
Dynamic Systems and Applications 17 (2008) 201-220

L2-STABILITY OF VECTOR EQUATIONS WITH NONLINEAR

CAUSAL MAPPINGS

M. I. GIL’

Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653,

Beer-Sheva 84105, Israel (gilmi@cs.bgu.ac.il)

ABSTRACT. Nonlinear vector equations with causal mappings are considered. These equations

include differential, difference, differential-delay, integro-differential and other traditional equations.

Estimates for the L
2-norm of solutions are established. The obtained estimates give us explicit con-

ditions for the L
2-stability, absolute stability and input-to-state stability of the considered equations

as well as bounds for the regions of attraction of stationary states. The suggested approach enables

us to consider various classes of equations from the unified point of view.
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1. INTRODUCTION AND MAIN DEFINITIONS

The present paper is devoted to equations in a Euclidean space with nonlin-

ear causal mappings (operators). These equations include differential, difference,

differential-delay, integro-differential and other traditional equations. For the details

see the excellent books [4, 23]. The stability theory of nonlinear equations with

causal mappings is in an early stage of development. The basic method for the sta-

bility analysis is the direct Liapunov method. But finding the Liapunov functionals

for equations with causal mappings is a difficult mathematical problem.

Below we establish explicit conditions that provide the L2-stability, absolute sta-

bility and input-to-state stability for a class of equations with causal mappings. To

the best of our knowledge these stabilities for equations with causal mappings were

not explored in the available literature. As it is shown below, in appropriate situa-

tions our results are exact. The literature on stability of continuous systems is very

rich, cf. [17, 20, 21, 24] and references therein. The classical results were developed

in the interesting papers [26], [1], [14, 18], [22].

The basic stability results for differential-delay equations are presented in the

well-known books [12, 13, 20]. Recently stability of nonlinear retarded systems has
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been investigated by many authors, cf. [16, 11, 25], etc. Mainly the direct Liapunov

method and frequency criteria are applied.

A deep investigation of linear causal operators is presented in the book [15].

The papers [2, 5] also should be mentioned. In the paper [5], the existence and

uniqueness of local and global solutions to the Cauchy problem for equations with

causal operators in a Banach space are established. In the paper [2] it is proved that

the input-output stability of vector equations with causal operators is equivalent to

the causal invertibility of causal operators.

The present paper is organized as follows. It consists of 10 sections. In this

section we define the causal mappings and consider an example of a causal mapping.

In Section 2 preliminary results are collected. The main result-Theorem 3.1 on so-

lution estimates for the considered equations is proved in Section 3. Equations with

differential linear parts are investigated in Sections 4 and 5. Section 6 is devoted to

difference equations with continuous time and causal nonlinearities. Equations with

differential-delay linear parts are explored in Sections 6-10.

Let Cn be a Euclidean space with the Euclidean norm ‖ · ‖n. By I we denote the

unit operator in the corresponding space.

Furthermore, for a positive T ≤ ∞, let E be a Banach space of functions defined

on [0, T ] with values in Cn. For all τ ∈ [0, T ) and w ∈ E, let the projections Pτ be

defined by

(1.1) (Pτw)(t) =

{

w(t) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T
.

In addition, PTw = w.

Definition 1.1. A mapping F : E → E satisfying the condition

(1.2) PτFPτ = PτF (τ ∈ [0, T ])

will be called a causal mapping (operator).

This definition is somewhat different from the definition of the causal operator

suggested in [4], in the linear case our definition coincides with the one accepted in

[6].

Let us point an example of a causal mapping. To this end denote by Lp(ω) =

Lp(ω,Cn) (1 < p <∞) the space of functions defined on a set ω ⊂ R with values in

Cn and the finite norm

|w|Lp(ω) = [

∫

ω

‖w(t)‖p
ndt]

1/p (w ∈ Lp(ω)).

In addition,

|w|C(ω) = sup
t∈ω

‖w(t)‖n
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for a vector valued function w defined and bounded on ω.

Consider in L2(0, T ) the operator

(Fw)(t) = f(t, w(t)) +

∫ t

0

k(t, s, w(s))ds (w ∈ L2(0, T ))

with a continuous function k : [0, T ]2 × Cn → Cn and a continuous function f :

[0, T ] × Cn → Cn. For each τ ∈ [0, T ) we have

(PτFw)(t) = fτ (t, w(t)) +

∫ τ

0

kτ(t, s, w(s))ds

where

kτ (t, s, w(s)) =

{

k(t, s, w(s)) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T

(0 ≤ s ≤ t), and

fτ (t, w(t)) =

{

f(t, w(t)) if 0 ≤ t ≤ τ,

0 if τ < t ≤ T
.

Thus (1.2) holds and the considered mapping is causal. Note that, the integral oper-

ator
∫ c

0

k(t, s, w(s))ds

with a fixed positive c ≤ T is not causal.

2. PRELIMINARY RESULTS

Put R+ = [0,∞). Everywhere below F is a continuous causal mapping acting in

L2(R+). Consider the equation

(2.1) x(t) = f(t) +

∫ t

0

Q0(t, t1)(Fx)(t1)dt1 (t > 0),

where Q0 is a measurable n × n-matrix kernel defined for 0 ≤ s ≤ t ≤ ∞, and

f ∈ L2(R+) is given.

Definition 2.1. A solution of (2.1) is a vector-valued function x defined on R+ which

is in L2(0, τ) for any finite τ > 0 and satisfies (2.1) a.e. on R+.

It is assumed that there is a constant q, such that

(2.2) |Fw|L2(R+) ≤ q |w|L2(R+) (w ∈ L2(R+)).

Lemma 2.2. Let F : L2(R+) → L2(R+) be a continuous causal mapping satisfying

condition (2.2). Then for all τ > 0 and w ∈ L2(0, τ), we have the inequality

|Fw|L2(0,τ) ≤ q|Fw|L2(0,τ).
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Proof. From (1.2) it follows that

|Fw|L2(0,τ) = |PτFw|L2(R+) = |PτFPτw|L2(R+) ≤

|FPτw|L2(R+) ≤ q |Pτw|L2(R+) = q|w|L2(0,τ),

as claimed.

In L2(R+) introduce the operator V0 by

(V0w)(t) =

∫ t

0

Q0(t, t1)w(t1)dt1 (t > 0; w ∈ L2(R+)).

Lemma 2.3. Let V0 be compact in L2(0, τ) for each finite τ , and the conditions (2.2),

and

(2.3) q|V0|L2(R+) < 1

hold. Then (2.1) has at least one solution. Moreover any solution x of (2.1) satisfies

the inequality

(2.4) |x|L2(R+) ≤
|f |L2(R+)

1 − q|V0|L2(R+)

.

Proof. On L2(0, T ), T < ∞, let us define the mapping Φ by (Φw)(t) = f(t) +

(V0Fw)(t) for a w ∈ L2(0, T ). Hence, according to the previous lemma, for an r > 0,

large enough,

|Φw|L2(0,T ) ≤ |f |L2(0,T ) + |V0|L2(0,T )q|w|L2(0,T ) ≤ r (|w|L2(0,T ) ≤ r).

So Φ maps a bounded set of L2(0, T ) into itself. Now the existence of a solution x(t)

is due to the Shauder Fixed Point Theorem, since V0 is compact. Furthermore, from

(2.1) it follows

|x|L2(0,T ) ≤ |f |L2(0,T ) + |V0|L2(0,T )q|x|L2(0,T ) (T ≤ ∞).

Now (2.3) implies the required result.

Furthermore, let Q0(t, s) = Q(t− s) with Q ∈ L1(R+). Then V0 = VQ, where the

operator VQ is defined by

(VQw)(t) =

∫ t

0

Q(t− t1)w(t1)dt1 (t > 0).

Let

Q̃(z) :=

∫ ∞

0

e−ztQ(t)dt (Re z ≥ 0)

be the Laplace transform of Q. Then by the Parseval equality we easily get |VQ|L2 =

ΛQ where

ΛQ := sup
s∈R

‖Q̃(is)‖n.

So the previous lemma implies
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Corollary 2.4. Let Q ∈ L1(R+) and the conditions (2.2) and

(2.5) qΛQ < 1

hold. Then the equation

(2.6) x(t) = f(t) +

∫ t

0

Q(t− t1)(Fx)(t1)dt1 (t > 0),

has at least one solution. Moreover any its solution x, satisfies the inequality

(2.7) |x|L2(R+) ≤
|f |L2(R+)

1 − qΛQ
.

3. THE MAIN RESULT

For a positive r ≤ ∞ denote Ω(r) = {v ∈ L2(R+) : ‖w(t)‖n ≤ r, t ≥ 0}. Let

F : Ω(r) → L2(R+) be a continuous causal mapping. Again consider equation (2.1).

It is assumed that there is a constant q = q(r), such that

(3.1) |Fv|L2(R+) ≤ q |v|L2(R+) (v ∈ Ω(r)).

Theorem 3.1. Let V0 be compact in L2(0, τ) for each finite τ , and the conditions

(3.1), and (2.3) hold. In addition, let a solution x of equation (2.1) (if it exists)

satisfy the a priory estimate

(3.2) ‖x(t)‖n < r, t ≥ 0.

Then (2.1) really has at least one solution x ∈ Ω(r). Moreover inequality (2.4) is

valid.

Proof. If r = ∞, then the required result is due to Lemma 2.1. Now let r < ∞.

Define on L2(0, T ) the function

h(w) =

{

1, w ∈ Ω(r),

0, w 6∈ Ω(r)
.

Such a function always exists due to the Urysohn theorem [3, p. 15]. In addition put

F̃ = hF . According to (3.1), the inequality

|F̃w|L2(R+) ≤ q|w|L2(R+) (w ∈ L2(R+))

is valid. Due to Lemma 2.2 a solution x̃ of (2.1) with F = F̃ exists and satisfies

inequality (2.4). This and (3.2) prove the theorem.

The previous theorem and Corollary 2.4 imply

Corollary 3.2. Let Q ∈ L1(R+) and conditions (3.1), (3.2) and (2.5) hold. Then

equation (2.6) has at least one solution x ∈ Ω(r). Moreover any its solution x,

satisfies inequality (2.7).
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Let the conditions (3.1), (3.2),

(3.3) f ∈ Ω(r) and γ0 := sup
t≥0

[

∫ t

0

Q2
0(t, s)ds ]1/2 <∞

hold. Then according to (2.1) and the Schwarz inequality,

|x|C(R+) ≤ |f |C(R+) + γ0q|x|L2(R+).

Now under (2.3), inequality (2.4) implies

(3.4) |x|C(R+) ≤ ζC(f,Q0) := |f |C(R+) +
γ0q|f |L2(R+)

1 − |V0|L2(R+)q
.

Thus if

(3.5) ζ(f,Q0) < r

then (3.2) holds and thanks to the previous theorem we arrive at the following result.

Corollary 3.3. Let V0 be compact in L2(0, τ) for each finite τ , and the conditions

(3.1), (3.3), (3.5) and (2.3) hold. Then (2.1) has at least one solution x ∈ Ω(r).

Moreover inequalities (2.4) and (3.4) are valid.

In particular, if Q0(t, s) = Q(t− s) and

(3.6) Q ∈ L2(R+) ∩ L1(R+),

then γ0 = |Q|L2(R+) and ζC(f,Q0) = ζC(f,Q) where

ζC(f,Q) := |f |C(R+) +
q|Q|L2(R+)|f |L2(R+)

1 − ΛQq
.

Now Theorem 3.1 yields

Corollary 3.4. Let the conditions (3.6), (3.1), (2.5) and ζC(f,Q) < r hold. Then

equation (2.1) has at least one solution x ∈ Ω(r). Moreover the inequalities (2.7) and

|x|C(R+) ≤ ζC(f,Q) are valid.

4. EQUATIONS WITH DIFFERENTIAL LINEAR PARTS

Consider the equation

(4.1) ẋ(t) = Ax(t) + [Fx](t) (ẋ = dx/dt),

where A is a constant Hurwitzian n× n-matrix. Take the initial condition

(4.2) x(0) = x0 ∈ C
n.

From (4.1) we get the equation

(4.3) x(t) = eAtx(0) +

∫ t

0

eA(t−t1)(Fx)(t1)dt1 (t > 0).
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A continuous solution of the latter integral equation will be called a mild solution of

problem (4.1), (4.2). Put

ΛA := sup
s∈R

‖(A− isI)−1‖n.

Thanks to Corollary 2.4, under the conditions (2.2) and

(4.4) qΛA < 1,

problem (4.1), (4.2) has at least one mild solution. Moreover any its mild solution x,

satisfies the inequality

(4.5) |x|L2(R+) ≤
|eAtx0|L2(R+)

1 − qΛA

.

From (4.3) and the Schwarz inequality we get

(4.6) |x|C(R+) ≤ ζ(x0, q, A) := (|eAt|C(R+) +
q|eAt|2L2(R+)

1 − qΛA

)‖x0‖n.

So Corollary 3.4 implies

Theorem 4.1. Let the conditions (3.1), (4.4) and ζ(x0, q, A) < r hold. Then problem

(4.1), (4.2) has at least one mild solution. Moreover any mild solution x of (4.1),

(4.2) satisfies inequalities (4.5) and (4.6).

Let us derive bounds for ΛA and ζ(x0, q, A). Let λk(A) (k = 1, . . . , n) denote the

eigenvalues of matrix A counting with their multiplicities, and

g(A) := (N2(A) −
n

∑

k=1

|λk(A)|2)1/2,

where N(A) is the Hilbert-Schmidt (Frobenius) norm of A, i.e. N 2(A) = Trace(AA∗).

The following properties of g(A) are valid [8, Section 2.1]:

(4.7) g(A) ≤
√

1/2N(A∗ − A) and g(Aeiτ + zI) = g(A) for every τ ∈ R, z ∈ C.

As it is proved in [8, Section 2.12],

(4.8) ‖(A− λI)−1‖n ≤
n−1
∑

k=0

gk(A)√
k!ρk+1(A, λ)

(λ 6∈ σ(A))

where σ(A) means the spectrum of A, and

ρ(A, λ) = min
k=1,...,n

|λ− λk(A)|.

Hence we easily get

ΛA ≤ Λ̃(A) :=
n−1
∑

k=0

gk(A)√
k!|α(A)|k+1

(λ 6∈ σ(A))
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where α(A) := maxk Re λk(A). Moreover, thanks to Corollary 2.7.2 from [8]

‖eAt‖n ≤ pA(t) where pA(t) := eα(A)t
n−1
∑

k=0

gk(A)

(k!)3/2
(t ≥ 0).

So

|eAt|L2(R+) ≤ [

∫ ∞

0

p2
A(t) dt]1/2 and |eAt|C(R+) ≤ max

t≥0
pA(t).

Clearly, the integral and maximum are simply calculated.

5. STABILITY OF EQUATIONS WITH

DIFFERENTIAL LINEAR PARTS

In the following definition it is assumed that problem (4.1), (4.2) has at least one

mild solution x for a given x0.

Definition 5.1. Let (F0)(t) ≡ 0. Then the zero solution of (4.1) is said to be stable

(in the Liapunov sense), if for any ε > 0, there exists a δ > 0, such that the condition

‖x0‖n ≤ δ implies the inequality |x|C(R+) ≤ ε for any mild solution x of (4.1), (4.2).

The zero solution of (4.1) is said to be L2-stable if it is stable, and there is an

open set B ⊆ Cn, such that x0 ∈ B implies x ∈ L2(R+). Besides, B is called the

region of attraction of the zero solution.

If the zero solution of (4.1) is L2-stable and B = Cn, then the zero solution is

said to be globally L2-stable.

Equation (4.1) is said to be absolutely L2-stable in the class of nonlinearities (2.2)

if under (2.2), there is a constants M which does not depend on a concrete form of

F (but which depends on q) such that |x|L2(R+) ≤M‖x0‖n for any mild solution x of

(4.1), (4.2).

From Theorem 4.1 it follows

Corollary 5.2. Let conditions (3.1) and (4.4) hold. Then the zero solution of (4.1)

is L2-stable. Moreover, if condition (4.4) holds, then (4.1) is L2-absolutely stable in

the class of nonlinearities (2.2).

Note that the above derived solution estimates give us bounds for the region of

attraction.

Furthermore, consider the equation

(5.1) ẋ(t) − Ax = F (x) + u(t).

where F maps Ω(r) into L2(R+) and u : R+ → C is given. This equation under the

condition

(5.2) x(0) = 0
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is equivalent to (2.6) with

(5.3) Q(t) = exp [At] and f(t) =

∫ t

0

eA(t−s)u(s)ds.

In this case we also define a mild solution of (5.1), (5.2) as a solution of (2.6) with

(5.3) taken into account. In the next definition the existence of mild solutions to

(5.1), (5.2) is assumed.

Definition 5.3. Equation (5.1) is said to be input-to-state L2-stable, if under (5.2),

for any ε > 0, there is a δ > 0, such that the condition |u|L2(R+) ≤ δ implies |x|L2(R+) ≤
ε.

Equation (5.1) is said to be globally input-to-state L2-stable if the conditions

(5.2) and u ∈ L2(R+) imply that any mild solution is in L2(R+).

Corollary 3.4 implies

Corollary 5.4. If conditions (3.1) and (4.4) hold, then equation (5.1) is input-to-

state L2-stable.

6. EQUATIONS WITH DIFFERENCE LINEAR PARTS

Consider the scalar difference equation

(6.1)
m

∑

k=0

Ckx(t− k) = [Fx](t) (t > 0)

with the continuous time t, constant n× n-matrices Ck (k = 1, . . . , m), C0 = I, and

the initial condition

(6.2) x(t) = φ(t) (−m ≤ t ≤ 0).

Here φ is a continuous function defined on [−m, 0].

Put Y (λ) = λm + C1λ
m−1 + · · · + Cm. It is assumed that all the zeros of Y (λ)

are inside the disc |z| < 1. Set

w(t) :=
1

2π

∫ ∞

−∞

e−iω(m+t)Y −1(e−iω) dω =
1

2πi

∫

|z|=1

zm+t−1Y −1(z) dz.

By the Laplace transform one can easily rewrite (6.1) as (2.6) with Q(t) = w(t) and

f(t) = y(t), where y(t) is a solution of the homogeneous equation

(6.3)
m

∑

k=0

Cky(t− k) = 0.

Denote

θY := sup
s∈R

‖Y −1(e−is)‖ = sup
|z|=1

‖Y −1(z)‖n.

Clearly problem (6.1), (6.2) has a piece-wise continuous solution
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Theorem 6.1. Let the conditions (2.2) and qθY < 1 hold. Then any solution x

of problem (6.1), (6.2) satisfies the inequality |x|L2(R+) ≤ MY |φ|C(−m,0), where the

constant MY does not depend on the initial conditions.

Indeed, since (6.3) is stable, |y|L2(R+) ≤ const |φ|C(−m,0). Now the result is due

to Corollary 2.4. �

Note that by (4.8) one can derive bounds for θY .

7. EQUATIONS WITH DIFFERENTIAL-DELAY LINEAR PARTS

Let W (τ) be a left-continuous n×n-matrix-valued function defined on [0, η] (η <

∞), whose entries are nondecreasing functions having bounded variations. Consider

in Cn the equation

(7.1) ẋ(t) =

∫ η

0

dW (τ)x(t− τ) + [Fx](t) (t > 0),

where F is a continuous causal mapping in L2(R+).

Below we also consider nonlinear operators with delay acting from L2(−η,∞)

into L2(R+).

Take the initial condition

(7.2) x(t) = φ(t) (−η ≤ t ≤ 0)

with a given continuous vector valued function φ defined on [−η, 0]. Introduce the

characteristic matrix

K(z) = zI −
∫ η

0

e−zτdW (τ) (z ∈ C).

A number λ is called a characteristic value of K(·) if det K(λ) = 0. Everywhere below

it is assumed that all the characteristic values of K(·) are in the open left half-plane.

That is, K(·) is stable.

Let

v(W ) :=

∫ η

0

‖dW (s)‖n

be the variation of W . That is, v(W ) is the limit of the sums

n
∑

k=1

‖W (tk) −W (tk−1)‖n (0 ≤ t1 ≤ · · · ≤ tn = η)

as maxk |tk − tk−1| → 0. The following quantity plays a key role hereafter:

θ(K) := max
−2v(W )≤s≤2v(W )

‖K−1(is)‖n.

Consider the linear equation

(7.3) ẏ(t) =

∫ η

0

W (dτ)y(t− τ).
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The Green function (the fundamental solution) to equation (3.1) is a matrix-valued

function G(t) satisfying that equation and the initial conditions

G(0+) = I, G(t) = 0 (t < 0).

We have

G(t) :=
1

2π

∫ ∞

−∞

etiωK−1(iω)dω (t ≥ 0).

By the variation of constants formula problem (7.1), (7.2) is equivalent to the equation

x(t) = y(t) +

∫ t

0

G(t− t1)(Fx)(t1)dt1 (t > 0),

where y is a solution of (7.3).

A continuous solution of the latter integral equation will be called a mild solution

of problem (7.1), (7.2).

Theorem 7.1. Let F : Ω(r) → L2(R+) be a causal mapping continuous in the L2-

norm. Let the conditions (3.1) and

(7.4) qθ(K) < 1

hold. Then there are positive constants ar and M0, independent of the initial function

and explicitly pointed below, such that the condition ar|φ|C(−η,0) < r provides the

existence of a mild solution x ∈ Ω(r) of problem (7.1), (7.2), and

|x|L2(R+) ≤M0|φ|C(−η,0), and |x|C(R+) ≤ ar|φ|C(−η,0).

To prove this theorem we need the following

Lemma 7.2. The equality

sup
s∈R1

‖K−1(is)‖n = sup
|s|≤2v(W )

‖K−1(is)‖n ≡ θ(K)

is true.

Proof. We have K(0) = W (η)−W (0). Since the entries of W are nondecreasing, this

means that ‖K(0)‖n = v(W ). Hence

‖K−1(0)‖n = sup
w∈Cn

‖K−1(0)w‖n

‖w‖n

=

sup
w1∈Cn

‖w1‖n

‖K(0)w1‖n

≥ 1

‖K(0)‖n

= 1/v(W ).

But

‖K−1(iy)‖n ≤ 1/(|y| − v(W )) ≤ 1/v(W ) (|y| ≥ 2v(W )).

Thus the maximum of ‖K−1(iy)‖n is attained on [−2v(W ), 2v(W )]. This proves the

result.
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Proof of Theorem 7.1: The Parseval equality implies

|G|L2(R+) = m2(K) := [
1

2π

∫ ∞

−∞

‖[K(iω)]−1‖2
ndω]1/2.

For simplicity put θ(K) = θ,m2(K) = m2. Since (7.3) is stable, there are constants

kL and kC , such that

(7.5) |y|L2(R+) ≤ kL|φ|C(−η,0) and |y|C(R+) ≤ kC |φ|C(−η,0).

Now thanks to to Corollary 3.4, we get

|x|L2(R+) ≤
kL|φ|C(−η,0)

1 − θ(K)q
and

(7.6) |x|C(R+) ≤ |φ|C(−η,0)(kC +
kLq|G|L2(R+)

1 − θ(K)q
).

So one can take

(7.7) ar = kC +
kLq|G|L2(R+)

1 − θ(K)q
and M0 =

kL

1 − θ(K)q
.

This proves the required result. �

Let us reduce to the form (2.6), the nonlinear differential delay equation

(7.8) x(t) +

∫ η

0

dW (τ)x(t− τ) =

∫ η

0

dsν(t, s)F0(x(t− s)) (t > 0)

where ν is a matrix whose entries are nondecreasing in s ∈ [0, η] functions of bounded

variations and F0 : Cn → Cn is a continuous function. We can write down
∫ η

0

dν(t, s)F0(x(t− s)) = [Fx](t) + f1(t)

where

[Fx](t) =

∫ η

0

dν(t, s)F0(x(t− s)) =

∫ t

t−η

dν(t, t− τ)F0(x(τ)); f1(t) ≡ 0 (t > η)

and

[Fx](t) =

∫ t

0

dν(t, t− τ)F0(x(τ)); f1(t) =

∫ 0

t−η

dν(t, t− τ)F0(φ(τ)) (0 ≤ t ≤ η).

So (7.8) can be written as (2.6) with Q(t) = G(t) and

f(t) = y(t) +

∫ t

0

G(t− s)f1(s)ds.

Thus the results of the present section are valid for equation (7.6).
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8. ESTIMATES FOR GREEN’S FUNCTIONS OF

DIFFERENTIAL-DELAY EQUATIONS

Recall that equation (7.3) is assumed to be exponentially stable and G is its

Green function.

Lemma 8.1. Let u be a solution of the equation

u̇(t) =

∫ η

0

dW (s)u(t− s) + f(t) (f ∈ L2(R+))

with the initial condition u(t) = 0, t < 0. Then

|u̇|L2(R+) ≤ |u|L2(R+)v(W ) + |f |L2(R+).

Proof. Clearly,

|u̇|L2(R+) ≤ |
∫ η

0

dW (s)u(t− s)|L2(R+) + |f |L2(R+)

= [

∫ ∞

0

‖
∫ η

0

dW (s)u(t− s)‖2
ndt]

1/2 + |f |L2(R+).

But u(t− s) = 0 (t < s). Hence,

|u̇|L2(R+) ≤ (

∫ η

0

‖dW (s)‖n) sup
−η≤s≤0

[

∫ ∞

0

‖u(t− s)‖2
ndt]

1/2 + |f |L2(R+)

= v(W ) |u|L2(R+) + |f |L2(R+).

As claimed.

Corollary 8.2. The derivative of the Green function to equation (7.3) satisfies the

inequality

|Ġ|L2(R+) ≤ |G|L2(R+)v(W ).

Lemma 8.3. The inequality |G|L2(R+) ≤ ψ(K) is true, where

ψ(K) :=
√

2θ(K)(1 + v(W )θ(K)).

Proof. We can write down

G(t) =
1

2π

∫ ∞

−∞

[K(iω)]−1 exp(iωt)(iω + c)(iω + c)−1 dω.

with a positive constant c. Hence, G(t) = ẇ(t) + cw(t), where

w(t) =
1

2π

∫ ∞

−∞

[K(iω)]−1 exp(iωt)(iω + c)−1dω.

Since e−ct is the Laplace original for (p + c)−1, it is not hard to check that w(t) is a

solution of the equation

ẇ(t) =

∫ η

0

dW (s)w(t− s) + Ie−ct
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with the zero initial condition w(t) = 0 for t ≤ 0. Since K is the Laplace transform

of G, then by the Parseval equality we easily get the relations

|w|L2(R+) ≤ θ(K)|e−ct|L2(R+) = θ(K)(2c)−1/2.

Furthermore, thanks to the previous lemma and the latter inequality, one can write

|ẇ|L2(R+) ≤ v(W )|w|L2(R+) + |e−tc|L2(R+) ≤
v(W )θ(K) + 1√

2c
.

Thus

|G|L2(R+) ≤ |ẇ|L2(R+) + c|w|L2(R+) ≤
v(W )θ(K) + 1 + cθ(K)√

2c
.

Taking c = θ−1(K)(v(W )θ(K) + 1), we obtain the required inequality.

From Lemma 8.3 now it follows

Corollary 8.4. The derivative of the Green function to equation (7.3) satisfies the

inequality

|Ġ|L2(R+) ≤ ψ(K)v(W ).

To prove an estimate for the sup-norm of the Green function we will apply the

following simple result: let a continuous vector-valued function h and its derivative ḣ

belong to space L2(R+). Then

‖h(t)‖2
n ≤ 2[

∫ ∞

t

‖h(s)‖2
nds

∫ ∞

t

‖ḣ(s)‖2
nds]

1/2 (t ≥ 0).

For the proof see Lemma 8.7.4 from [7].

By this result and Corollaries 8.2 and 8.4 we get

Corollary 8.5. The inequalities

|G|C(R+) ≤
√

2v(W )|G|L2(R+) ≤ 2
√

v(W )θ(K)(1 + v(W )θ(K))

are valid.

Denote

v1(W ) :=

∫ η

0

s‖dW (s)‖n.

Lemma 8.6. Any solution y of (7.3) satisfies the inequalities

(8.1) |y|C(R+) ≤ |G|C(R+)(‖φ(0)‖n + v1(W )|φ|C(−η,0))

and

(8.2) |y|L2(R+) ≤ |G|L2(R+)(‖φ(0)‖n + v1(W )|φ|C(−η,0)).
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Proof. Let us use the representation

(8.3) y(t) = G(t)φ(0) +

∫ η

0

dW (s)

∫ 0

−s

G(t− τ − s)φ(τ)dτ

cf. [12, 13], or [7, p. 148]. Hence,

|y|C(R+) ≤ |G|C(R+)(‖φ(0)‖n + |φ|C(−η,0)

∫ η

0

s‖dW (s)‖n).

This proves (8.1). Similarly, (8.2) can be proved.

According to the previous lemma inequalities (7.5) are true with

(8.4) kL ≤ ψ(K)(1 + v1(W )) and kC ≤ ψ(K)
√

2v(W )(1 + v1(W )).

This and (7.7) give us estimates for the region of attraction of the zero solution.

Denote, by Σ(K) the spectrum of K. That is Σ(K) is the set of the characteristic

values of K. Thanks to (4.8),

‖K−1(z)‖n ≤ Γ(K(z)) (z 6∈ Σ(K)).

Here

Γ(K(z)) =

n−1
∑

k=0

gk(B(z))√
k!dk+1(K(z))

(z 6∈ Σ(K)),

where d(K(z)) is the smallest modulus of eigenvalues of K(z):

d(K(z)) = min
k=1,...,n

|λk(K(z))|

for a fixed regular z; besides λk(K(z)) are the eigenvalues of matrix K(z) counting

with their multiplicities. We thus get.

Lemma 8.7. Let equation (7.3) be stable. Then θ(K) ≤ θ̃(K) where

θ̃(K) := max
|s|≤2v(W )

Γ(K(is)).

From Lemma 8.3. we have

|G|L2(R+) ≤ ψ̃(K) where ψ̃(K) :=

√

2θ̃(K)(1 + v(W )θ̃(K)).

Moreover, Corollary 8.5 yields the inequality |G|C(R+) ≤ ψ̃(K)
√

2v(W ). Thus in-

equalities (7.5) are true with

(8.5) kL ≤ ψ̃(K)(1 + v1(W )) and kC ≤ ψ̃(K)
√

2v(W )(1 + v1(W )).
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9. STABILITY OF EQUATIONS WITH DIFFERENTIAL-DELAY

LINEAR PARTS

In this section we consider equations with causal nonlinearities acting in L2(R+),

but as it is shown in Section 7, nonlinearities acting from L2(+,∞) into L2(R+) can

be easily reduced to the considered case.

Assume that problem (7.1), (7.2) has at least one mild solution x for a given φ.

Let (F0)(t) ≡ 0. Following Definition 5.1 we will say that the zero solution of (7.1)

is stable (in the Liapunov sense), if for any ε > 0, there exists a δ > 0, such that the

condition |φ|C(−η,0) ≤ δ implies the inequality |x|C(R+) ≤ ε for any mild solution x of

(7.1), (7.2).

The zero solution of (7.1) is said to be L2-stable if it is stable, and there is an

open set B ⊆ Cn, such that φ ∈ B implies x ∈ L2(R+). Besides, B is called the

region of attraction of the zero solution.

If the zero solution of (7.1) is L2-stable and B = C
n, then the zero solution is

said to be globally L2-stable.

Equation (7.1) is said to be absolutely L2-stable in the class of nonlinearities

(2.2), if under (2.2) there is a constant M which does not depend on a concrete form

of F (but which depends on q) such that |x|L2(R+) ≤ M |φ|C(−η,0) for any mild solution

x of (7.1), (7.2).

From Theorem 7.1 it follows

Corollary 9.1. Let conditions (3.1) and (7.4) hold. Then the zero solution of (7.1)

is L2-stable. In addition, an initial function φ belongs to the region of attraction of

the zero solution, provided

ar|φ|C(−η,0) < r,

where ar is defined by (7.7).

Moreover, if condition (7.4) hold, then (7.1) is L2-absolutely stable in the class

of nonlinearities (2.2).

Recall that inequalities (8.4) for ar are true.

Furthermore, consider the equation

(9.1) ẋ(t) −
∫ η

0

dW (τ)x(t− τ) = F (x) + u(t),

where F maps Ω(r) into L2(R+) and u : R+ → Cn is given. This equation under the

condition

(9.2) x(t) = 0 (t ≤ 0)
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is equivalent to (2.6) with

(9.3) Q(t) = G(t) and f(t) =

∫ t

0

G(t− s)u(s)ds.

In this case we also define a mild solution of (9.1), (9.2) as a continuous solution of

(2.6) with (9.3) taken into account.

Following Definition 5.3, we will say that equation (9.1) is input-to-state L2-

stable, if under condition (9.2), for any ε > 0, there is a δ > 0, such that condition

|u|L2(R+) ≤ δ implies |x|L2(R+) ≤ ε. Equation (9.1) is said to be globally input-to-state

L2-stable if conditions (9.2) and u ∈ L2(R+) imply that any mild solution of (9.1) is

in L2(R+).

Corollary 3.3 implies

Corollary 9.2. If conditions (3.1) and (7.4) hold, then equation (9.1) is input-to-

state L2-stable.

Moreover, if conditions (2.2) and (7.4) hold, then equation (9.1) is globally input-

to-state L2-stable.

10. LINEAR PARTS WITH ONE DELAY

In this section we illustrate our results in the case of equations with one delay in

linear parts. First let us consider the linear equation

(10.1) ẏ(t) = Ay(t− h) (t > 0)

where A is a constant n× n-matrix and 0 < h <∞. So in the considered case η = h

and the eigenvalues of K are λj(K(z)) = z− e−zhλj(A) since K(z) = zI − e−zhA. In

addition,

v(W ) = ‖A‖n and v1(W ) = h‖A‖n.

According to (4.8), we have the inequality θ(K) ≤ θA, where

θA :=

n−1
∑

k=0

gk(A)√
k!dk+1(K)

,

and

d(K) := inf
j=1,...,n; |y|≤2‖A‖

|yi+ λj(A)e−iyh|.

Now Lemma 8.3 and Corollary 8.5 imply

Lemma 10.1. Let equation (10.1) be stable. Then its Green function is subject to

the inequalities

|G|L2(R+) ≤ ψA :=
√

2θA(1 + ‖A‖nθA) and |G|C(R+) ≤ ψA

√

2‖A‖n.

In particular, if A is a normal matrix, then g(A) = 0 and θA = 1/d(K). Let us

use the following result.
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Lemma 10.2. Let h, a0 ∈ (0,∞) and a0h < π/4. Then

inf
ω∈R

|iω + a0e
−ihω| ≥ a0 cos 2ha0.

For the proof see [10]. From the latter lemma we get: let all the eigenvalues of A

be real and negative, and

(10.2) h|λj(A)| < π/4 (j = 1, . . . , n).

Then

(10.3) d̃A = min
j=1,...,n

|λj(A)| cos(2hλj(A)),

Due to Lemma 10.1 we get the following result.

Corollary 10.3. Let A be a Hermitian negative definite matrix and (10.2) hold. Then

the Green function of equation (10.1) satisfies the estimates

|G|L2(R+) ≤ ψ̃A :=

√

2

d̃A

(1 +
‖A‖n

d̃A

), |G|C(R+) ≤ ψ̃A

√

2‖A‖n.

Now one can apply Theorem 7.1 and its corollaries to the equation

(10.4) ẋ(t) = Ax(t− h) + [Fx](t).

In particular, Corollary 9.1 implies

Corollary 10.4. Let a causal operator F continuously map L2(R+) into itself and A

be a negative Hermitian matrix, such that the conditions (10.2) and

q < |λj(A)| cos (2hλj(A)) (j = 1, . . . , n)

hold. Then equation (10.4) is absolutely L2-stable in the class of nonlinearities (2.2).
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