (1.2), which generalized the results due

to Wintner [9] and Kamenev [3].

Recently, Abdullah [1] presented the following two results for the oscillation of

equation (1.2) with p(t) < 0 on [t0,∞).

Theorem A. If p(t) < 0 on [t0,∞) is such that

(1.10)

∫ ∞

t0

[

q(s) − p2(s)

4

]

ds = ∞,

then equation (1.2) is oscillatory.
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Theorem B. If p(t) < 0 on [t0,∞) and there exists a non vanishing function

g(t) ∈ C1 ([t0,∞), (0,∞)), such that

(1.11)

∫ ∞

t0

ds

g(s)
= ∞

and

(1.12) lim
t→∞

{
∫ t

t0

[

g(s)q(s)− p2(s)g(s)

4
− (g′(s))2

4g(s)
+

p(s)g′(s)

2

]

ds +
g′(t)

2

}

= ∞,

then equation (1.2) is oscillatory.

Remark 1.1. When g(t) = 1, it is easy to see that Theorem B reduces to Theorem A.

More recently, Zheng and Liu [12] also obtain following oscillation results for

the equation (1.2). They assume that g(t) ∈ C2 ([t0,∞), (0,∞)) is a given function,

h(t) = − g′(t)
2g(t)

and

Φ(t) =

∫ t

t0

g(s)

[

q(s) − h(s)p(s) + h2(s) − h′(s) − p2(s)

4

]

ds − g(t)p(t)

2
.

Theorem C. Suppose that

(1.13)

∫ ∞

t0

ds

g(s)
= ∞

holds. Then equation (1.2) is oscillatory provided

(1.14) lim
t→∞

Φ(t) = ∞.

Theorem D. Suppose that

(1.15)

∫ ∞

t0

(
∫ s

t0

g(τ)dτ

)−1

ds = ∞

holds. Then equation (1.2) is oscillatory provided

(1.16) lim
t→∞

1

t

∫ t

t0

Φ(s)ds = ∞.

In this paper, by using a generalized Riccati transformation, we give some new

oscillation criteria for equation (1.1). Our results, which extend the oscillation criteria

mentioned in the above theorems, aim at developing oscillation criteria for equation

(1.1) without any restriction on the signs of p(t) and q(t).



142 D. CAKMAK

2. MAIN RESULTS

Throughout this paper, we assume that g(t) ∈ C1 ([t0,∞), (0,∞)) is a given

function, and

Ψ(t) =

∫ t

t0

[

g(s)q(s) − (g′(s)r(s) − g(s)p(s))2

4Kg(s)r(s)

]

ds +
g′(t)r(t) − g(t)p(t)

2K
.

We are now able to state our main results.

Theorem 2.1. If

(2.1)

∫ ∞

t0

ds

g(s)r(s)
= ∞

and

(2.2) lim
t→∞

Ψ(t) = ∞,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nontrivial nonoscillatory solution of equation (1.1), which, with-

out loss of generality, can be assumed to be x(t) > 0, f(x(t)) > 0 for t ≥ t0. Define

(2.3) w(t) = −g(t)
r(t)x′(t)

f(x(t))
, t ≥ t0.

Then differentiating (2.3) and making use of (1.1), it follows that for all t ≥ t0, we

obtain

(2.4) w′(t) =

(

g′(t)

g(t)
− p(t)

r(t)

)

w(t) + g(t)q(t) +
w2(t)

g(t)r(t)
f ′(x(t))

and using f ′(x) ≥ K > 0 where K is a constant, we get for t ≥ t0,

(2.5) w′(t) ≥ K
g(t)r(t)

[

(

w(t) + g′(t)r(t)−g(t)p(t)
2K

)2

−
(

g′(t)r(t)−g(t)p(t)
2K

)2
]

+ g(t)q(t).

Define H(t) = w(t) + g′(t)r(t)−g(t)p(t)
2K

, rewrite (2.5), and integrate from t0 to t ≥ t0, we

have

(2.6) H(t) ≥ w(t0) +

∫ t

t0

K

g(s)r(s)
H2(s)ds + Ψ(t).

Now, using (2.2), we can choose t1 sufficiently large so that

(2.7) H(t) ≥
∫ t

t0

K

g(s)r(s)
H2(s)ds

holds for t ≥ t1. Define a function R(t) for t ≥ t1 by

(2.8) R(t) =

∫ t

t0

K

g(s)r(s)
H2(s)ds.

Thus H(t) > R(t) > 0. Differentiating (2.8), we have

(2.9) R′(t) =
K

g(t)r(t)
H2(t) >

K

g(t)r(t)
R2(t).
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Dividing (2.9) through by R2(t) and integrating from t1 to t, we obtain

(2.10)

∫ t

t1

K

g(s)r(s)
ds <

1

R(t1)
− 1

R(t)
,

since R(t) > 0, therefore

(2.11)

∫ t

t1

K

g(s)r(s)
ds <

1

R(t1)
.

We obtain a desired contradiction with (2.1) as t → ∞. This completes the proof of

the theorem.

If r(t) = 1 and g(t) = 1 in the above theorem, we have the following result for

equation (1.1).

Corollary 2.2. If

(2.12) lim
t→∞

{
∫ t

t0

[

q(s) − p2(s)

4K

]

ds − p(t)

2K

}

= ∞,

then equation (1.1) is oscillatory.

Remark 2.3. When f(x) = x, Corollary 2.2 reduces to Sobol’s result given by (1.9).

Remark 2.4. Let r(t) = 1 and f(x) = x. If we compare Theorem B (or Theorem A)

with Theorem 2.1 (or Theorem 2.1 with g(t) = 1) respectively, it is easy to see that

the sign condition on p(t) < 0 in Theorem B (or Theorem A) can be dropped. We

will see this by Example 2.10. Thus, our result is weaker conditions than those of

Theorem A or B for equation (1.2).

Theorem 2.5. If

(2.13)

∫ ∞

t0

(
∫ s

t0

g(τ)r(τ)dτ

)−1

ds = ∞

and

(2.14) lim
t→∞

1

t

∫ t

t0

Ψ(s)ds = ∞,

then equation (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a nontrivial nonoscillatory solution x(t)

of equation (1.1). Without loss of generality, we may assume x(t) > 0, f(x(t)) > 0

for t ≥ t0. Then, it follows from the proof of Theorem 2.1, we obtain (2.6). Integrate

(2.6) from t0 to t and divide through by t to obtain

(2.15)
1

t

∫ t

t0

H(s)ds ≥ w(t0)
t − t0

t
+

1

t

∫ t

t0

R(s)ds +
1

t

∫ t

t0

Ψ(s)ds.
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By (2.14), we can choose t1 sufficiently large so that t ≥ t1

(2.16)

∫ t

t0

H(s)ds −
∫ t

t0

R(s)ds ≥ 0.

Denote A(t) =
∫ t

t0
R(s)ds. Using Hölder inequality, we have

A2(t) ≤
(
∫ t

t0

H(s)ds

)2

=

(

∫ t

t0

√

g(s)r(s)√
K

H(s)
√

K
√

g(s)r(s)
ds

)2

≤
(
∫ t

t0

g(s)r(s)

K
ds

)(
∫ t

t0

K

g(s)r(s)
H2(s)ds

)

=
1

K
R(t)

(
∫ t

t0

g(s)r(s)ds

)

=
1

K
A′(t)

(
∫ t

t0

g(s)r(s)ds

)

.(2.17)

Dividing (2.17) through by A2(t)
K

(

∫ t

t0
g(s)r(s)ds

)

and integrating from t1 to t, we

obtain

(2.18) K

∫ t

t1

(
∫ s

t0

g(τ)r(τ)dτ

)−1

ds ≤ 1

A(t1)
− 1

A(t)
≤ 1

A(t1)
.

But (2.18) incompatible with (2.13) as t → ∞. This completes the proof of Theorem

2.5.

Remark 2.6. Let r(t) = 1 and f(x) = x. Although the condition on g(t) ∈
C2 ([t0,∞), (0,∞)) given in Theorems C and D, our results just depend on g(t) ∈
C1 ([t0,∞), (0,∞)) in Theorems 2.1 and 2.5, respectively. Thus, our results are

sharper than those of Theorem C or D for equation (1.2).

Remark 2.7. Theorem 2.1 generalizes and extends Theorem A or B for the nonlinear

equation (1.1). Moreover, Theorems 2.1 and 2.5 also generalize and extend Theorems

C and D for the nonlinear equation (1.1), respectively.

Remark 2.8. The results in this paper are still true if we replace condition f ′ (x) ≥
K > 0 for x 6= 0 with the following one

f(x)

x
≥ K > 0 for x 6= 0.

But q(t) should be nonnegative in this case.

Finally, we give some examples to illustrate the efficiency and applicability of our

results. These examples are not covered by any of the results of Abdullah [1] and

Zheng and Liu [12].

Example 2.9. Consider the nonlinear differential equation

(2.19)
(

t2x′
)′

+ at x′ + bf (x) = 0, t ≥ 1,
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where a, b are two real constants with b > 0 and f(x) is any function which satisfies

xf(x) > 0 and f ′ (x) ≥ K > 0 for x 6= 0, K is a constant. To show the applicability of

Theorem 2.1, choose g(t) = 1
t
. It is clear that condition (2.1) is satisfied. Condition

(2.2) is satisfied as follows:

lim
t→∞

Ψ(t) = lim
t→∞

{
∫ t

t0

[

g(s)q(s) − (g′(s)r(s)−g(s)p(s))2

4Kg(s)r(s)

]

ds + g′(t)r(t)−g(t)p(t)
2K

}

= lim
t→∞

{
∫ t

1

[

b

s
− (a + 1)2

4Ks

]

ds − a + 1

2K

}

= lim
t→∞

{

4Kb − (a + 1)2

4K
ln t − a + 1

2K

}

= ∞ , if (a + 1)2 < 4Kb.

Hence, equation (2.19) is oscillatory for (a + 1)2 < 4Kb. In particular, equation

(2.19) with a = α − 2, b = β > 0 and f(x) = x is also oscillatory for (α − 1)2 < 4β.

On the other hand, if (α − 1)2 ≥ 4β, evidently, equation (2.19) has a nonoscilla-

tory solution x(t) = t
1−α+

√
(α−1)2−4β

2 . At this time, under the additional assumption

that r(t) is differentiable, this example reduces to Zheng and Liu [12]’s example.

Moreover, equation (2.19) with a = −1, b = 1 and f(x) = x is oscillatory. This

fact is directly verified by noting that all the solution of equation (2.19) is given by

x(t) = c1 sin(ln t) + c2 cos(ln t) where c1, c2 are two real constants with c2
1 + c2

2 6= 0.

Example 2.10. Consider the nonlinear differential equation

(2.20) x′′ +
A

t
x′ +

(

1 +
B

t2

)

f (x) = 0, t ≥ 1,

where A, B are two real constants, and f(x) is any function which satisfies xf(x) > 0

and f ′ (x) ≥ K > 0 for x 6= 0, K is a constant. To show the applicability of Theorem

2.1, choose g(t) = t. It is clear that condition (2.1) is satisfied. Condition (2.2) is

satisfied as follows:

lim
t→∞

Ψ(t) = lim
t→∞

{
∫ t

t0

[

g(s)q(s) − (g′(s)r(s)−g(s)p(s))2

4Kg(s)r(s)

]

ds + g′(t)r(t)−g(t)p(t)
2K

}

= lim
t→∞

{
∫ t

1

[

s +
B

s
− (A − 1)2

4Ks

]

ds +
1 − A

2K

}

= lim
t→∞

{

t2

2
+

4KB − (A − 1)2

4K
ln t +

1 − A

2K
− 1

2

}

= ∞ .

So, equation (2.20) is oscillatory by virtue of Theorem 2.1. Moreover, if we choose

g(t) = 1 then it is easy to see that condition (2.12) is satisfied. So, equation (2.20)

is oscillatory by Corollary 2.2. In particular, equation (2.20) with A = −2, B = 2

and f(x) = x is also oscillatory. At this time, this example reduces to Abdullah

[1]’s example. This fact is directly verified by noting that all the solution of equation
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(2.20) is given by x(t) = t (c1 sin t + c2 cos t) where c1, c2 are two real constants with

c2
1 + c2

2 6= 0 .

Furthermore, we can choose g(t) = 1 to show the applicability of Theorem 2.5 for

equation (2.20). It is easy to see that condition (2.13) is satisfied. Condition (2.14)

is satisfied as follows:

Ψ(t) =

∫ t

t0

[

g(s)q(s) − (g′(s)r(s) − g(s)p(s))2

4Kg(s)r(s)

]

ds +
g′(t)r(t) − g(t)p(t)

2K

=

∫ t

1

[

1 +
B

s2
− A2

4Ks2

]

ds − A

2Kt

= t +
A2 − 2A − 4KB

4Kt
+

4KB − 4K − A2

4K
,

lim
t→∞

1

t

∫ t

t0

Ψ(s)ds = lim
t→∞

1

t

∫ t

1

[

s +
A2 − 2A − 4KB

4Ks
+

4KB − 4K − A2

4K

]

ds

= lim
t→∞

1
t

[

t2

2
+ A2−2A−4KB

4K
ln t + 4KB−4K−A2

4K
t − 1

2
− 4KB−4K−A2

4K

]

= ∞ .

Therefore, equation (2.20) is oscillatory by Theorem 2.5.

Finally, we give a simple example where Theorem 2.5 applies, but Theorem 2.1

does not.

Example 2.11. Consider the nonlinear differential equation

(2.21)

[(

3et − e−t

2

)

x′

]′

− e−tx′ +
(

e2t − 1
)

f (x) = 0, t ≥ 0,

where f(x) is any function which satisfies xf(x) > 0 and f ′ (x) ≥ K > 0 for x 6= 0,

K is a constant. It is easy to see that if we choose g(t) = 2e2t

3e2t−1
then Theorem 2.1

cannot be applied to the oscillation of equation (2.21), because of the condition (2.1)

is not satisfied. But, we can prove the oscillatory character of equation (2.21) by

using Theorem 2.5. Condition (2.13) is satisfied as follows:
∫ ∞

t0

(
∫ s

t0

g(τ)r(τ)dτ

)−1

ds =

∫ ∞

0

(
∫ s

0

eτdτ

)−1

ds =

∫ ∞

0

ds

es − 1
= ∞.

And, condition (2.14) is also satisfied as follows:

Ψ(t) =

∫ t

t0

[

g(s)q(s) − (g′(s)r(s) − g(s)p(s))2

4Kg(s)r(s)

]

ds +
g′(t)r(t) − g(t)p(t)

2K

=

∫ t

0

2

3 − e−2s

(

e2s − 1
)

ds =
1

3
e2t − 2

9
ln(3e2t − 1) − 1

3
+

2

9
ln 2,

lim
t→∞

1

t

∫ t

t0

Ψ(s)ds = lim
t→∞

1

t

∫ t

0

[

1

3
e2s − 2

9
ln(3e2s − 1) − 1

3
+

2

9
ln 2

]

ds
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= lim
t→∞

1

t

{

1
6

(

e2t − 1
)

− 2
9

∫ t

0

ln(3e2s − 1)ds +
(

−1
3

+ 2
9
ln 2
)

t

}

= ∞ .

Hence, equation (2.21) is oscillatory by virtue of Theorem 2.5.

Note that if we take f(x) = x(K + 1 + cos x) in the equation (2.19), (2.20) or

(2.21), there is no K for which f ′ (x) ≥ K > 0 for x 6= 0, but the function f satisfies
f(x)

x
≥ K > 0 for x 6= 0. So, in the above examples, we may take equation (2.20)

with B ≥ 0 in this case.
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