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ABSTRACT. The purpose of this paper is, by using viscosity approximation methods, to find

a common element of the set of solutions of an equilibrium problem and the set of fixed point of

a nonexpansive mappings in a Hilbert space and to prove, under suitable conditions, some strong

convergence theorems for approximating a solution of the problem under consideration.
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1. INTRODUCTION PRELIMINARIES

Throughout this paper, we always assume that H is a real Hilbert space, C is a

nonempty closed convex subset of H and φ : C × C → R is a real functional with

φ(x, x) = 0 for all x ∈ C. The “so called” equilibrium problem for functional φ is to

finding a point x∗ ∈ C such that

(1.1) φ(x∗, y) ≥ 0, ∀y ∈ C.

Denote the set of solutions of the equilibrium problem (1.1) by EP (φ).

This equilibrium problem contains fixed point problem, optimization problem,

variational inequality problem and Nash equilibrium problem as its special cases (see,

for example, Blum and Oetti [2]).

Recently, Antipin and Flam [1], Blum and Oettli [2], Moudafi [7], Moudafi et al.

[8], Combettes and Hirstoaga [4] introduced and studied iterative schemes of finding

the best approximation to the initial data when EP (φ) is nonempty and proved some

strong convergence theorems in Hilbert spaces.

Very recently, Takahashi and Takahashi [10] introduced a new iterative scheme by

using the viscosity approximation methods (see Moudafi [7] and Xu [11]) for finding

a common element of the set of solutions of the equilibrium problem (1.1) and the set
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of fixed points of a nonexpansive mapping in a Hilbert space and proved some strong

convergence theorems. Their results extend and improve the corresponding results

given in [4, 7].

Motivated and inspired by Combettes-Histoaga [4], Takahashi and Takahashi

[10], the purpose of this paper is, by using viscosity approximation methods, to find

a common element of the set of solutions of equilibrium problem (1.1) and the set

of fixed points of a nonexpamsive mappings in Hilbert spaces and to establish some

strong convergence theorems.

For this purpose, first, we recall some definitions, lemmas and notations.

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and

strong convergence of the sequence {xn} in H , respectively.

In a Hilbert space H , for any x ∈ H , there exists a unique nearest point in C,

denoted by PC(x), such that

||x − PCx|| ≤ ||x − y||, ∀y ∈ C.

Such a mapping PC from H onto C is called the metric projection. We know that PC

is nonexpansive. Further, for any x ∈ H and z ∈ C,

z = PC(x) ⇔ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

For solving the equilibrium problem (1.1) for the functional φ : C × C → R, let us

assume that φ satisfies the following conditions:

(A1) φ(x, x) = 0, ∀x ∈ C;

(A2) φ is monotone, i.e.,

φ(x, y) + φ(y, x) ≤ 0, ∀x, y ∈ C;

(A3) for any x, y, z ∈ C the functional x 7→ φ(x, y) is upper-hemicontinuous, i.e.,

lim sup
t→0+

φ(tz + (1 − t)x, y) ≤ φ(x, y), ∀x, y z ∈ C;

(A4) y 7→ φ(x, y) is convex and lower semi-continuous.

The following lemmas will be needed in proving our main results:

Lemma 1.1. ([2]) Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, φ : C × C → R be a functional satisfying the conditions (A1)–(A4).

Then, for any given x ∈ H and r > 0, there exists z ∈ C such that

φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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Lemma 1.2. ([4]) Let all the conditions in Lemma 1.1 are satisfied. For any

r > 0 and x ∈ C, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : φ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀x ∈ H.

Then the following holds:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e.,

||Trx − Try||
2 ≤ 〈Trx − Try, x − y〉, ∀x, y ∈ H,

and so ||Trx − Try|| ≤ ||x − y||, ∀x, y ∈ H.

(3) F (Tr) = EP (φ), ∀r > 0;

(4) EP (φ) is a closed and convex set.

Lemma 1.3. ([9]) Let X be a Banach space, {xn}, {yn} be two bounded sequences

in X and {βn} be a sequence in [0, 1] satisfying

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 0 and

lim sup
n→∞

{||yn+1 − yn|| − ||xn+1 − xn||} ≤ 0,

then limn→∞ ||yn − xn|| = 0.

Lemma 1.4. ([6]) Let {an} and {bn} be two nonnegative real sequences satisfying

the following condition:

an+1 ≤ (1 − λn)an + bn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in (0, 1) with
∑∞

n=0 λn = ∞

and bn = ◦(λn). Then limn→∞ an = 0.

Lemma 1.5. ([5]) Let X be a uniformly convex Banach space, C be a nonempty

closed convex subset of X and T : C → X be a nonexpansive mapping with a fixed

point. Then I − T is demiclosed in the sense that if {xn} is a sequence in C and if

xn ⇀ x and (I − T )xn → 0, then (I − T )x = 0.

Lemma 1.6. ([3]) Let E be a real Banach space, J : E → 2E∗

be the normalized

duality mapping and x, y be any given points in E. Then the following conclusion

holds:

||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Especially, if E = H is a real Hilbert space, then

||x + y||2 ≤ ||x||2 + 2〈y, x + y〉, ∀x, y ∈ H.
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2. MAIN RESULTS

In this section, we shall prove our main theorems in this paper:

Theorem 2.1. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, φ : C × C → R be a functional satisfying the conditions (A1)–(A4),

T : C → H be a nonexpansive mapping with F (T )
⋂

EP (φ) 6= ∅ and f : H → H

be a contraction mapping with a contractive constant α ∈ (0, 1). Let {αn}, {βn} be

two sequences in [0, 1] and {rn} ⊂ (0,∞) be a real sequence satisfying the following

conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞; |1 − αn

αn+1
| → 0;

(ii) There exist a, b ∈ (0, 1) such that a ≤ βn ≤ b for all n ≥ 0;

(iii) 0 < r < rn for all n ≥ 0 and |rn − rn+1| → 0 as n → ∞.

where r, a and b are some positive constants. For any x0 ∈ H, let {xn} and {un} be

the sequences defined by

(2.1)



















φ(un, y) +
1

rn

〈y − un un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1 − βn)zn,

zn = αnf(un) + (1 − αn)Tun, ∀n ≥ 0.

Then xn → x∗ ∈ F (T )
⋂

EP (φ), where x∗ = PF (T )∩EP (φ)f(x∗).

Proof. We divide the proof into six steps:

(I) We first prove that the mapping PF (T )∩EP (φ)f : H → C has a unique fixed

point.

In fact, since f : H → H is a contraction and PF (T )∩EP (φ) : H → F (T ) ∩ EP (φ)

is also a contraction, we have

||PF (T )∩EP (φ)f(x) − PF (T )∩EP (φ)f(y)|| ≤ α||x − y||, ∀x, y ∈ H.

Therefore, there exists a unique x∗ ∈ C such that x∗ = PF (T )∩EP (φ)f(x∗).

(II) Now we prove that the sequences {xn} and {un} are bounded in H and C,

respectively.

In fact, from the definition of Tr in Lemma 1.2, we know that un = Trn
xn.

Therefore, for any p ∈ F (T )
⋂

EP (φ), we have

(2.2) ||un − p|| = ||Trn
xn − Trn

p|| ≤ ||xn − p||.

Therefore, it follows from (2.1) and (2.2) that

||xn+1 − p||

≤ βn||xn − p|| + (1 − βn)||zn − p||

≤ βn||xn − p|| + (1 − βn)||αn(f(un) − p) + (1 − αn)(Tun − p)||
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≤ βn||xn − p|| + (1 − βn){αn||f(un) − f(p)||

+ αn||f(p) − p|| + (1 − αn)||Tun − p||}

≤ βn||xn − p|| + (1 − βn)αnα||un − p||

+ (1 − βn)αn||f(p) − p|| + (1 − βn)(1 − αn)||un − p||

≤ βn||xn − p|| + (1 − βn)(1 − αn(1 − α))||xn − p|| + (1 − βn)αn||f(p) − p||

≤ max{||xn − p||,
||f(p) − p||

1 − α
}

≤ · · ·

≤ max{||x0 − p||,
||f(p) − p||

1 − α
}.

This implies that {xn} is a bounded sequence in H . By (2.2), we know that {un} is

a bounded sequence in C and so {Tun}, {f(un)}, {zn} all are bounded sequences in

H . Let

(2.3) M = sup
n≥0

{||un − xn|| + ||xn − y||2 + ||f(un)|| + ||T (un)||},

where y ∈ H is some given point.

(III) Now, we make an estimation for {||un+1 − un||}.

By the definition of Tr, un = Trn
xn and un+1 = Trn+1

xn+1. Hence we have

(2.4) φ(un+1, y) +
1

rn+1

〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C,

(2.5) φ(un, y) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

Take y = un+1 in (2.5) and y = un in (2.4). Then, adding the resulting inequalities

and noting the condition (A2), we have

〈un+1 − un,
un − xn

rn

−
un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1

(un+1 − xn+1)〉 ≥ 0.

This implies that

||un+1 − un||
2 ≤ 〈un+1 − un, xn+1 − xn + (1 −

rn

rn+1
)(un+1 − xn+1)〉

≤ ||un+1 − un||{||xn+1 − xn|| + |1 −
rn

rn+1
| · ||un+1 − xn+1||}

Thus, by the condition (iii), we have

(2.6)

||un+1 − un|| ≤ ||xn+1 − xn|| + |1 −
rn

rn+1
|||un+1 − xn+1||

≤ ||xn+1 − xn|| +
1

r
|rn+1 − rn| · M.
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(IV) Now we prove that ||Tun − un|| → 0.

In fact, it follows from (2.1) and (2.6) that

||zn+1 − zn||

= ||αn+1f(un+1) + (1 − αn+1)Tun+1 − αnf(un) − (1 − αn)Tun||

= ||αn+1f(un+1) − αn+1f(un) + αn+1f(un) − αnf(un)

+ (1 − αn+1)Tun+1 − (1 − αn+1)Tun + (1 − αn+1)Tun − (1 − αn)Tun||

≤ αn+1||f(un+1) − f(un)|| + 2|αn − αn+1|M + (1 − αn+1)||Tun+1 − Tun||

≤ αn+1α||un+1 − un|| + 2|αn − αn+1|M + (1 − αn+1)||un+1 − un||

≤ ||un+1 − un|| + 2|αn − αn+1|M

≤ ||xn+1 − xn|| +
1

r
|rn+1 − rn||M + 2|1 −

αn

αn+1
|M

It follows from the conditions (i) and (iii) that

lim sup
n→∞

{||zn+1 − zn|| − ||xn+1 − xn||} ≤ 0.

By virtue of Lemma 1.3, we obtain that

(2.7) ||xn − zn|| → 0 as n → ∞.

From (2.1) and (2.7), we have

(2.8) ||xn+1 − xn|| = (1 − βn)||xn − zn|| → 0, as n → ∞.

It follows from (2.6), (2.8) and the condition (iii) that

(2.9) ||un+1 − un|| → 0, as n → ∞.

Since αn → 0 and {zn}, {f(un)}, {Tun} all are bounded, from (2.7), we have

(2.10)
||xn − Tun|| ≤ ||xn − zn|| + ||zn − Tun||

≤ ||xn − zn|| + αn||f(un) − Tun|| → 0.

Furthermore, for any p ∈ F (T )
⋂

EP (φ), we have

||un − p||2 = ||Trn
xn − Trn

p||2

≤ 〈Trn
xn − Trn

p, xn − p〉

= 〈un − p, xn − p〉

=
1

2
{||un − p||2 + ||xn − p||2 − ||xn − un||

2}.

Hence we have

(2.11) ||un − p||2 ≤ ||xn − p||2 − ||xn − un||
2.
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From the convexity of function x 7→ ||x||2 and (2.11), we have

||xn+1 − p||2 = ||βnxn + (1 − βn)zn − p||2

≤ βn||xn − p||2 + (1 − βn)||zn − p||2

≤ βn||xn − p||2 + (1 − βn){αn||f(un) − p||2

+ (1 − αn)||Tun − p||2}

≤ βn||xn − p||2 + (1 − βn)αn||f(un) − p||2

+ (1 − αn)(1 − βn)||un − p||2

≤ βn||xn − p||2 + (1 − βn)αn||f(un) − p||2 + (1 − βn)||un − p||2

≤ βn||xn − p||2 + (1 − βn)αn||f(un) − p||2

+ (1 − βn){||xn − p||2 − ||xn − un||
2}

and so

(1 − βn)||xn − un||
2

≤ ||xn − p||2 − ||xn+1 − p||2 + (1 − βn)αn||f(un) − p||2

≤ (||xn − p|| − ||xn+1 − p||)(||xn − p|| + ||xn+1 − p||) + αn||f(un) − p||2

≤ (||xn − xn+1||)(||xn − p|| + ||xn+1 − p||) + αn||f(un) − p||2.

Since αn → 0, {xn} and {f(un)} are bounded and ||xn − xn+1|| → 0, we have

(2.12) ||xn − un|| → 0 as n → ∞

and so

(2.13) ||Tun − un|| ≤ ||Tun − xn|| + ||xn − un|| → 0.

The desired conclusion is proved.

(V) Now, we prove that

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 ≤ 0,

where x∗ = PF (T )∩EP (φ)f(x∗).

In fact, we can choose a subsequence {xnj
} ⊂ {xn} such that

(2.14) lim
nj→∞

〈f(x∗) − x∗, xnj
− x∗, 〉 = lim sup

n→∞
〈f(x∗) − x∗, xn − x∗〉.

Since {unj
} is bounded, without loss of generality, we can assume that unj

⇀ w ∈ C.

By (2.13), ||Tun − un|| → 0 and hence ||Tunj
− unj

|| → 0. It follows from the

demiclosed principle (see Lemma 1.4) that Tw = w and Tunj
⇀ w.

Next, we prove that w ∈ F (T )∩EP (φ). It is sufficient to prove that w ∈ EP (φ).

In fact, since un = Trn
xn, we have

φ(un, y) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.
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It follows from the condition (A2) that

1

rn

〈y − un, un − xn〉 ≥ φ(y, un)

and so

(2.15) 〈y − unj
,

unj
− xnj

rnj

〉 ≥ φ(y, unj
).

Since
||unj

−xnj
||

rnj

≤
||unj

−xnj
||

r
→ 0 and unj

⇀ w, by virtue of the condition (A4), we

have

lim inf
nj→∞

φ(y, unj
) ≤ lim

nj→∞
〈y − unj

,
unj

− xnj

rnj

〉 = 0,

that is,

(2.16) φ(y, w) ≤ 0, ∀y ∈ C.

For any t ∈ (0, 1) and y ∈ C, let yt = ty + (1 − t)w. Then yt ∈ C and so we have

φ(yt, w) ≤ 0. It follows from the conditions (A1), (A4) and (2.16) that

0 = φ(yt, yt)

≤ tφ(yt, y) + (1 − t)φ(yt, w)

≤ tφ(yt, y).

This implies that φ(yt, y) ≥ 0 for all t ∈ (0, 1). Letting t → 0+, by the condition (A3),

we have

φ(w, y) ≥ 0, ∀y ∈ C.

This shows that w ∈ EP (φ) and so w ∈ F (T ) ∩ EP (φ).

Since x∗ = PF (T )∩EP (φ)f(x∗), unj
⇀ w and ||un − xn|| → 0 (see (2.12)), we have

(2.17)

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 = lim
nj→∞

〈f(x∗) − x∗, xnj
− x∗〉

= lim
nj→∞

〈f(x∗) − x∗, unj
− (unj

− xnj
) − x∗〉

= 〈f(x∗) − x∗, w − x∗〉 ≤ 0.

The desired conclusion is proved.

(VI) Finally, we prove that xn → x∗ as n → ∞.

In fact, it follows form (2.1) and Lemma 1.6 that

||zn − x∗||2 = ||αn(f(un) − x∗) + (1 − αn)(Tun − x∗)||2

≤ (1 − αn)2||Tun − x∗||2 + 2αn〈f(un) − x∗, zn − x∗〉

≤ (1 − αn)2||un − x∗||2 + 2αn〈f(un) − f(x∗) + f(x∗) − x∗, zn − x∗〉

≤ (1 − αn)2||un − x∗||2 + 2αnα||un − x∗|| · ||zn − x∗||

+ 2αn〈f(x∗) − x∗, zn − x∗〉

≤ (1 − αn)2||un − x∗||2 + αnα{||un − x∗||2 + ||zn − x∗||2}
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+ 2αn〈f(x∗) − x∗, zn − x∗〉

and so, from (2.2),

(2.18)

||zn − x∗||2 ≤
(1 − αn)2 + αnα

1 − αnα
||un − x∗||2 +

2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα

≤
(1 − αn)2 + αnα

1 − αnα
||xn − x∗||2 +

2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα
.

Since αn → 0, for any ε > 0, there exists a nonnegative integer n0 such that 1−ααn >
1
2

for all n ≥ n0. Note that

(2.19)

(1 − αn)2 + αnα

1 − αnα
≤

1 − αn + α2
n

1 − αnα

≤ (1 − αn(1 − α)) +
α2

n

1 − αnα

≤ (1 − αn(1 − α)) + 2α2
n, ∀n ≥ n0.

Thus, substituting (2.19) into (2.18) and noting (2.3), we have

(2.20)

||zn − x∗||2 ≤ (1 − αn(1 − α))||xn − x∗||2 + 2α2
nM

+
2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα
, ∀n ≥ n0,

where M = supn≥0 ||xn − x∗||2. And so, from (2.1), (2.20) and the convexity of

x 7→ ||x||2, we have

(2.21)

||xn+1 − x∗||2 ≤ βn||xn − x∗||2 + (1 − βn)||zn − x∗||2

≤ βn||xn − x∗||2 + (1 − βn){(1 − αn(1 − α))||xn − x∗||2

+ 2α2
nM +

2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα
}

≤ (1 − (1 − βn)αn(1 − α))||xn − x∗||2

+ 2α2
nM + (1 − βn)

2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα

≤ (1 − (1 − b)αn(1 − α))||xn − x∗||2

+ 2α2
nM + (1 − βn)

2αn〈f(x∗) − x∗, zn − x∗〉

1 − αnα
, ∀n ≥ n0

From (2.7), since we have ||xn − zn|| → 0, it follows from (2.17) that

(2.22)

lim sup
n→∞

〈f(x∗) − x∗, zn − x∗〉

= lim sup
n→∞

〈f(x∗) − x∗, zn − xn + xn − x∗〉

= lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 ≤ 0.

Let

γn = max{0, 〈f(x∗) − x∗, zn − x∗〉}.

Then γn ≥ 0.
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Next, we prove that

(2.23) γn → 0.

In fact, it follows from (2.22) that for any given ε > 0, there exists n1 ≥ n0 such

that

〈f(x∗) − x∗, zn − x∗〉 < ε.

and so we have

0 ≤ γn < ε as n → ∞.

By the arbitrariness of ε > 0, we get γn → 0. By virtue of {γn}, we can rewrite (2.21)

as follows:

(2.24)
||xn+1 − x∗||2

≤ (1 − (1 − b)αn(1 − α))||xn − x∗||2 + 2α2
nM + 4αnγn, ∀n ≥ n0.

Therefore, taking an = ||xn − x∗||2, λn = (1 − b)αn(1 − α) and bn = 2α2
nM + 4αnγn,

by Lemma 1.4 and the conditions (i)–(iii), the sequence xn → x∗ as n → ∞. This

completes the proof.

From Theorem 2.1, we can obtain the following:

Theorem 2.2. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, T : C → H be a nonexpansive mapping with F (T ) 6= ∅ and f : H → H

be a contraction mapping with a contractive constant α ∈ (0, 1). Let {αn}, {βn} be

two sequences in [0, 1] satisfying the following conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞; |1 − αn

αn+1
| → 0;

(ii) There exist a, b ∈ (0, 1) such that a ≤ βn ≤ b for all n ≥ 0.

For any x0 ∈ H, let {xn} be the sequences defined by

(2.25)

{

xn+1 = βnxn + (1 − βn)zn,

zn = αnf(un) + (1 − αn)T (un), ∀n ≥ 0,

where un = PCxn for all n ≥ 0 and PC is the metric projection from H onto C. Then

xn → x∗ ∈ F (T ) as n → ∞, where x∗ = PF (T )f(x∗).

Proof. Taking φ(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ≥ 1 in Theorem 2.1,

then we have

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

This implies that un = PCxn. Therefore, the conclusion of Theorem 2.2 can be

obtained from Theorem 2.1 immediately.

Theorem 2.3. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, φ : C ×C → R be a functional satisfying the conditions (A1)–(A4) such

that EP (φ) 6= ∅ and f : H → H be a contraction mapping with a contractive constant

α ∈ (0, 1). Let {αn}, {βn} be two sequences in [0, 1] and {rn} ⊂ (0,∞) be a real

sequence satisfying the following conditions:
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(i) αn → 0;
∑∞

n=0 αn = ∞; |1 − αn

αn+1
| → 0;

(ii) There exist a, b ∈ (0, 1) such that a ≤ βn ≤ b for all n ≥ 0;

(iii) 0 < r < rn for all n ≥ 0 and |rn − rn+1| → 0 as n → ∞.

For any x0 ∈ H, let {xn} and {un} be the sequences defined by

(2.26)



















φ(un, y) +
1

rn

〈y − un un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1 − βn)zn,

zn = αnf(xn) + (1 − αn)un, ∀n ≥ 0.

Then xn → x∗ ∈ EP (φ) as n → ∞, where x∗ = PEP (φ)f(x∗).

Proof. Taking T = I in Theorem 2.1, then F (T ) = H and so PF (T )∩EP (φ) =

PEP (φ). Therefore, the conclusion of Theorem 2.3 can be obtained from Theorem 2.1.
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