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ABSTRACT. In this paper, we are concerned with the following generalized Sturm-Liouville mul-

tipoint boundary value problem

u′′(t) + h (t) f (t, u (t) , u′ (t)) = 0, 0 < t < 1,

au (0) − bu′(0) =

m−2
∑

i=1

aiu(ξi), cu (1) + du′(1) =

m−2
∑

i=1

biu(ξi),

where 0 < ξ1 < · · · < ξm−2 < 1 (m ≥ 3) , a, b, c, d ∈ [0,∞), ai, bi ∈ (0,∞) (i = 1, 2, . . . , m − 2) are

constants satisfying some suitable conditions. Existence criteria for at least three positive solutions

are established by using the fixed point theorem of Avery and Peterson. The interesting point is the

nonlinear term f which is involved with the first order derivative explicitly.

AMS (MOS) Subject Classification. 34B15, 39A10.

1. INTRODUCTION

In this paper we are interested in the existence of three positive solutions for the

following generalized Sturm-Liouville multipoint boundary value problem (BVP)

(1.1) u′′(t) + h (t) f (t, u (t) , u′ (t)) = 0, 0 < t < 1,

(1.2) au (0) − bu′(0) =

m−2
∑

i=1

aiu(ξi), cu (1) + du′(1) =

m−2
∑

i=1

biu(ξi),

where a, b, c, d ∈ [0,∞), 0 < ξ1 < · · · < ξm−2 < 1 (m ≥ 3), ai, bi ∈ (0,∞) are

constants for i = 1, 2, . . . , m − 2.

The study of multi-point boundary value problems for linear second order ordi-

nary differential equations was initiated by I1’in and Moiseev [7]. Since then, there

has been much attention paid on the study of nonlinear multipoint boundary value

problems, see [1, 3, 4, 6, 8, 9, 10] and the references therein.
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There are many papers dealing with the existence of positive solutions for multi-

point BVP, in which the nonlinear term f is independent of the first order derivative

with different boundary conditions. In particular, Ma [10] established some existence

results of positive solutions for the problem

(Lu) (t) + h (t) f (t, u (t)) = 0, 0 < t < 1,

au (0) − bp(0)u′(0) =

m−2
∑

i=1

aiu(ξi), cu (1) + dp(1)u′(1) =

m−2
∑

i=1

biu(ξi),

where (Lu) (t) = (p(t)u′(t))′−q(t)u(t), the main tool is the well-known Guo-Krasnosel-

skii’s fixed point theorems [5].

In [4], by a new fixed point theorem, Guo and Ge gave sufficient conditions for

the existence of at least one solution to the following three point boundary value

problem

u′′ + f(t, u, u′) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η).

Motivated by the works above, our purpose of this paper is to establish some

sufficient conditions for the existence of three positive solutions to the problem (1.1)

and (1.2).

The rest of the paper is organized as follows. In section 2, we provide some

lemmas which are useful later. An important lemma and criteria for the existence

of three positive solutions for the generalized Sturm-Liouville multipoint BVP (1.1)

and (1.2) are established in section 3. Finally, in section 4, we give an example to

illustrate our results.

For convenience, we list the following hypotheses:

(A1) ρ = ac + ad + bc > 0, ai, bi satisfy a >
∑m−2

i=1 ai, c >
∑m−2

i=1 bi.

(A2) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [σ, 1 − σ] such that h(t0) > 0,

where σ ∈ (0, 1/2) is a constant, f ∈ C([0, 1] × [0,∞) × (−∞,∞), [0,∞)).

2. PRELIMINARIES

In this section, we present some preliminaries and basic lemmas which are useful

later.

Firstly, for convenience, we define

x(t) = at + b and y(t) = d + c(1 − t) for t ∈ [0, 1]

and denote

∆ :=

∣

∣

∣

∣

∣

−
∑m−2

i=1 aix (ξi) ρ −
∑m−2

i=1 aiy (ξi)

ρ −
∑m−2

i=1 bix (ξi) −
∑m−2

i=1 biy (ξi)

∣

∣

∣

∣

∣

.
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Then it is easy to see that x(t) and y(t) are the solution of the problems x′′(t) =

0, x (0) = b, x′ (0) = a and y′′(t) = 0, y(1) = d, y′(1) = −c respectively.

Lemma 2.1. [10] Assume (A1) holds. If ∆ 6= 0, then for g ∈ C[0, 1], the problem

(2.1) u′′(t) + g (t) = 0, 0 < t < 1,

(2.2) au (0) − bu′(0) =

m−2
∑

i=1

aiu(ξi), cu (1) + du′(1) =

m−2
∑

i=1

biu(ξi)

has a unique solution

(2.3) u (t) =

∫ 1

0

G (t, s) g (s) ds + x (t) A(g) + y (t) B(g),

where

(2.4) G (t, s) =
1

ρ

{

(d + c(1 − t)) (as + b) ,

(at + b) (d + c(1 − s)) ,

0 ≤ s ≤ t ≤ 1,

0 ≤ t ≤ s ≤ 1,

(2.5) A (g) :=
1

∆

∣

∣

∣

∣

∣

∑m−2
i=1 ai

∫ 1

0
G (ξi, s) g(s)ds ρ −

∑m−2
i=1 aiy (ξi)

∑m−2
i=1 bi

∫ 1

0
G (ξi, s) g(s)ds −

∑m−2
i=1 biy (ξi)

∣

∣

∣

∣

∣

,

(2.6) B(g) :=
1

∆

∣

∣

∣

∣

∣

−
∑m−2

i=1 aix (ξi)
∑m−2

i=1 ai

∫ 1

0
G (ξi, s) g(s)ds

ρ −
∑m−2

i=1 bix (ξi)
∑m−2

i=1 bi

∫ 1

0
G (ξi, s) g(s)ds

∣

∣

∣

∣

∣

.

For the sake of convenience, we give the following hypothesis.

(A3) ∆ < 0, ρ −
∑m−2

i=1 aiy (ξi) > 0, ρ −
∑m−2

i=1 bix (ξi) > 0.

Lemma 2.2. If (A1) and (A3) hold, then for g ∈ C[0, 1] with g ≥ 0, the unique

solution u of the problem (2.1) and (2.2) satisfies

(2.7) u (t) ≥ 0 for t ∈ [0, 1] and min
σ≤t≤1−σ

u (t) ≥ τ1 ‖u‖0 ,

where τ1 = min
{

y(1−σ)
y(0)

, x(σ)
x(1)

}

and ‖u‖0 := max0≤t≤1 |u (t)|.

Proof. From Lemma 2.1, we know that G(t, s) ≥ 0. From (A3), (2.5) and (2.6),

A(g) ≥ 0 and B(g) ≥ 0. Thus by (2.3) we get that u(t) ≥ 0 for t ∈ [0, 1].

In view of (2.4), it is easy to see that G (t, s) = G (s, t), further

(2.8) G (t, s) ≤ G (s, s) , t, s ∈ [0, 1].

For t ∈ [σ, 1 − σ], s ∈ [0, 1], we have

G (t, s)

G (s, s)
=

{

y(t)
y(s)

,
x(t)
x(s)

,

s ≤ t,

t ≤ s,
≥

{

y(1−σ)
y(0)

,
x(σ)
x(1)

,

s ≤ t,

t ≤ s,
≥ τ1.

That is

(2.9) G(t, s) ≥ τ1G(s, s).
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By Lemma 2.1 and (2.8), we have

‖u‖0 = max
0≤t≤1

u(t) = max
0≤t≤1

(
∫ 1

0

G(t, s)g(s)ds + x(t)A(g) + y(t)B(g)

)

≤

∫ 1

0

G (s, s) g (s) ds + x (1)A(g) + y (0)B(g).(2.10)

Hence, for t ∈ [σ, 1 − σ], combining (2.9) and (2.10) with the monotonicity of x and

y, we can conclude that

u (t) =

∫ 1

0

G (t, s) g (s) ds + x (t) A(g) + y (t) B(g)

≥

∫ 1

0

τ1G (s, s) g (s) ds + x (σ)A(g) + y (1 − σ) B(g)

≥ τ1

[
∫ 1

0

G (s, s) g (s) ds + x (1)A(g) + y (0) B(g)

]

≥ τ1 ‖u‖0 .

The proof is complete.

Let γ and θ be nonnegative continuous convex functionals on a cone K, α be

a nonnegative continuous concave functional on K, β be a nonnegative continuous

functional on K, and m1, m2, m3, m4 be positive numbers, we define the following

convex sets

P (γ, m4) = {u ∈ K : γ (u) < m4} ;

P (γ, α, m2, m4) = {u ∈ K : m2 ≤ α (u) , γ (u) ≤ m4} ;

P (γ, θ, α, m2, m3, m4) = {u ∈ K : m2 ≤ α (u) , θ (u) ≤ m3, γ (u) ≤ m4} ;

and a closed set

Q (γ, β, m1, m4) = {u ∈ K : m1 ≤ β (u) , γ (u) ≤ m4} .

To prove our main results, we need the following fixed point theorem due to

Avery and Peterson.

Lemma 2.3. [2] Let K be a cone in a real Banach space E. Let γ and θ be nonnegative

continuous convex functionals on K, α be a nonnegative continuous concave functional

on K, and β be a nonnegative continuous functional on K satisfying β (λu) ≤ λβ (u)

for 0 ≤ λ ≤ 1, such that for some positive numbers ε and m4,

α (u) ≤ β (u) and ‖u‖ ≤ εγ (u) , for all u ∈ P (γ, m4).

Suppose T : P (γ, m4) → P (γ, m4) is completely continuous and there are positive

numbers m1, m2 and m3 with m1 < m2 such that

(B1) {u ∈ P (γ, θ, α, m2, m3, m4) : α (u) > m2} 6= ∅, α (Tu) > m2 for u ∈ P (γ, θ, α,

m2, m3, m4);

(B2) α (Tu) > m2 for u ∈ P (γ, α, m2, m4) with θ (Tu) > m3;

(B3) 0 /∈ Q (γ, β, m1, m4) and β (Tu) < m1 for u ∈ Q (γ, β, m1, m4) with β (u) = m1.
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Then T has at least three fixed points u1, u2, u3 ∈ P (γ, m4) such that

γ (ui) ≤ m4 for i = 1, 2, 3, m2 < α (u1) ;

m1 < β (u2) with α (u2) < m2; β (u3) < m1.

3. MAIN RESULTS

Let E be the Banach space C1[0, 1] with the norm ‖u‖ = max {‖u‖0 , ‖u′‖0},

where ‖u′‖0 = max0≤t≤1 |u
′(t)|. Set

K =
{

u ∈ E : u is nonnegative, concave on [0, 1] and u satisfies (1.2),

min
t∈[σ,1−σ]

u(t) ≥ τ1 ‖u‖0

}

.(3.1)

Clearly, K is a cone of E. Now from Lemma 2.1, the problem (1.1) and (1.2) has a

solution u if and only if u is the fixed point of the operator equation

u (t) =

∫ 1

0

G (t, s)h (s) f (s, u (s) , u′ (s)) ds + x (t) A(hf) + y (t) B(hf) := (Tu) (t) .

Assume that (A1), (A2) and (A3) hold. By Lemma 2.2, we know that Tu (t) ≥ 0 and

(Tu)′′(t) = −h(t)f (t, u(t), u′(t)) ≤ 0 for u ∈ K. Moreover, according to Lemma 2.2,

we can conclude that Tu ∈ K. Applying Arzela-Ascoli lemma, it is easy to see that

T is completely continuous.

Now we give a lemma which is important in establishing the existence of triple

positive solutions of the problem (1.1) and (1.2).

For notational convenience, we denote

Λ1 =
b +

∑m−2
i=1 aiξi

a −
∑m−2

i=1 ai

, Λ2 =
d +

∑m−2
i=1 bi (1 − ξi)

c −
∑m−2

i=1 bi

.

Lemma 3.1. Assume (A1) holds, if u ∈ K, then

(3.2) ‖u‖0 ≤ τ2 ‖u
′‖0 ,

where

τ2 = max {τ21, τ22} ,

τ21 = max

{

aξ1 + b

a −
∑m−2

i=1 ai

, Λ1

(

1 +
ξm−2 (a − a1)

a1ξ1

)

, Λ1

(

1 + min
1≤i≤m−2

a − ai

aiξi

)

}

,

τ22 = max

{

min
1≤i≤m−2

cΛ2 − d

bi (1 − ξi)
,
(1 − ξ1) (cΛ2 − d)

bm−2 (1 − ξm−2)
,
d + c − cξm−2

c −
∑m−2

i=1 bi

}

.
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Proof. For u ∈ K, we suppose ‖u‖0 = max0≤t≤1 u (t) = u (ξ). If ξ = 0, then by the

concavity of u and the condition (A1), we know that u′(0) ≤ 0 and

au(0) − bu′(0) ≥ au(0) >
m−2
∑

i=1

aiu(0) ≥
m−2
∑

i=1

aiu(ξi),

which contradicts the assumption that u satisfies (1.2). Similarly, if ξ = 1, then we

can get that

cu(1) + du′(1) ≥ cu(1) >
m−2
∑

i=1

biu(1) ≥
m−2
∑

i=1

biu(ξi),

which is a contradiction with the assumption that u satisfies (1.2). Thus ‖u‖0 =

u (ξ) , ξ ∈ (0, 1). Furthermore

‖u′‖0 = max
0≤t≤1

|u′(t)| = max{|u′(0)|, |u′(1)|}.

In the following, we concentrate on the existence of constant τ2.

First, we suppose that ‖u′‖0 = |u′ (0)| = u′ (0).

By the concavity of u on [0, 1], we have u′ (0) ≥ (u (ξi) − u (0)) /ξi, i = 1, 2, . . . , m−

2. Take into account that au (0) − bu′(0) =
∑m−2

i=1 aiu(ξi), it follows that

m−2
∑

i=1

aiξiu
′ (0) ≥

m−2
∑

i=1

aiu (ξi) −
m−2
∑

i=1

aiu (0) = au (0) − bu′ (0) −
m−2
∑

i=1

aiu (0) ,

hence

(3.3) u (0) ≤
b +

∑m−2
i=1 aiξi

a −
∑m−2

i=1 ai

u′(0) = Λ1u
′ (0) .

From ‖u‖0 = u(ξ), ξ ∈ (0, 1), we know that there are three cases to be considered.

Case 1. ξ ∈ (0, ξ1]. The concavity of u implies u′ (0) ≥ (u (ξ) − u(0)) /ξ, so

(3.4) au(ξ) − au(0) ≤ aξu′(0).

Since u (ξi) ≤ u (ξ), we have

(3.5) au (0) − bu′ (0) ≤
m−2
∑

i=1

aiu (ξ) .

From (3.4) and (3.5), we obtain

u (ξ) ≤
aξ + b

a −
∑m−2

i=1 ai

u′ (0) ≤
aξ1 + b

a −
∑m−2

i=1 ai

u′ (0) ,

that is

(3.6) ‖u‖0 ≤
aξ1 + b

a −
∑m−2

i=1 ai

‖u′‖0 .
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Case 2. ξ ∈ (ξ1, ξm−2]. According to the property of b, we get

au(0) = bu′ (0) +

m−2
∑

i=1

aiu (ξi) ≥ a1u(ξ1),

which combines with the inequality u(ξ1)−u(0)
ξ1

≥ u(ξ)−u(0)
ξ

and (3.3), we have

u (ξ) ≤

(

1 +
ξ (a − a1)

a1ξ1

)

u (0) ≤ Λ1

(

1 +
ξm−2 (a − a1)

a1ξ1

)

u′ (0) ,

that is

(3.7) ‖u‖0 ≤ Λ1

(

1 +
ξm−2 (a − a1)

a1ξ1

)

‖u′‖0 .

Case 3. ξ ∈ (ξm−2, 1). There are au (0)− bu′ (0) ≥ aiu (ξi) , i = 1, 2, . . . , m− 2, so

a
ai

u (0) − u (0)

ξi

≥
a
ai

u (0) − b
ai

u′ (0) − u (0)

ξi

≥
u (ξi) − u (0)

ξi

≥
u (ξ) − u (0)

ξ
.

It follows that

u (ξ) ≤ min
1≤i≤m−2

(

1 +
ξ (a − ai)

aiξi

)

u (0) ≤ min
1≤i≤m−2

(

1 +
a − ai

aiξi

)

u (0) ,

combining with (3.3), we obtain that

(3.8) ‖u‖0 = u(ξ) ≤ Λ1

(

1 + min
1≤i≤m−2

a − ai

aiξi

)

‖u′‖0 .

Consequently, from (3.6), (3.7) and (3.8), we have

(3.9) ‖u‖0 ≤ τ21 ‖u
′‖0 .

Secondly, suppose that ‖u′‖0 = |u′ (1)|. Again, by the concavity of u on [0, 1], we

have

u′ (1) ≤
u (ξi) − u (1)

ξi − 1
, i = 1, 2, . . . , m − 2,

and by the condition cu (1) + du′(1) =
∑m−2

i=1 biu(ξi), we know that

−
m−2
∑

i=1

bi (1 − ξi) u′ (1) ≥
m−2
∑

i=1

biu (ξi) −
m−2
∑

i=1

biu (1) = cu (1) + du′ (1) −
m−2
∑

i=1

biu (1) ,

therefore

(3.10) u (1) ≤
d +

∑m−2
i=1 bi (1 − ξi)

c −
∑m−2

i=1 bi

(−u′ (1)) = Λ2 |u
′ (1)| .

Similarly, we have the following discussion.

Case 1. ξ ∈ (0, ξ1]. There are u(ξ)−u(1)
ξ−1

≥ u(ξi)−u(1)
ξi−1

for i = 1, 2, . . . , m − 2, so we

get

cu(1) + du′(1) ≥ biu (ξi) ≥
bi (ξi − ξ)

1 − ξ
u (1) +

bi (1 − ξi)

1 − ξ
u (ξ) ,

thus
bi (1 − ξi)

1 − ξ
u (ξ) ≤ cu (1) + du′ (1) .
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By (A1), it is easy to check that cΛ2 − d > 0, and in view of (3.10), we have

u (ξ) ≤
cΛ2 − d

bi (1 − ξi)
(−u′ (1)) for i = 1, 2, . . . , m − 2.

That is

(3.11) ‖u‖0 ≤ min
1≤i≤m−2

{

cΛ2 − d

bi (1 − ξi)

}

‖u‖0 .

Case 2. ξ ∈ (ξ1, ξm−2]. The concavity of u implies that u(ξm−2)−u(1)
ξm−2−1

≤ u(ξ)−u(1)
ξ−1

.

So

cu(1) + du′(1) ≥ bm−2u (ξm−2) ≥ bm−2

(

1 − ξm−2

1 − ξ
u(ξ) +

ξm−2 − ξ

1 − ξ
u(1)

)

,

by (3.10) and cΛ2 − d > 0, it follows that

u (ξ) ≤
(1 − ξ) (cΛ2 − d)

bm−2 (1 − ξm−2)
(−u′ (1)) ≤

(1 − ξ1) (cΛ2 − d)

bm−2 (1 − ξm−2)
(−u′ (1)) ,

that is

(3.12) ‖u‖0 ≤
(1 − ξ1) (cΛ2 − d)

bm−2 (1 − ξm−2)
‖u′‖0 .

Case 3. ξ ∈ (ξm−2, 1). Again, by the concavity of u we have u′ (1) ≤ u(ξ)−u(1)
ξ−1

,

thus

cu(ξ) + cu(1 − ξ)u′(1) ≤ cu(1).

In view of u ∈ K, we get cu (1) + du′ (1) ≤
∑m−2

i=1 biu (ξ), and

cu(ξ) + cu(1 − ξ)u′(1) + du′ (1) ≤
m−2
∑

i=1

biu (ξ) ,

therefore

(3.13) ‖u‖0 = u (ξ) ≤
d + c (1 − ξ)

c −
∑m−2

i=1 bi

(−u′ (1)) ≤
d + c − cξm−2

c −
∑m−2

i=1 bi

‖u′‖0 .

By (3.11), (3.12) and (3.13), we obtain

(3.14) ‖u‖0 ≤ τ22 ‖u
′‖0 .

So from (3.9) and (3.14), we get ‖u‖0 ≤ max{τ21, τ22} ‖u
′‖0 = τ2 ‖u

′‖0.

We are now ready to apply Avery-Peterson’s fixed point theorem to the operator

T to give the sufficient conditions for the existence of at least three positive solutions

to the problem (1.1) and (1.2).

Let the nonnegative continuous concave functional α, the nonnegative continuous

convex functionals β and γ, and the nonnegative continuous functional θ be defined

on the cone K by

α(u) = min
σ≤t≤1−σ

u (t) , γ (u) = max
0≤t≤1

|u′ (t)|
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θ(u) = β(u) = max
0≤t≤1

u (t) for u ∈ K.

Now for convenience we introduce the following notations. Let

S = max

{
∣

∣

∣

∣

x′ (0)

∫ 1

0

1

ρ
y (s)h (s) ds + x′ (0) A (h) + y′ (0)B(h)

∣

∣

∣

∣

,

∣

∣

∣

∣

y′ (1)

∫ 1

0

1

ρ
x (s)h (s) ds + x′ (1)A (h) + y′ (1)B (h)

∣

∣

∣

∣

}

,

M = min

{
∫ 1

0

G (σ, s)h (s) ds + x (σ) A (h) + y (σ) B (h) ,

∫ 1

0

G (1 − σ, s) h (s) ds + x (1 − σ) A (h) + y (1 − σ) B (h)

}

and

N = max
0≤t≤1

(
∫ 1

0

G (t, s)h (s) ds + x(t)A (h) + y(t)B (h)

)

.

Theorem 3.2. Suppose (A1)−(A3) hold and f (t, 0, 0) 6≡ 0 for t ∈ [0, 1]. If there exist

positive numbers m1, m2 and m4 with m1 < m2 such that the following conditions

are satisfied:

(C1) f (t, µ, ν) ≤ m4/S for (t, µ, ν) ∈ [0, 1] × [0, τ2m4] × [−m4, m4] ;

(C2) f (t, µ, ν) > m2/M for (t, µ, ν) ∈ [σ, 1 − σ] × [m2, m2/τ1] × [−m4, m4] ;

(C3) f (t, µ, ν) ≤ m1/N for (t, µ, ν) ∈ [0, 1] × [0, m1] × [−m4, m4].

Then the problem (1.1) and (1.2) has at least three positive solutions u1, u2, and

u3 satisfying

(3.15) max
0≤t≤1

|u′
i (t)| ≤ m4 for i = 1, 2, 3; m2 < min

σ≤t≤1−σ
u1 (t) ;

(3.16) m1 < max
0≤t≤1

u2 (t) with min
σ≤t≤1−σ

u2 (t) < m2; max
0≤t≤1

u3 (t) < m1.

Proof. By the definition of operator T and its properties, it suffices to show that the

conditions of Lemma 2.3 hold with respect to T .

We first show that if (C1) is satisfied, then

(3.17) T : P (γ, m4) → P (γ, m4).

In fact, for u ∈ P (γ, m4), there is γ (u) = max0≤t≤1 |u
′ (t)| ≤ m4. With

Lemma 3.1, there is ‖u‖0 ≤ τ2 ‖u
′‖0 ≤ τ2m4, and assumption (C1) implies f(t, u(t),

u′(t)) ≤ m4/S for t ∈ [0, 1]. On the other hand, for u ∈ K, there is Tu ∈ K, then Tu



322 Y-W. ZHANG AND H-R. SUN

is concave on [0, 1], and max0≤t≤1

∣

∣(Tu)′ (t)
∣

∣ = max
{
∣

∣(Tu)′ (0)
∣

∣ ,
∣

∣(Tu)′ (1)
∣

∣

}

, so

γ (Tu) = max
0≤t≤1

∣

∣(Tu)′ (t)
∣

∣

= max
0≤t≤1

∣

∣

∣

∣

y′(t)

∫ t

0

1

ρ
x(s)h(s)f(s, u(s), u′(s))ds

+x′(t)

∫ 1

t

1

ρ
y(s)h(s)f(s, u(s), u′(s))ds + x′(t)A(hf) + y′(t)B(hf)

∣

∣

∣

∣

≤
m4

S
max

{
∣

∣

∣

∣

x′(0)

∫ 1

0

1

ρ
y (s)h (s) ds + x′(0)A (h) + y′(0)B (h)

∣

∣

∣

∣

,

∣

∣

∣

∣

y′(1)

∫ 1

0

1

ρ
x (s) h (s) ds + x(1)A (h) + y′(1)B (h)

∣

∣

∣

∣

}

= m4.

Therefore, (3.17) is satisfied.

We choose u (t) = m2/τ1 for 0 ≤ t ≤ 1. It is easy to see that

u (t) = m2/τ1 ∈ P (γ, θ, α, m2, m2/τ1, m4) and α (u) > m2.

Hence

{P (γ, θ, α, m2, m2/τ1, m4) : α (u) > m2} 6= ∅.

For u ∈ P (γ, θ, α, m2, m2/τ1, m4), there is m2 ≤ u (s) ≤ m2/τ1 and |u′ (s)| ≤ m4 for

s ∈ [σ, 1 − σ]. Hence by condition (C2), one has that f(t, u(t), u′(t)) > m2/M for

t ∈ [σ, 1 − σ]. So by the definition of the functional α we see that

α (Tu) = min
σ≤t≤1−σ

Tu (t) = min {(Tu) (σ) , (Tu) (1 − σ)}

= min

{
∫ 1

0

G(σ, s)h(s)f(s, u(s), u′(s))ds + x(σ)A(hf) + y(σ)B(hf),

∫ 1

0

G(1 − σ, s)h(s)f(s, u(s), u′(s))ds + x(1 − σ)A(hf) + y(1 − σ)B(hf)

}

≥
m2

M
min

{
∫ 1

0

G(σ, s)h(s)ds + x(σ)A(h) + y(σ)B(h),

∫ 1

0

G (1 − σ, s)h (s) ds + x (1 − σ)A(h) + y (1 − σ) B(h)

}

= m2.

Therefore, we get α(Tu) > b for u ∈ P (γ, θ, α, m2, m2/τ1, m4) and condition (B1) in

Lemma 2.3 is satisfied.

We now prove that (B2) in Lemma 2.3 holds. In fact, if u ∈ P (γ, θ, m2, m4)

with θ (Tu) > m2/τ1, then

α (Tu) = min
σ≤t≤1−σ

Tu(t) ≥ τ1 max
0≤t≤1

Tu(t) = τ1θ (Tu) > m2.

Finally, we assert that (B3) in Lemma 2.3 also holds.
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Since β(0) = 0 < m1, so 0 /∈ Q (γ, β, m1, m4). Assume that u ∈ Q (γ, β, m1, m4)

with β (u) = m1, then, by the condition (C3) we obtain that

β(Tu) = max
0≤t≤1

Tu (t)

= max
0≤t≤1

∫ 1

0

G (t, s)h (s) f(s, u(s), u′(s))ds + x(t)A(hf) + y(t)B(hf)

≤
m1

N
max
0≤t≤1

[
∫ 1

0

G (t, s)h (s) ds + x (t) A (h) + y (t)B (h)

]

= m1.

To sum up, (B1)−(B3) hold. Thus from 2.3 and the assumption that f(t, 0, 0) 6≡ 0

on [0, 1], the BVP (1.1) and (1.2) has at least three positive solutions u1, u2, u3 such

that (3.15) and (3.16) hold. The proof is complete.

4. EXAMPLE

In this section, we give an example to illustrate our results.

Let h (t) = 1 and m = 4, a = c = 4, b = d = 2, ξ1 = 1/4, ξ2 = 1/2, a1 = a2 =

b1 = b2 = 1/2. We consider the following BVP

(4.1) u′′(t) + f (t, u (t) , u′ (t)) = 0, 0 < t < 1

(4.2) 4u (0) − 2u′ (0) = u (1/4) + u (1/2) , 4u (1) + 2u′ (1) = u (1/4) + u (1/2) ,

where

f(t, µ, ν) =























1
2
t + 7

10
µ3 +

(

ν
60

)3
, t ∈ [0, 1], µ ∈ (−∞, 4], ν ∈ (−∞,∞);

1
2
t + 7

10
(5 − µ)µ3 +

(

ν
60

)3
, t ∈ [0, 1], µ ∈ (4, 5), ν ∈ (−∞,∞);

1
2
t + 7

10
(µ − 5)µ3 +

(

ν
60

)3
, t ∈ [0, 1], µ ∈ (5, 5.5], ν ∈ (−∞,∞);

1
2
t + 9317

160
+

(

ν
60

)3
, t ∈ [0, 1], µ ∈ (5.5,∞), ν ∈ (−∞,∞).

It is easy to see that x(t) = 4t + 2, y(t) = −4t + 6 and the conditions (A1) − (A3)

hold and f(t, 0, 0) 6≡ 0 on [0, 1]. By some calculations, we have ρ = 32, ∆ = −512,

τ1 = 1/2, τ2 = 3/2 and S = 1/2, M = 45/64, N = 47/64. If we choose σ = 1/4,

m1 = 1, m2 = 2 and m4 = 30, then f (t, µ, ν) satisfies

f (t, µ, ν) ≤ 60 = m4/S for (t, µ, ν) ∈ [0, 1] × [0, 45] × [−30, 30];

f (t, µ, ν) > 128/45 = m2/M for (t, µ, ν) ∈ [1/4, 3/4] × [2, 4] × [−30, 30];

f (t, µ, ν) ≤ 64/47 = m1/N for (t, µ, ν) ∈ [0, 1] × [0, 1] × [−30, 30].

Then all assumptions of Theorem 3.2 hold. Thus by Theorem 3.2, the problem (4.1)

and (4.2) has at least three positive solutions u1, u2, u3 such that

max
0≤t≤1

|u′
i (t)| ≤ 30 for i = 1, 2, 3; 2 < min

1/4≤t≤3/4
u1 (t) ;

1 < max
0≤t≤1

u2 (t) with min
1/4≤t≤3/4

u2 (t) < 2; max
0≤t≤1

u3 (t) < 1.
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