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ABSTRACT. This paper deals with a time scale version of the Hardy-Knopp-Type and the two-

dimensional Hardy-Knopp-type inequalities. Moreover, Hardy inequality for several functions is

presented on time scales.
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1. INTRODUCTION

In a note published in 1920, Hardy [6] stated that if a > 0, p > 1, f(x) ≥ 0 and
∞
∫

a

f p(x)dx is convergent, then

(1.1)

∞
∫

a





1

x

x
∫

a

f(t)dt





p

dx ≤

(

p

p − 1

)p
∞
∫

a

f p(x)dx.

In [7] Hardy stated and proved that the result above hold in fact in the following

more precise form:

(1.2)

∞
∫

0





1

x

x
∫

0

f(t)dt





p

dx ≤

(

p

p − 1

)p
∞
∫

0

f p(x)dx, p > 1.

This inequality is usually called Hardy’s inequality in the literature and it has later

on been extensively studied and used as a model example for the investigation of

more general integral inequalities.

In [8] Kaijser pointed out that inequality (1.1) is just special case of the much

more general Hardy-Knopp-type inequality for positive functions f ,

(1.3)

∞
∫

0

Φ





1

x

x
∫

0

f(t)dt





dx

x
≤

∞
∫

0

Φ (f(x))
dx

x
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where Φ is a convex function on (0,∞). By choosing Φ(u) = up we find that (1.3)

implies Hardy inequality in particular form

(1.4)

∞
∫

0





1

x

x
∫

0

f(t)dt





p

dx

x
≤

∞
∫

0

f p(x)
dx

x
, p > 1,

which can be rewritten in the usual form

(1.5)

∞
∫

0





1

x

x
∫

0

g(t)dt





p

dx ≤

(

p

p − 1

)p
∞
∫

0

gp(x)dx, p > 1,

where g(x) = f(x
p−1

p )x−
1

p .

Čižmešija [5] has given a strengthened Hardy-Knopp-type inequality which can

be written as the following inequality: Suppose 0 < b ≤ ∞, u : (0, b) → R is a

nonnegative function such that the function x → u(x)
x2 is locally integrable in (0, b),

and the function v is defined by

v(t) = t

b
∫

t

u(x)

x2
dx, t ∈ (0, b).

If the real-valued function Φ is convex on (a, c), where −∞ ≤ a ≤ c ≤ ∞, then the

inequality

(1.6)

b
∫

0

u(x)Φ





1

x

x
∫

0

f(t)dt





dx

x
≤

b
∫

0

v(x)Φ (f(x))
dx

x

holds for all integrable functions f : (0, b) → R, such that f(x) ∈ (a, c) for all

x ∈ (0, b), and so Čižmešija obtained generalization of Hardy-Knopp-type inequality

(1.3). Moreover, Kaijser obtained a multidimensional Hardy-Knopp-type inequality

in [9]. On the other hand, Bougoffa has given Hardy integral inequality involving

many functions in [4].

Recently, Řehák [11] has given the time scale version of the Hardy inequality as

follows:

(1.7)

∞
∫

a

(

σ(t)
∫

a

f(s)∆s

σ(t) − a

)p

∆t <

(

p

p − 1

)p
∞
∫

a

(f(t))p ∆t,

where p > 1, f is a nonnegative function.

The aim of this paper is to extend a Hardy-Knopp-type inequality to an arbitrary

time scale. A one-dimensional and a two-dimensional version are established. In par-

ticular, extensions of Fubini’s theorem and Jensen’s inequality are utilized. Moreover,

Hardy inequality for several functions is presented on time scales.
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We first briefly introduce the time scales theory. By a time scale T we mean

any closed subset of R with order and topological structure present in canonical way.

Since a time scale T may or may not be connected, we need the concept of jump

operators.

Let t ∈ T, where T is a time scale; then two mappings σ, ρ : T → T satisfying

σ(t) = inf {s ∈ T : s > t} , ρ(t) = sup {s ∈ T : s < t}

are called the jump operators. If σ(t) > t, t ∈ T, we say t is right-scattered. If

ρ(t) < t, t ∈ T, we say t is left-scattered. If σ(t) = t, t ∈ T, we say t is right-dense. If

ρ(t) = t, t ∈ T, we say t is left-dense.

A mapping f : T → R is called rd-continuous if

(i) f is continuous at each right-dense point or maximal point of T;

(ii) at each left-dense point t ∈ T,

lim
s→t−

g(s) = g(t−)

exists.

The set of all rd-continuous functions from T → R is denoted by Crd(T, R).

Let

T
κ =

{

T−{m} , if T has a left-scattered maximal point m,

T, otherwise.

If f : T → R is a function, then we define the function fσ : T → R by fσ(t) = f(σ(t))

for all t ∈ T, i.e., fσ = f ◦ σ.

Assume that f : T → R and t ∈ T
κ, then we define f∆(t) to be the number (pro-

vided it exists) with the property that for any given any ε > 0, there is a neighborhood

U of t such that
∣

∣f(σ(t)) − f(s) − f∆(t)[σ(t) − s]
∣

∣ ≤ ε |σ(t) − s|

for all s ∈ U . In this case f∆(t) is called the delta derivative of f(t) at t. If f is

differentiable at each t ∈ T, then f is called delta differentiable on T.

A function F : T → R is called an antiderivative of f : T → R if F∆(t) = f(t)

for all t ∈ T
κ, and in this case, we define the integral of f by

b
∫

a

f(t)∆t = F (b) − F (a)

for all a, b ∈ T, and we say that f is integrable on T.

Also let us recall some essentials about partial derivatives on time scales:

Let T1 and T2 be two time scales. For i = 1, 2 let σi, ρi and ∆i denote the forward

jump operator, the backward jump operator, and the delta differentiation operator,
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respectively, on Ti. Suppose a < b are points in T1, c < d are points in T2, [a, b) is

the half-closed bounded interval in T1, and [c, d) is the half-closed bounded interval

in T2. Let us introduce a ”rectangle” in T1 × T2 by

R = [a, b) × [c, d) = {(t1, t2) : t1 ∈ [a, b), t2 ∈ [c, d)} .

Let f be a real-valued function on T1 × T2. At (t1, t2) ∈ T1 × T2 we say that f

has a ”∆1 partial derivative” f∆1(t1, t2) (with respect to t1) if for each ε > 0 there

exists a neighborhood Ut1 , (open in the relative topology of T1), of t1 such that

∣

∣f(σ1(t1), t2) − f(s, t2) − f∆1(t1, t2)(σ1(t1) − s)
∣

∣ ≤ ε |σ1(t1) − s|

for all s ∈ Ut1 . At (t1, t2) ∈ T1 × T2 we say that f has a ”∆2 partial derivative”

f∆2(t1, t2) (with respect to t2) if for each ε > 0 there exists a neighborhood Ut2 , of t2

such that

∣

∣f(t1, σ2(t2)) − f(t1, l) − f∆2(t1, t2)(σ2(t2) − l)
∣

∣ ≤ ε |σ2(t2) − l|

for all l ∈ Ut2 .

Let f be a real-valued function on T1×T2. The function f is called rd-continuous

in t2 if for every α1 ∈ T1, the function f(α1, t2) is rd-continuous on T2. The function f

is called rd-continuous in t1 if for every α2 ∈ T2, the function f(t1, α2) is rd-continuous

on T1.

Let CCrd denote the set of functions f(t1, t2) on T1 × T2 with the properties

• f is rd-continuous in t1,

• f is rd-continuous in t2,

• if (x1, x2) ∈ T1 ×T2 with x1 right-dense or maximal and x2 right-dense or maximal,

then f is continuous at (x1, x2),

• if x1 and x2 are both left-dense, then the limit of f(t1, t2) exists as (t1, t2) approaches

(x1, x2) along any path in the region

RLL(x1, x2) = {(t1, t2) : t1 ∈ [a, x1] ∩ T1, t2 ∈ [c, x2] ∩ T2} .

Let CC1
rd be the set of all functions in CCrd for which both the ∆1 partial derivative

and the ∆2 partial derivative exist and are in CCrd.

In order to obtain our results, we need the following theorem in [3].

Theorem 1.1 (The standard calculus version of Fubini’s Theorem). Let f be bounded

and delta integrable over R and suppose that the single integral

I(t) =

d
∫

c

f(t, s)∆2s
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exists for each t ∈ [a, b). Then the iterated integral

b
∫

a

I(t)∆1t =

b
∫

a

∆1t

d
∫

c

f(t, s)∆2s

exists and the equality

(1.8)

∫∫

R

f(t, s)∆1t∆2s =

b
∫

a

∆1t

d
∫

c

f(t, s)∆2s

holds.

It is evident from the Theorem 1.1 that we can interchange the roles t and s, that

is, we may assume the existence of the double integral and existence of the single

integral

K(s) =

b
∫

a

f(t, s)∆1t

for each s ∈ [c, d). Then the theorem will state the existence of the iterated iterated

integral
d
∫

c

K(s)∆2s =

d
∫

c

∆2s

b
∫

a

f(t, s)∆1t

and the equality

(1.9)

∫∫

R

f(t, s)∆1t∆2s =

d
∫

c

∆2s

b
∫

a

f(t, s)∆1t.

If together with the double integral
∫∫

R

f(t, s)∆1t∆2s there exist both single integrals

I and K, then the formulas (1.8) and (1.9) will hold simultaneously, i.e.,

b
∫

a

∆1t

d
∫

c

f(t, s)∆2s =

d
∫

c

∆2s

b
∫

a

f(t, s)∆1t.

We refer the reader to [2] for a comprehensive development of the calculus of the

∆ derivative and we refer the reader to [1,3] for an account of the calculus of the

partial derivative and double integral.

2. A STRENGTHENED HARDY-KNOPP-TYPE INEQUALITY

Throughout this section, we suppose that T is a particular time scale, 0 ≤ a <

b ≤ ∞ are points in T. Thus our result reads as follows.
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Theorem 2.1. Suppose u ∈ Crd([a, b), R) is a nonnegative function such that the

delta integral
b
∫

t

u(x)
(x−a)(σ(x)−a)

∆x exists as a finite number, and the function v is defined

by

v(t) = (t − a)

b
∫

t

u(x)

(x − a) (σ(x) − a)
∆x, t ∈ [a, b).

If Φ : (c, d) → R is continuous and convex, where c, d ∈ R, then the inequality

(2.1)

b
∫

a

u(x)Φ





1

σ(x) − a

σ(x)
∫

a

f(t)∆t





∆x

x − a
≤

b
∫

a

v(x)Φ (f(x))
∆x

x − a

holds for all delta integrable functions f ∈ Crd([a, b), R) such that f(x) ∈ (c, d).

Proof. Let f : [a, b) → R is rd-continuous function with values in (c, d). Applying

Jensen’s inequality [2] and Fubini’s Theorem [1,3] we obtain

b
∫

a

u(x)Φ





1

σ(x) − a

σ(x)
∫

a

f(t)∆t





∆x

x − a
≤

b
∫

a

u(x)





σ(x)
∫

a

Φ(f(t))∆t





∆x

(x − a) (σ(x) − a)

=

b
∫

a

Φ(f(t))

b
∫

t

u(x)

(x − a) (σ(x) − a)
∆x∆t

=

b
∫

a

v(t)Φ (f(t))
∆t

t − a

and the proof is complete.

Now, we give some applications of Theorem 2.1.

Corollary 2.1. If the weighted function u is chosen to be u(x) ≡ 1, in Theorem 2.1,

then we have

v(x) =











(x − a)
b
∫

x

∆t
(t−a)(σ(t)−a)

= 1 − x−a
b−a

, b < ∞

1, b = ∞

so in the case when b < ∞ inequality (2.1) reads

(2.2)

b
∫

a

Φ





1

σ(x) − a

σ(x)
∫

a

f(t)∆t





∆x

x − a
≤

b
∫

a

(

1 −
x − a

b − a

)

Φ (f(x))
∆x

x − a
,

while for b = ∞ it becomes

(2.3)

∞
∫

a

Φ





1

σ(x) − a

σ(x)
∫

a

f(t)∆t





∆x

x − a
≤

∞
∫

a

Φ (f(x))
∆x

x − a
.
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Corollary 2.2. Let p > 1 be a constant, a function f be a nonnegative and such

that the delta integral
b
∫

a

f p(x) ∆x
x−a

exists as a finite number. If the convex function Φ

is chosen to be Φ(x) = xp in inequality (2.2), then we have

(2.4)

b
∫

a





1

σ(x) − a

σ(x)
∫

a

f(t)∆t





p

∆x

x − a
≤

b
∫

a

(

1 −
x − a

b − a

)

f p(x)
∆x

x − a
,

unless f ≡ 0.

So we find that inequality (2.2) implies a time scale version of Hardy’s inequality

in the particular form inequality (2.4). Meanwhile we obtain time scale versions of

(1.3) and (1.6).

Corollary 2.3. Let a function f be a nonnegative and such that the delta integral
b
∫

a

f(x) ∆x
x−a

exists as a finite number. If the convex function Φ is chosen to be Φ(x) = ex

and by replacing f(x) with ln f(x) in inequality (2.2), then we have

(2.5)

b
∫

a

exp





1

σ(x) − a

σ(x)
∫

a

ln f(t)∆t





∆x

x − a
≤

b
∫

a

f(x)
∆x

x − a
,

unless f ≡ 0.

3. A TWO-DIMENSIONAL HARDY-KNOPP-TYPE INEQUALITY

Throughout this section, we suppose that

(a) T1 is a time scale, 0 ≤ a < b are points in T1,

(b) T2 is a time scale, 0 ≤ c < d are points in T2,

(c) R is a rectangle in T1 × T2 defined by

R = [a, b) × [c, d) = {(t, s) : t ∈ [a, b), s ∈ [c, d)} .

In order to obtain our result in this section, we need the following theorem.

Theorem 3.1 (Jensen’s inequality). Let t, s ∈ R and −∞ ≤ m < n ≤ ∞. If

f ∈ CC1
rd(R, (m, n)) and Φ : (m, n) → R is convex, then

(3.1) Φ











b
∫

a

d
∫

c

f(t, s)∆1t∆2s

b
∫

a

d
∫

c

∆1t∆2s











≤

b
∫

a

d
∫

c

Φ (f(t, s))∆1t∆2s

b
∫

a

d
∫

c

∆1t∆2s

.

Proof. This theorem is a direct extension of the Theorem 6.17 in [2].
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Theorem 3.2. Let R be a rectangle in T1 ×T2 and f be a delta integrable function

over R and f ∈ CC1
rd(R, R) such that −∞ < α < f(t, s) < β < ∞. If Φ is convex

and positive function on (α, β), then

b
∫

a

d
∫

c

Φ





1

(σ(x) − a) (τ(y) − c)

σ(x)
∫

a

τ(y)
∫

c

f(t, s)∆1t∆2s





∆1x∆2y

(x − a) (y − c)
(3.2)

≤

b
∫

a

d
∫

c

Φ (f(t, s))

(

1 −
t − a

b − a

)(

1 −
s − c

d − c

)

∆1t∆2s

(t − a) (s − c)
.

Proof. Let Φ be convex. Then, according to Jensen’s inequality and Fubini theorem

we have

b
∫

a

d
∫

c

Φ





1

(σ(x) − a) (τ(y) − c)

σ(x)
∫

a

τ(y)
∫

c

f(t, s)∆1t∆2s





∆1x∆2y

(x − a) (y − c)

≤

b
∫

a

d
∫

c





σ(x)
∫

a

τ(y)
∫

c

Φ (f(t, s))∆1t∆2s





∆1x∆2y

(x − a) (σ(x) − a) (y − c) (τ(y) − c)

=

b
∫

a

d
∫

c

Φ (f(t, s))





b
∫

t

d
∫

s

∆1x∆2y

(x − a) (σ(x) − a) (y − c) (τ(y) − c)



∆1t∆2s

=

b
∫

a

d
∫

c

Φ (f(t, s))

(

1 −
t − a

b − a

)(

1 −
s − c

d − c

)

∆1t∆2s

(t − a) (s − c)

and the proof is complete.

Corollary 3.1. Let p > 1 be a constant, a function f be a nonnegative on R. If the

convex function Φ is chosen to be Φ(u) = up in Theorem 3.2, then we have

b
∫

a

d
∫

c





1

(σ(x) − a) (τ(y) − c)

σ(x)
∫

a

τ(y)
∫

c

f(t, s)∆1t∆2s





p

∆1x∆2y

(x − a) (y − c)
(3.3)

≤

b
∫

a

d
∫

c

f p(t, s)

(

1 −
t − a

b − a

)(

1 −
s − c

d − c

)

∆1t∆2s

(t − a) (s − c)
.

unless f ≡ 0.
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Corollary 3.2. Let a function f be a nonnegative on R. If the convex function Φ is

chosen to be Φ(u) = eu and replacing f by ln f in Theorem 3.2, then we have

b
∫

a

d
∫

c

exp





1

(σ(x) − a) (τ(y) − c)

σ(x)
∫

a

τ(y)
∫

c

ln f(t, s)∆1t∆2s





∆1x∆2y

(x − a) (y − c)
(3.4)

≤

b
∫

a

d
∫

c

f(t, s)

(

1 −
t − a

b − a

)(

1 −
s − c

d − c

)

∆1t∆2s

(t − a) (s − c)
.

unless f ≡ 0.

4. TIME SCALE HARDY INTEGRAL INEQUALITY FOR SEVERAL

FUNCTIONS

Our purpose in this section is to prove the Hardy integral inequality for several

functions on time scale.

Theorem 4.1. Let a ≥ 0 and f1, f2, . . . , fn be nonnegative integrable functions.

Denote Fk(t) :=
t
∫

a

fk(s)∆s, k = 1, 2, . . . , n. Then

(4.1)
∞
∫

a

(

F σ
1 (t)F σ

2 (t) . . . F σ
n (t)

(σ(t) − a)n

)
p

n

∆t <

(

p

np − n

)p
∞
∫

a

(f1(t) + f2(t) + · · · + fn(t))p ∆t.

Proof. By using Jensen’s inequality [10]

(4.2) (F σ
1 (t)F σ

2 (t) · · ·F σ
n (t))

1

n ≤

n
∑

k=1

F σ
k (t)

n

and so,

(4.3) (F σ
1 (t)F σ

2 (t) · · ·F σ
n (t))

p

n ≤

(

n
∑

k=1

F σ
k (t)

)p

np
.

Divide both sides of (4.3) by (σ(t) − a)p and integrate resulting the inequality to get

(4.4)

∞
∫

a

(

F σ
1 (t)F σ

2 (t) · · ·F σ
n (t)

(σ(t) − a)n

)
p

n

∆t ≤
1

np

∞
∫

a

(

F σ
1 (t) + F σ

2 (t) + · · · + F σ
n (t)

σ(t) − a

)p

∆t.

Applying inequality (1.7) to the right hand side of (4.4), we obtain
∞
∫

a

(

F σ
1 (t)F σ

2 (t) · · ·F σ
n (t)

(σ(t) − a)n

)
p

n

∆t <

(

p

np − n

)p
∞
∫

a

(f1(t) + f2(t) + · · · + fn(t))p ∆t.
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