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ABSTRACT. We apply the generalized quasilinearization technique to obtain a monotone sequence

of iterates converging monotonically and quadratically to a unique solution of an impulsive three-

point general nonlinear second order boundary value problem. The nth order (n ≥ 2) convergence

of the sequence of iterates has also been accomplished.
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1. INTRODUCTION

Impulsive hybrid systems are composed of some continuous variable dynamic

systems along with certain reset maps that define impulsive switching among them.

The switching perform resets to the modes and change the continuous state of the

system. There are three classes of impulsive hybrid systems, namely, impulsive dif-

ferential systems, sample data control systems and impulsive switched systems. In

recent years, a number of research papers has dealt with dynamical systems with

impulse effect as a class of general hybrid systems. Examples include the pulse fre-

quency modulation, optimization of drug distribution in the human body and control

systems with changing reference signal. Impulsive dynamical systems are character-

ized by the occurrence of abrupt change in the state of the system which occur at

certain time instants over a period of negligible duration. The dynamical behavior

of such systems is much more complex than the behavior of dynamical systems with-

out impulse effects. The presence of impulse means that the state trajectory does

not preserve the basic properties which are associated with non impulsive dynamical

systems. Thus, the theory of impulsive differential equations is quite interesting and

has attracted the attention of many scientists, for instance, see [1–5].

The method of quasilinearization initiated by Bellman and Kalaba [6], and gen-

eralized by Lakshmikantham [7–8] has been studied and extended in several diverse

disciplines [9–16]. The convergence of the sequence of iterates converging to the

solution of the problem has also been improved, see for example, [17–19].
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Multi-point nonlinear boundary value problems, which take into account the

boundary data at intermediate points of the interval under consideration, have been

receiving considerable attention [20–23]. P. Eloe and Y. Gao [24] discussed the

quasilinearization method for a three-point boundary value problem. B. Ahmad,

R. A. Khan and P. Eloe [25] developed the generalized quasilinearization method for

a three-point problem with nonlinear boundary conditions.

The purpose of this paper is to develop the generalized quasilinearization method

for a general impulsive hybrid nonlinear three-point boundary value problem. In fact,

a monotone sequence of iterates converging uniformly and quadratically to a unique

solution of the problem is obtained. Further, the rate of convergence has also been

improved by establishing a convergence of order n(n ≥ 2).

2. TERMINOLOGY AND BASIC RESULTS

Let PC[0, 1] denote the piecewise continuous functions on [0,1] and let PC1[0, 1]

denote the functions, x such that x ∈ PC[0, 1] and x′ ∈ PC[0, 1]. Define an appro-

priate Banach space B by

B = {x ∈ PC1[0, 1] : xi|tk,tk+1] ∈ Ci[tk, tk+1], k = 0, 1, . . . , m, i = 0, 1},

with

‖x‖B = max
k=0,1,...,m

‖x‖k, ‖x‖k = max
i=0,1

sup
tk≤t≤tk+1

|xi(t)|.

We consider the three-point problem with impulse

(2.1) x′′(t) = f(t, x(t), x′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g(x(
1

2
)),

and for k = 1, 2, . . . , m,

(2.2) 4x(tk) = uk, 4x′(tk) = vk(x(tk), x
′(tk)),

where f : [0, 1] × R2 → R is continuous, g : R → R is continuous and bounded,

uk ∈ R, vk : R2 → R is continuous with the convention x(tk) = x(tk−) and the

impulse is defined by 4x(tk) = x(t+k )−x(t−k ) for 0 = to < t1 < t2 · · · < tm < tm+1 = 1.

We say that α0 ∈ B is a lower solution of (2.1) and (2.2) if

α′′
0(t) ≥ f(t, α0(t), α

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

α0(0) ≤ a, α0(1) ≤ g(x(
1

2
)),

and for k = 1, . . . , m,

4α0(tk) = uk, 4α′
0(tk) ≥ vk(α0(tk), α

′
0(tk)).

Similarly, β0 ∈ B is an upper solution of (2.1) and (2.2) if the inequalities are reversed.
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For any x ∈ B, we define an operator T on x by

(2.3) Tx(t) = a(1 − t) + g(x(
1

2
))t+

∫ 1

0

H(t, s)f(s, x(s), x′(s))ds+ I(t, x),

where

H(t, s) =

{

t(s− 1), if 0 ≤ t ≤ s ≤ 1,

(t− 1)s, if 0 ≤ s ≤ t ≤ 1,

is the Green’s function satisfying the boundary value problem

x′′(t) = δ(t− s), 0 ≤ t ≤ 1,

x(0) = 0, x(1) = 0,

(δ(t− s) is the Dirac delta function) and I(t, x) =
∑m

k=1 Ik(t, x), where

Ik(t, x) =

{

t(−uk − (1 − tk)vk(x(tk), x
′(tk)), if 0 ≤ t ≤ tk,

(1 − t)(uk − tkvk(x(tk), x
′(tk))), if tk ≤ t ≤ 1.

As argued in reference [3], x is a solution of (2.1) and (2.2) if and only if x ∈ B and

T (x) = x. Finally, a partial order on B is defined as follows: for α0, β0 ∈ B, we say

that α0 ≤ β0 if and only if

α0|[tk,tk+1](t) ≤ β0|[tk,tk+1](t), tk ≤ t ≤ tk+1, k = 0, 1, . . . , m.

We need the following theorems to prove the main results. We do not provide the

proof of these theorem as the method of proof is similar to the one employed in

reference [3].

Theorem 2.1. Let f, fx ∈ C([0, 1] × R2) be such that fx(t, x, y) > 0; g ∈ C(R)

with 0 ≤ g′ ≤ 1 and each vk ∈ C1(R2), k = 1, 2, . . . , m, satisfies vkx(x, y) > 0,

vky(x, y) > 0, (x, y) ∈ R2. Assume that α0, β0 are lower and upper solutions of (2.1)

and (2.2) respectively. Then α0(t) ≤ β0(t).

Theorem 2.2. Assume that f ∈ C([0, 1] × R2), g ∈ C(R), vk ∈ C(R2), k =

1, 2, . . . , m and each vk(x, y) is monotone increasing in y for fixed x. Assume that

each solution of x′′(t) = f(t, x(t), x′(t)) extends to [0, 1] or becomes unbounded on its

maximal interval of convergence. Let α0, β0 be lower and upper solutions of (2.1) and

(2.2) respectively such that α0(t) ≤ β0(t). Then there exists a solution, x(t) of (2.1)

and (2.2) such that α0(t) ≤ x(t) ≤ β0(t).

In passing we remark that the simplified version of the condition that each solu-

tion of x′′(t) = f(t, x(t), x′(t)) extends to [0, 1] or becomes unbounded on its maximal

interval of convergence is that f satisfies a Nagumo condition [9,12], that is, for

each M > 0, there exists a positive continuous function hM on [0,∞] such that

|f(t, x, x′)| ≤ hM(|x′|) for all (t, x, x′) ∈ [0, 1] × [−M,M ] × R and
∫ ∞

0

s[hM (s)]−1ds = ∞.
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3. MAIN RESULTS

Theorem 3.1 Assume that

(A1) α0, β0 are lower and upper solutions of (2.1) and (2.2) respectively;

(A2) f(t, x, y) ∈ C([0, 1]×R2) be such that ∂f

∂x
(t, x, y) > 0, ∂2

∂x2 (f(t, x, y)+φ(t, x, y)) ≤

0, where ∂2

∂x2φ(t, x, y) ≤ 0 for φ ∈ C2[J×R2, R]. Moreover, f satisfies a Nagumo

condition in y;

(A3) vk ∈ C1[R2, R] such that vkx(x, y) > 0, vky(x, y) > 0, (x, y) ∈ R2 and ∂2

∂x2vk(x, y) ≤

0;

(A4) g, g
′ are continuous on R and g′′ exists with 0 ≤ g′ < 1, g′′ ≥ 0.

Then there exists a monotone sequence of solutions converging quadratically to the

unique solution, x(t) of (2.1) and (2.2).

Proof. Motivated by Eloe and Zhang [11], we define

(3.1) f(t, x, y) = F (t, x) − φ(t, x, y), t ∈ [0, 1],

where F (t, x) : [0, 1] → R is such that F, Fx, Fxx are continuous on [0, 1] × R and

in view of (A2), it follows that Fxx(t, x) ≤ 0. Applying the generalized mean value

theorem on F (t, x) gives

(3.2) F (t, x) ≤ F (t, x1) + Fx(t, x1)(x− x1),

which together with (3.1) takes the form

(3.3) f(t, x, y) ≤ f(t, x1, y) + Fx(t, x1)(x− x1) − (φ(t, x, y)− φ(t, x1, y).

Define

(3.4) G(t, x, x1, y) = f(t, x1, y) + Fx(t, x1)(x− x1) − (φ(t, x, y) − φ(t, x1, y)).

Observe that

(3.5) G(t, x, x1, y) ≥ f(t, x, y), G(t, x, x, y) = f(t, x, y).

Moreover, using (3.4) together with (A2) yields

(3.6) Gx(t, x, x1, y) ≥ Fx(t, x) − φx(t, x) = fx(t, x) > 0,

which implies that G(t, x, x1, y) is increasing in x for each fixed (t, x1, y) ∈ J × R2.

For each k = 1, 2, 3 . . . , m, let Vk(x) : R → R be such that Vk, V
′
k, V

′′
k are

continuous on R with V ′′
k ≤ 0. Let us set

ψ(x, y) = Vk(x) − vk(x, y) on R2.

Thus it follows that

(3.7) Vk(x) ≤ Vk(x1) + V ′
k(x1)(x− x1).
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Now, using the generalized mean value theorem together with (3.7) and (A3), we

obtain

vk(x, y) ≤ vk(x1, y) + V ′
k(x1)(x− x1) − (ψ(x, y) − ψ(x1, y)).

Define

hk(x, x1, y) = vk(x1, y) + V ′
k(x1)(x− x1) − (ψ(x, y) − ψ(x1, y)),

and observe that

(3.8) vk(x, y) ≤ hk(x, x1, y), vk(x, y) = hk(x, x, y).

Further it is easy to check that

(3.9) hkx(x, x1, y) > 0, hky(x, x1, y) > 0,

which imply that hk is increasing in x and y respectively. In view of (A4), we get

g(x) ≥ g(y) + g′(y)(x− y).

Letting

g∗(x, y) = g(y) + g′(y)(x− y),

we notice that

(3.10) g(x) = max
y

g∗(x, y), g(x) = g∗(x, x), (0 ≤ g∗x(x, y) = g′(y) < 1).

Now, we set x1 = α0 and consider the BVP

(3.11) x′′(t) = G(t, x(t), α0(t), x
′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g∗(x(
1

2
), α0(

1

2
)),

and for k = 1, 2, . . . , m,

(3.12) 4x(tk) = uk, 4x′(tk) = hk(x(tk), α0(tk), x
′(tk)).

In view of (A1), (3.5), (3.8) and (3.10), we have

α′′
0(t) ≥ f(t, α0(t), α

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

= G(t, α0(t), α0(t), α
′
0(t)),

α0(0) ≤ a, α0(1) ≤ g∗(α0(
1

2
), α0(

1

2
)),

and for k = 1, . . . , m,

4α0(tk) = uk, 4α′
0(tk) ≥ vk(α0(tk), α

′
0(tk)) = hk(α0(tk), α0(tk), α

′
0(tk)),

and

β ′′
0 (t) ≤ f(t, β0(t), β

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

≤ G(t, β0(t), α0(t), β
′
0(t))

β0(0) ≥ a, β0(1) ≥ g∗(β0(
1

2
), α0(

1

2
)),
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and for k = 1, . . . , m,

4β0(tk) = uk, 4β ′
0(tk) ≤ vk(β0(tk), β

′
0(tk)) ≤ hk(β0(tk), α0(tk), β

′
0(tk)),

which imply that α0 and β0 are lower and upper solutions of (3.11) and (3.12). In

view of (3.6), (3.9) and (3.10), it follows by Theorem 2.1 that α0(t) ≤ β0(t). Hence,

by Theorem 2.2, there exists a unique solution α1 of (3.11) and (3.12) such that

α0 ≤ α1 ≤ β0.

Next, we consider the following problem with impulse

(3.13) x′′(t) = G(t, x(t), α1(t), x
′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g∗(x(
1

2
), α1(

1

2
)),

and for k = 1, 2, . . . , m,

(3.14) 4x(tk) = uk, 4x′(tk) = vk(x(tk), α1(t), x
′(tk)),

Employing the earlier arguments, we find that

α′′
1(t) = G(t, α1(t), α0(t), α

′
1(t)), tk < t < tk+1, k = 0, 1, . . . , m,

≥ G(t, α1(t), α1(t), α
′
1(t)),

α1(0) ≤ a, α1(1) = g∗(α1(
1

2
), α0(

1

2
)) ≤ g∗(α1(

1

2
), α1(

1

2
)),

and for k = 1, . . . , m,

4α1(tk) = uk, 4α′
1(tk) = hk(α1(tk), α0(tk), α

′
1(tk)) ≥ hk(α1(tk), α1(tk), α

′
1(tk)),

giving that α1 is a lower solution of (3.13) and (3.14). Similarly, we can show that β0

is an upper solution of (3.13) and (3.14), that is,

β ′′
0 (t) ≤ f(t, β0(t), β

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

≤ G(t, β0(t), α1(t), β
′
0(t))

β0(0) ≥ a, β0(1) ≥ g∗(β0(
1

2
), α1(

1

2
)),

and for k = 1, . . . , m,

4β0(tk) = uk, 4β ′
0(tk) ≤ vk(β0(tk), β

′
0(tk)) ≤ hk(β0(tk), α1(tk), β

′
0(tk)).

Again by Theorem 2.1, we obtain α1 ≤ β0. Hence, by Theorem 2.2, there exists a

unique solution α2 of (3.13) and (3.14) such that

α1 ≤ α2 ≤ β0.

Continuing this process successively, we obtain a monotone sequence {αj} satisfying

α0 ≤ α1 ≤ α2 ≤ · · · ,≤ αj ≤ β0,
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where the element αj of the sequence is a solution of the problem

x′′(t) = G(t, x(t), αj−1(t), x
′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g∗(x(
1

2
), αj−1(

1

2
)),

and for k = 1, 2, . . . , m,

4x(tk) = uk, 4x′(tk) = hk(x(tk), αj−1(tk), x
′(tk)).

Using the standard arguments [1, 3], it follows that {αj} converges in B to x, the

unique solution of (2.1) and (2.2).

Now, we prove the quadratic convergence. For that we set ej(t) = x(t) − αj(t),

aj = αj(t) − αj−1(t) and note that ej(0) = 0, ej(1) = g(x(1
2
)) − g∗(αj(

1
2
), αj−1(

1
2
))

and for k = 1, 2, . . . , m,

4ej(tk) = 0, 4e′j(tk) = vk(x(tk), x
′(tk)) − hk(αj(tk), αj−1(tk), α

′
j(tk)).

Using the generalized mean value theorem together with (A2), (3.1) and (3.4), we

have

e′′j (t) = x′′(t) − α′′
j (t), tk < t < tk+1, k = 0, 1, 2, . . . , m,

= F (t, x) − φ(t, x, x′) −G(t, αj(t), αj−1(t), α
′
j(t))

= F (t, x) − φ(t, x, x′) − {F (t, αj−1) + Fx(t, αj−1)(αj − αj−1) − φ(t, αj, α
′
j)}

= Fx(t, c1)(x− αj−1) − Fx(t, αj−1)(αj − αj−1) − (φ(t, x, x′) − φ(t, αj, α
′
j))

= [Fx(t, c1) − Fx(t, αj−1)]ej−1(t) + Fx(t, αj−1)]ej(t)

− φx(t, c2, c3)ej(t) − (φx′(t, c2, c3)e
′
j(t)

= Fxx(t, c4)(c1 − αj−1)ej−1(t) + [Fx(t, αj−1) − φx(t, c2, c3)]ej(t)

− φx′(t, c2, c3)e
′
j(t).

≥ Fxx(t, c4)e
2
j−1(t) + fx′(t, c2, c3)e

′
j(t),

where αj−1 ≤ c1 ≤ x, αj ≤ c2 ≤ x, α′
j ≤ c3 ≤ x′, αj−1 ≤ c4 ≤ c1. In particular, there

exists M1 > 0 such that

(3.15) e′′j (t) − fx′(t, c2, c3)e
′
j(t) ≥ −M1e

2
j−1(t),

where M1 > maxi max(t,x)∈Di
Fxx(t, x) for i = 0, 1, . . . , m and

Di = {(t, x) : ti < t < ti+1, α0 ≤ x ≤ β0}.

Let µ(t) = exp{−
∫ t

0
fx′(s, c2(s), c3(s))ds} be the integrating factor associated with

(3.15) with 0 ≤ t ≤ t1. Then

(3.16) e′j(t)µ(t) − e′j(0) ≥ −M1e
2
j−1

∫ t

0

µ(s)ds,
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where M1 is a bound on Fxx(t, x). Since e′j(0) ≥ 0, therefore, there exists M > 0 such

that

e′′j (t) ≥ −M‖ej−1‖
2.

Now, for k = 1, 2, . . . , m, 4ej(tk) = 0, and

4e′j(tk) = vk(x(tk), x
′(tk)) − hk(αj(tk), αj−1(tk), α

′
j(tk))

= Vk(x(tk)) − ψ(x(tk), x
′(tk)) − Vk(αj−1(tk))

− V ′
k(αj−1(tk))(αj(tk) − αj−1(tk)) + ψ(αj(tk), α

′
j(tk))

= [V ′
k(c5(tk)) − V ′

k(αj−1(tk))]ej−1(tk) + V ′
k(αj−1(tk))ej(tk)

− [ψ(x(tk), x
′(tk)) − ψ(αj(tk), α

′
j(tk))

= V ′′
k (c6(tk))(c1(tk) − αj−1(tk))ej−1(tk)

+ [V ′
k(αj−1(tk)) − ψx(c7(tk), c8(tk))]ej(tk)

− ψx′(c7(tk), c8(tk))e
′
j(tk),

where αj−1(tk) ≤ c5(tk) ≤ x(tk), αj−1(tk) ≤ c6(tk) ≤ c5(tk), αj(tk) ≤ c7(tk) ≤ x(tk),

α′
j(tk) ≤ c8(tk) ≤ x′(tk). Following the earlier procedure together with (A3), we find

that there exists N > 0 such that

(3.17) 4e′j(tk) ≥ −Ne2
j−1(tk).

From(2.3), we have

(3.18) ej(t) = [g(x(
1

2
)) − g∗(αj(

1

2
), αj−1(

1

2
))]t +

∫ 1

0

H(t, s)e′′j (s)ds+ I(t, x),

where I(t, x) =
∑m

k=1 Ik(t, x) and

Ik(t, x) =

{

−t(1 − tk)4e
′
j(tk), if 0 ≤ t ≤ tk,

−(1 − t)tk4e
′
j(tk), if tk ≤ t ≤ 1,

which, in view of (3.17), becomes

(3.19) Ik(t, x) ≤

{

t(1 − tk)Ne
2
j−1(tk), if 0 ≤ t ≤ tk,

(1 − t)tkNe
2
j−1(tk), if tk ≤ t ≤ 1.

Observe that

g(x(
1

2
)) − g∗(αj(

1

2
), αj−1(

1

2
))(3.20)

= g(x(
1

2
)) − g(αj−1(

1

2
)) − g′(αj−1(

1

2
))(αj(

1

2
) − αj−1(

1

2
))

= g′(co)ej−1(
1

2
) − g′(αj−1(

1

2
))(ej−1(

1

2
) − ej(

1

2
))

= g′′(c1)e
2
j−1(

1

2
) + g′(αj−1)ej(

1

2
).
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Using (3.19) and (3.20) in (3.18) and taking the maximum over the interval [0, 1], we

obtain

(3.21) ‖ej‖ ≤M2‖ej−1‖
2 + λ‖ej‖ +M1‖ej−1‖

2 +N2‖ej−1‖
2,

where M2 provides a bound for ‖g′′‖ on [αj−1(
1
2
), x(1

2
)], ‖g′‖ ≤ λ < 1, N2 gives a

bound on I(t, x) and M1 = max
∫ 1

0
M |H(t, s)|ds. Solving (3.21) algebraically, we get

‖ej‖ ≤ δ‖ej−1‖
2,

where δ = (M2 + M1 + N2)/(1 − λ) and ‖ej‖ = max{|ej(t)| : t ∈ [0, 1]} is the usual

uniform norm. This establishes the quadratic convergence.

Theorem 3.2 Assume that

(B1) α0, β0 are lower and upper solutions of (2.1) and (2.2) respectively.

(B2)
∂i

∂xif(t, x, y) ∈ C([0, 1] × R2) for i = 0, 1, 2, . . . , n such that ∂i

∂xif(t, x, y) > 0 for

i = 1, 2, . . . , n − 1, ∂
∂y

( ∂i

∂xif(t, x, y)) ≥ 0, ∂n

∂xn (f(t, x, y) + φ(t, x, y)) < 0, where

φ ∈ C0,n[J ×R2, R] such that ∂n

∂xnφ(t, x, y) ≤ 0. Moreover, f satisfies a Nagumo

condition in y.

(B3) vk ∈ C0,n(R2) such that ∂i

∂xi vky(x, y) > 0, ∂i

∂xivk(x, y) > 0, i = 1, 2, . . . , n− 1 and
∂n

∂xnvk(x, x
′) ≤ 0.

(B4)
di

dxig(x) ∈ C(R) for i = 0, 1, 2, . . . , n satisfying 0 ≤ di

dxig(x) < M
(β0−α0)i−1 for

i = 1, 2, . . . , n− 1 with 0 < M < 1
3

and dn

dxn g(x) ≥ 0.

Then there exists a monotone sequence of solutions converging monotonically to the

unique solution of (2.1) and (2.2) with the order of convergence n ≥ 2.

Proof. Let us define

(3.22) f(t, x, y) = F (t, x) − φ(t, x, y), t ∈ [0, 1].

In view of (B2), we note that F ∈ C0,n(J × R) and ∂n

∂xnF (t, x) ≤ 0. Applying the

generalized mean value theorem on F (t, x) gives

F (t, x) ≤

n−1
∑

i=0

∂i

∂xi
F (t, x1)

(x− x1)
i

i!
,

which together with (3.22) takes the form

(3.23) f(t, x, y) ≤

n−1
∑

i=0

∂i

∂xi
f(t, x1, y)

(x− x1)
i

i!
−

∂n

∂xn
φ(t, ξ, y)

(x− x1)
n

n!
,

where x1 ≤ ξ ≤ x. Define

(3.24) G∗(t, x, x1, y) =
n−1
∑

i=0

∂i

∂xi
f(t, x1, y)

(x− x1)
i

i!
−

∂n

∂xn
φ(t, ξ, y)

(x− x1)
n

n!
.

Observe that

(3.25) G∗(t, x, x1, y) ≥ f(t, x, y), G∗(t, x, x, y) = f(t, x, y)
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Moreover, using (B2), we find that

G∗
x(t, x, x1, y) ≥

n−1
∑

i=1

∂i

∂xi
f(t, x1, y)

(x− x1)
i−1

(i− 1)!
> 0,

which implies that G∗(t, x, x1, y) is increasing in x for each fixed (t, x1, y) ∈ J × R2.

Further, using the generalized mean value theorem together with (B3), we obtain

vk(x, y) ≤

n−1
∑

i=0

∂i

∂xi
vk(x1, y)

(x− x1)
i

i!
.

Now, we define

h∗k(x, x1, y) =

n−1
∑

i=0

∂i

∂xi
vk(x1, y)

(x− x1)
i

i!
,

and observe that

(3.26) vk(x, y) ≤ h∗k(x, x1, y), vk(x, y) = h∗k(x, x, y).

In view of (B3), we further conclude that

h∗kx(x, x1, y) =
n−1
∑

i=1

∂i

∂xi
vk(x1, y)

(x− x1)
i−1

(i− 1)!
> 0,

and

h∗ky(x, x1, y) =
n−1
∑

i=0

∂i

∂xi
vky(x1, y)

(x− x1)
i

i!
> 0,

which imply that h∗k is increasing in x and y respectively. In view of (B4), we get

g(x) ≥
n−1
∑

i=0

di

dxi
g(y)

(x− y)i

i!
.

Letting

g∗∗(x, y) =
n−1
∑

i=0

di

dxi
g(y)

(x− y)i

i!
,

we notice that

(3.27) g(x) = max
y

g∗∗(x, y), g(x) = g∗∗(x, x).

Clearly g∗∗x (x, y) ≥ 0 and

g∗∗x (x, y) =

n−1
∑

i=1

di

dxi
g(y)

(x− y)i−1

(i− 1)!

≤
n−1
∑

i=1

di

dxi
g(y)

(β0 − α0)
i−1

(i− 1)!

≤
n−1
∑

i=1

M

(i− 1)!
< M(3 −

1

2n−3
) < 3M < 1.
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Now, we set x1 = α0 and consider the BVP

(3.28) x′′(t) = G∗(t, x(t), α0(t), x
′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g∗∗(x(
1

2
), α0(

1

2
)),

and for k = 1, 2, . . . , m,

(3.29) 4x(tk) = uk, 4x′(tk) = h∗k(x(tk), α0(tk), x
′(tk)).

In view of (B1), (3.25), (3.26) and (3.27), we have

α′′
0(t) ≥ f(t, α0(t), α

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

= G∗(t, α0(t), α0(t), α
′
0(t)),

α0(0) ≤ a, α0(1) ≤ g∗∗(α0(
1

2
), α0(

1

2
)),

and for k = 1, . . . , m,

4α0(tk) = uk, 4α′
0(tk) ≥ vk(α0(tk), α

′
0(tk)) = h∗k(α0(tk), α0(tk), α

′
0(tk)),

and

β ′′
0 (t) ≤ f(t, β0(t), β

′
0(t)), tk < t < tk+1, k = 0, 1, . . . , m,

≤ G∗(t, β0(t), α0(t), β
′
0(t)),

β0(0) ≥ a, β0(1) ≥ g∗∗(β0(
1

2
), α0(

1

2
)),

and for k = 1, . . . , m,

4β0(tk) = uk, 4β ′
0(tk) ≤ vk(β0(tk), β

′
0(tk)) ≤ h∗k(β0(tk), α0(tk), β

′
0(tk)),

which imply that α0 and β0 are lower and upper solutions of (3.28) and (3.29). Thus,

by Theorem 2.1 and Theorem 2.2 (as in the proof of Theorem 3.1), there exists a

unique solution α1 of (3.28) and (3.29) such that

α0 ≤ α1 ≤ β0.

Continuing this process successively, we obtain a monotone sequence {αj} satisfying

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αj ≤ β0,

where the element αj of the sequence is a solution of the problem

x′′(t) = G∗(t, x(t), αj−1(t), x
′(t)), tk < t < tk+1, k = 0, 1, 2, . . . , m,

x(0) = a, x(1) = g∗∗(x(
1

2
), αj−1(

1

2
)),

and for k = 1, 2, . . . , m,

4x(tk) = uk, 4x′(tk) = h∗k(x(tk), αj−1(tk), x
′(tk)).

Employing the arguments used in the proof of Theorem 3.1, it follows that {αj}

converges in B to x, the unique solution of (2.1) and (2.2).
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Now, we prove the convergence of order n ≥ 2. For that we set ej(t) = x(t)−αj(t),

aj−1 = αj(t)−αj−1(t), and note that ej(0) = 0, ej(1) = g(x(1
2
))− g∗∗(αj(

1
2
), αj−1(

1
2
))

and for k = 1, 2, . . . , m,

4ej(tk) = 0, 4e′j(tk) = vk(x(tk), x
′(tk)) − h∗k(αj(tk), αj−1(tk), α

′
j(tk)).

Using the generalized mean value theorem, (B2), (3.22) and (3.24), we can find αj−1 ≤

ξ ≤ x such that

e′′j (t) = x′′(t) − α′′
j (t), tk < t < tk+1, k = 0, 1, 2, . . . , m

=
n−1
∑

i=0

∂i

∂xi
f(t, αj−1, x

′)
(x− αj−1)

i

i!
+

∂n

∂xn
f(t, ξ, x′)

(x− αj−1)
n

n!

−

n−1
∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)

(αj − αj−1)
i

i!
+

∂n

∂xn
φ(t, ξ, α′

j)
(αj − αj−1)

n

n!

≥

n−1
∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)
ei

j−1

i!
−

n−1
∑

i=0

∂i

∂xi
f(t, αj−1, α

′
j)
ai

j−1

i!

+ [
∂n

∂xn
f(t, ξ, x) +

∂n

∂xn
φ(t, ξ, α′

j)]
en

j−1

n!

≥
n−1
∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1

i!
[ei

j−1 − ai
j−1] + [

∂n

∂xn
f(t, ξ, α′

j)

+
∂n

∂xn
φ(t, ξ, α′

j)]
en

j−1

n!

=

n−1
∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1

i!

i−1
∑

r=0

ei−r−1
j−1 ar

j−1(ej−1 − aj−1)

+
∂n

∂xn
F (t, ξ, α′

j)
en

j−1

n!

= [

n−1
∑

i=1

∂i

∂xi
f(t, αj−1, α

′
j)

1

i!

i−1
∑

r=0

ei−r−1
j−1 ar

j−1]ej +
∂n

∂xn
F (t, ξ, α′

j)
en

j−1

n!

= ω(t)ej +
∂n

∂xn
F (t, ξ, α′

j)
en

j−1

n!
≥ g(t)ej − ε1e

n
j−1,

where ω(t) =
∑n−1

i=1
∂i

∂xif(t, αj−1, α
′
j)

1
i!

∑i−1
r=0 e

i−r−1
j−1 ar

j > 0 and 1
n!

∂n

∂xnF (t, ξ, α′
j) ≥ −ε1

for some ε1 > 0. Thus, for each j, we have

(3.30) e′′j (t) ≥ −ε1e
n
j−1 , tk < t < tk+1, k = 0, 1, 2, . . . , m,

ej(0) = 0, ej(1) = g(x(
1

2
)) − g∗(αj(

1

2
), αj−1(

1

2
)),

and for k = 1, 2, . . . , m,

4ej(tk) = 0,

and

4ej
′(tk) = vk(x(tk), x

′(tk)) − h∗k(αj(tk), α
′
j(tk), αj−1(tk))
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=

n−1
∑

i=0

∂i

∂xi
vk(αj−1, x

′)
(x− αj−1)

i

i!
+

∂n

∂xn
vk(c1, x

′)
(x− αj−1)

n

n!

−

n−1
∑

i=0

∂i

∂xi
vk(αj−1, α

′
j)

(αj − αj−1)
i

i!

≥
n−1
∑

i=1

∂i

∂xi
vk(αj−1, α

′
j)

1

i!
[ei

j−1 − ai
j−1] +

∂n

∂xn
vk(c1, x

′)
en

j−1

n!

≥ [
n−1
∑

i=1

∂i

∂xi
vk(αj−1, α

′
j)

1

i!

i−1
∑

r=0

ei−r−1
j−1 ar

j−1]ej − ε2e
n
j−1

= ω1(t)ej(t) − ε2e
n
j−1,

where ω1(t) =
∑n−1

i=1
∂i

∂xivk(αj−1, α
′
j)

1
i!

∑i−1
r=0 e

i−r−1
j−1 ar

j > 0 and 1
n!

∂n

∂xn vk(c1, x
′) ≥ −ε2 for

some ε2 > 0. Hence, for each j, it follows that

(3.31) 4e′j(tk) > −ε2e
n
j−1.

Now from(2.3), we have

(3.32) ej(t) = [g(x(
1

2
)) − g∗∗(αj(

1

2
), αj−1(

1

2
))]t + ε1

∫ 1

0

|H(t, s)|en
j−1(s)ds+ I(t, x),

where I(t, x) =
∑m

k=1 Ik(t, x) and

Ik(t, x) =

{

−t(1 − tk)4e
′
j(tk), if 0 ≤ t ≤ tk,

−(1 − t)tk4e
′
j(tk), if tk ≤ t ≤ 1,

which, in view of (3.31), becomes

(3.33) Ik(t, x) ≤

{

t(1 − tk)ε2e
n
j−1(tk), if 0 ≤ t ≤ tk,

(1 − t)tkε2e
n
j−1(tk), if tk ≤ t ≤ 1.

Further, we find that

g(x(
1

2
)) − g∗∗(αj(

1

2
), αj−1(

1

2
))(3.34)

=

n−1
∑

i=0

di

dxi
g(αj−1(

1

2
))

(x(1
2
) − αj−1(

1
2
))i

i!
+

dn

dxn
g(ξ(

1

2
))

(x(1
2
) − αj−1(

1
2
))n

n!

−

n−1
∑

i=0

di

dxi
g(αj−1(

1

2
))

(αj(
1
2
) − αj−1(

1
2
))i

i!

=

n−1
∑

i=1

di

dxi
g(αj−1(

1

2
))

(ei
j−1(

1
2
) − ai

j−1(
1
2
))

i!
+

dn

dxn
g(ξ(

1

2
))

(ej−1(
1
2
))n

n!

=
n−1
∑

i=1

di

dxi
g(αj−1(

1

2
))

1

i!

n−1
∑

r=0

er
j−1(

1

2
)ai−1−r

j−1 (
1

2
)ej(

1

2
)

+
dn

dxn
g(ξ(

1

2
))

(ej−1(
1
2
))n

n!
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≤ [

n−1
∑

i=0

M

(β0 − α0)i−1

1

i!

i−1
∑

r=0

ei−1−r
j−1 (

1

2
)ar

j−1(
1

2
)]ej(

1

2
) + ε3e

n
j−1,

where ε3 provides a bound for 1
n!

dn

dxng(ξ(
1
2
)). Letting

Pj(t) =
n−1
∑

i=0

M

(β0 − α0)i−1

1

i!

i−1
∑

r=0

ei−1−r
j−1 (

1

2
)ar

j−1(
1

2
),

we observe that

lim
j→∞

Pj(t) = lim
j→∞

n−1
∑

i=0

M

(β0 − α0)i−1

1

i!

i−1
∑

r=0

ei−1−r
j−1 (

1

2
)ar

j−1(
1

2
) = M <

1

3
.

Therefore, we can choose λ1 <
1
3

and j0 ∈ N such that for n ≥ j0, we have Pj(t) < λ1.

Thus, using (3.33) and (3.34) in (3.32) and taking the maximum over the interval [0, 1],

we obtain

(3.35) ‖ej‖ ≤ ε3‖ej−1‖
n + λ1‖ej‖ + ε4‖ej−1‖

n + ε5‖ej−1‖
n

where ε5 gives a bound on I(t, x) and ε4 = max
∫ 1

0
ε1|H(t, s)|ds. Solving (3.35) alge-

braically, we get

‖ej‖ ≤ ε‖ej−1‖
n,

where δ = (ε3 + ε4 + ε5)/(1 − λ1) and ‖ej‖ = max{|ej(t)| : t ∈ [0, 1]} is the usual

uniform norm. This establishes the convergence of order n ≥ 2.

Remark. It is clear that Theorem 3.2 remains valid if we replace the condition
∂i

∂xif(t, x, x′) > 0 for i = 1, 2, . . . , n − 1 in (B2) by that of Γf(t, x, x′) > 0 with
∂
∂x
f(t, x, x′) > 0, where Γ =

∑n−1
i=1

∂i(.)
∂xi

(x−y)i−1

(i−1)
.
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