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ABSTRACT. The purpose of this paper is, by using viscosity approximation methods, to find
a common element of the set of solutions of an equilibrium problem and the set of fixed point of
a nonexpansive mappings in a Hilbert space and to prove, under suitable conditions, some strong

convergence theorems for approximating a solution of the problem under consideration.
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1. INTRODUCTION PRELIMINARIES

Throughout this paper, we always assume that H is a real Hilbert space, C'is a
nonempty closed convex subset of H and ¢ : C x C' — R is a real functional with
¢(z,x) =0 for all x € C. The “so called” equilibrium problem for functional ¢ is to
finding a point 2* € C such that

(1.1) ¢(z*,y) >0, VyeC.

Denote the set of solutions of the equilibrium problem (1.1) by EP(¢).

This equilibrium problem contains fixed point problem, optimization problem,
variational inequality problem and Nash equilibrium problem as its special cases (see,

for example, Blum and Oetti [2]).
Recently, Antipin and Flam [1], Blum and Oettli [2], Moudafi [7], Moudafi et al.

8], Combettes and Hirstoaga [4] introduced and studied iterative schemes of finding
the best approximation to the initial data when E'P(¢) is nonempty and proved some

strong convergence theorems in Hilbert spaces.

Very recently, Takahashi and Takahashi [10] introduced a new iterative scheme by
using the viscosity approximation methods (see Moudafi [7] and Xu [11]) for finding

a common element of the set of solutions of the equilibrium problem (1.1) and the set
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of fixed points of a nonexpansive mapping in a Hilbert space and proved some strong
convergence theorems. Their results extend and improve the corresponding results
given in [4, 7].

Motivated and inspired by Combettes-Histoaga [4], Takahashi and Takahashi
[10], the purpose of this paper is, by using viscosity approximation methods, to find
a common element of the set of solutions of equilibrium problem (1.1) and the set
of fixed points of a nonexpamsive mappings in Hilbert spaces and to establish some

strong convergence theorems.
For this purpose, first, we recall some definitions, lemmas and notations.

In the sequel, we use z,, — x and x, — x to denote the weak convergence and

strong convergence of the sequence {x,} in H, respectively.

In a Hilbert space H, for any x € H, there exists a unique nearest point in C,
denoted by Po(z), such that
|l — Peal] < ||z —yll, VyeC.

Such a mapping Pp from H onto C'is called the metric projection. We know that Pg

is nonexpansive. Further, for any x € H and z € C,
z2=Po(z) e (x—2, 2z—y) >0, YyeC.

For solving the equilibrium problem (1.1) for the functional ¢ : C' x C' — R, let us

assume that ¢ satisfies the following conditions:

(A1) ¢(z,x) =0, Vo e,

(A2) ¢ is monotone, i.e.,
o(z,y) + oy, ) <0, Va,y € C;
(A3) for any z,y, z € C the functional x — ¢(x,y) is upper-hemicontinuous, i.e.,

limsup ¢(tz + (1 — t)z, y) < ¢(z,y), Vo, yz e C;
t—0+

(A4) y — ¢(x,y) is convex and lower semi-continuous.

The following lemmas will be needed in proving our main results:

Lemma 1.1. ([2]) Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, ¢ : C x C — R be a functional satisfying the conditions (Al)—(A4).
Then, for any given x € H and r > 0, there exists z € C' such that

1
¢(Z,y)+;<y—2, Z—SL’> 207 vyec
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Lemma 1.2. ([4]) Let all the conditions in Lemma 1.1 are satisfied. For any

r >0 and x € C, define a mapping T, : H — C' as follows:
1
TT(:E):{ZEC:¢(Z,y)+;<y—z, z—ux) >0, Yye C}, Vre H.
Then the following holds:

(1) T, is single-valued;

(2) T, is firmly nonexpansive, i.e.,
| Tz — Toy||* < (T,x — T,y, x —vy), Yo,y € H,
and so ||T,x — Tyl|| < ||z —y||, Vz,y € H.

(3) F(T,) = EP(¢), Vr>0;
(4) EP(9) is a closed and convex set.

Lemma 1.3. ([9]) Let X be a Banach space, {z,,}, {yn} be two bounded sequences
in X and {f,} be a sequence in [0, 1] satisfying

0 < liminf g, < limsup g, < 1.

n—oo

Suppose that 41 = By + (1 — Bn)yn, Yn >0 and

lim sup{||yn+1 — Ynl| = [|Tnt1 — 20|} <0,

then limy, o ||yn — xn|| = 0.
Lemma 1.4. ([6]) Let {a,} and {b,} be two nonnegative real sequences satisfying
the following condition:
An41 S (]- - )\n)a'n + bn> vn 2 No,
where ng is some nonnegative integer, {\,} is a sequence in (0, 1) with Y >~ A, = 00
and b, = o(A\,). Then lim,_, a, = 0.

Lemma 1.5. ([5]) Let X be a uniformly convexr Banach space, C' be a nonempty
closed convex subset of X and T : C' — X be a nonexpansive mapping with a fized
point. Then I — T is demiclosed in the sense that if {z,} is a sequence in C' and if
xn, = x and (I —T)x, — 0, then (I —T)x = 0.

Lemma 1.6. ([3]) Let E be a real Banach space, J : E — 2E" be the normalized

duality mapping and x,y be any given points in E. Then the following conclusion
holds:

|z +yl® < l2* +2(y, j(@ +y)), Vil +y) € J(z+y).
Especially, if E = H is a real Hilbert space, then

o +yl* < ll2ll* + 2{y, = +y), Va,y € H.
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2. MAIN RESULTS

In this section, we shall prove our main theorems in this paper:

Theorem 2.1. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, ¢ : C x C — R be a functional satisfying the conditions (Al)—(A4),
T : C — H be a nonexpansive mapping with F(T)(EP(¢) # 0 and f : H — H
be a contraction mapping with a contractive constant o € (0,1). Let {a,}, {B.} be
two sequences in [0,1] and {r,} C (0,00) be a real sequence satisfying the following

conditions:

() an =0 Eigan =00 |L— 22— 0;

(ii) There exist a, b € (0,1) such that a < 5, < b for alln > 0;

(iii) 0 <r <y, for alln >0 and |r, — rus1| — 0 as n — oo.

where r, a and b are some positive constants. For any xy € H, let {x,} and {u,} be
the sequences defined by

1
(un,y) + —(y — up up — z,) >0, Vy € C,

(2.1) a1 = Bnn + (1= Bu)zn,
Zn = uf(uy) + (1 — an)Tuy,, ¥n>0.
Then x, — a* € F(T)(EP(¢), where * = Prryneps)f(x*).
Proof. We divide the proof into six steps:
(I) We first prove that the mapping Prrynep)f : H — C has a unique fixed

point.
In fact, since f : H — H is a contraction and Ppirynepe) : H — F(T) N EP(¢)
is also a contraction, we have
| Prryner@) f(2) = Praynere) f(WI] < ollr —yl|, Yo,y € H.
Therefore, there exists a unique * € C such that * = Pprynepe) f(27).

(II) Now we prove that the sequences {z,} and {u,} are bounded in H and C,

respectively.

In fact, from the definition of 7, in Lemma 1.2, we know that w, = T, x,.
Therefore, for any p € F(T) (| EP(¢), we have

(2.2) [lun = pll = |5, 20 = To,pl| < [z — pll.
Therefore, it follows from (2.1) and (2.2) that

[2n1 = ]

< Bullen = pll + (1 = Bu)l[20 = pl|

< Pallen = pll + (1 = Bu)llan(f (un) = p) + (1 — an)(Tun — p)|
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< Bullzn —pll + (1 = Bu){anl|f (un) — f ()]
+anl[f(p) = pll + (1 = an)[[Tun — pl[}
< Bullen = pll + (1 = Bn)anal|un —pl|
+ (1= Bu)an|lf(p) = pll + (1 = o) (X = )| |un — pl|
< Palln = pll + (1 = 5)(1 = an(1 = a))[|zn — pl[ + (1 = Bu)ewm[f(p) — pl|

|1/ (p) ap||}

< max{] |z, — pll,

Hf() pll}

< max{||zo — pl|,

This implies that {z,} is a bounded sequence in H. By (2.2), we know that {u,} is
a bounded sequence in C' and so {T'u,}, {f(u,)}, {2.} all are bounded sequences in
H. Let

(2.3) M = sup{[un = 2| + [l2n = yll? + (1 ()] + 1T (a1},

where y € H is some given point.
(III) Now, we make an estimation for {||u,+1 — uyl|}-

By the definition of T}, u,, =T, z, and u,41 =71, ., v,+1. Hence we have

Tn+1
1
(2-4) ¢(un+17 y) + ” <Z/ — Un+41, Un41 — SCn+1> >0, Vy € C7
n+1
1
(2.5) O(Un,y) + T—(y — Uy, Up — Ty) >0, Vy € C.

Take y = u,y1 in (2.5) and y = u, in (2.4). Then, adding the resulting inequalities

and noting the condition (A2), we have

Up — Tp Up+1 — Tn+1
(Unt1 — Un, - ) >0
Tn Tn+1
and hence
Tn
<un+l — Up, Up — Unp41 + Up+1 — Tp — , (un-i-l - Z’n+1)> 2 0.
n+1

This implies that

- J(Uny1 — Tpi1))

Hun—i—l - UnH2 < <un+1 — Up, Tptl — Tp + (1 -
Tn—l—l

| [t = Tnga [}
n+1

< |tns1 — un|{||Tns1 — znl| + 1 —

Thus, by the condition (iii), we have

1 = tnll < |ng1 — 2ol + 11 = —|[[ttnr1 — Tnpa]
(26) ) n+1
< |@pa1 — @[ + ;|rn+1 — 7| - M.
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(IV) Now we prove that ||Tu,, — u,|| — 0.
In fact, it follows from (2.1) and (2.6) that

||zn+1 = znl|
= llams1 f (uns1) + (1 = 1) Ttingr — o f (un) — (1 — ) T'ug|
= llont1 f (unt1) = angr f(un) + ngr f(un) — an f(un)

+ (1 — aps1)Ttpir — (1 — apa1)Tuy + (1 — ) Tup — (1 — ) Ty
< e |[f(unsr) = fun)|] + 2lan — ana|[M + (1 = an)|[Ttng1 — Tun|
< a1 |ung1 = Un| + 2|lan — appr [M + (1 = )| [t — ual|

S ||un+1 - un|| + 2|an - an+1|M

1 (o7
< Tng1 — ol + =|rpgr — mal[M + 2|1 — |M
r Ant1

It follows from the conditions (i) and (iii) that

limsup{|[zn1 = 2| = [[2ns1 = zal[} < 0.

n—oo

By virtue of Lemma 1.3, we obtain that

(2.7) [|Tn — 2zu|| = 0 as n — oc.

From (2.1) and (2.7), we have

(2.8) |Znt1 = znll = (1= Bo)l[2n — 20| = 0, as n — oo
It follows from (2.6), (2.8) and the condition (iii) that

(2.9) [|tni1 — unl| — 0, as n — oc.

Since o, — 0 and {z,}, {f(un)}, {Tu,} all are bounded, from (2.7), we have

|20 — Tun|| < ||2n — 20l + [|20 — Tun||
(2.10)
< |wn — zn|| + | f(un) — T'uy|| — 0.

Furthermore, for any p € F(T) (| EP(¢), we have
wn = pl* = |T3, 20 = T,
< <T7"7an - TTnp7 Tp — p)

= <Un—p, xn_p>
1

= 5 {llun = pII” + llzn = pI* = flzn — ual I’}

Hence we have

(2.11) [l = pII* <l =PI = [an — unl*
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From the convexity of function x +— ||z||*> and (2.11), we have
|21 = pI* = 11Bazn + (1 = Ba)zn — plI®
< Bullzw = plI* + (1 = Ba)llzn — pII®
< Bullzn = pl* + (1 = Bu){nllf (un) = plf?
+ (1= an)l|Tuy = pl|*}
< Bullzn = pl* + (1 = Ba)anl| f(un) = pl[?
+ (1= an) (1 = Bo)llun — plf?
< Ballzn — plI* + (1 = Ba)al | (wn) = plI* + (1 = Ba)llun — plI*
< Bullzn = plI* + (1 = Ba)anl] f (un) = plf?
+ (1= Bu){llzn = pII” = [Jn — ua|[*}
and so
(1= Bo)llzn — un||*
< |z = pI* = llwnsr = pl* + (1 = Ba)anll f(wa) — plI®
< (llen = pll = llener = pID Uz = Il + 120401 = pII) + Q[ f(ua) — pl®
< (llzw = @asa [N = pll + ll2nsr = pl) + anll f(wn) = plI*.

Since o, — 0, {z,} and {f(u,)} are bounded and ||z, — z,41|| — 0, we have

(2.12) l|Tn — un|| = 0 as n — oo
and so
(2.13) | Tw, — up|| < ||Tup — 20| + |20 — un|| — 0.

The desired conclusion is proved.

(V) Now, we prove that

limsup(f(z*) — 2", x, — ") <0,

where z* = PF(T)OEP((;S).]C('I*)'
In fact, we can choose a subsequence {z,,} C {2} such that
(2.14) lim (f(z") — 2%, zn, — 2%, ) = limsup(f(2*) — 2", 2, — 27).
nj—00 n—00
Since {upn,} is bounded, without loss of generality, we can assume that u,;, —w € C.
By (2.13), ||Tu, — un|| — 0 and hence |[Tu,, — uy,|| — 0. It follows from the

demiclosed principle (see Lemma 1.4) that Tw = w and T'u,; — w.

Next, we prove that w € F(T)NEP(¢). It is sufficient to prove that w € EP(¢).
In fact, since u,, =T, x,, we have

1
¢(un,y) + _<y — Up, Up — xn> > O, Vy e C.

n
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It follows from the condition (A2) that

1
T_<y — Up, Up — $n> > ¢(y, un)
and so
Up,; — Tn,
Since 1 j"jll < lemi=ensll ) and u,, — w, by virtue of the condition (A4), we
have
- , Up, — T,
liminf ¢(y, up,) < lim (y —u,,, ———=) =0,
n;—00 Nj—00 frnj
that is,
(2.16) oy, w) <0, VyeC.

For any t € (0,1) and y € C, let y, = ty + (1 — t)w. Then y, € C and so we have
o(ye, w) < 0. It follows from the conditions (Al), (A4) and (2.16) that

0= ¢(ytayt>
< to(ys, y) + (1 — ) p(ys, w)

< to(y1, y)-
This implies that ¢(y;,y) > 0 for all ¢ € (0, 1). Letting ¢ — 07, by the condition (A3),
we have
d(w,y) >0, Vy e C.
This shows that w € EP(¢) and so w € F(T) N EP(¢).

Since * = Prr)nep@)f (), tn; — w and ||u, — z,|| — 0 (see (2.12)), we have

limsup(f(z*) — 2", x, —2%) = lim (f(z") — 2, z,, — 2%)

n—00 nj—00

(2.17) = lm (f(2") — 2%, up, — (U, — Tn;) — ")

=(f(z")— 2", w—2") <0.
The desired conclusion is proved.
(VI) Finally, we prove that x,, — x* as n — oo.

In fact, it follows form (2.1) and Lemma 1.6 that
llzn = 2|17 = [lon(f (un) — 27) + (1 — @) (Tun — )|
< (1= an)?||Tuy — 2| + 200, f () — %, 2, — )
< (1= 0n)?llun — 27 + 200 (f (un) = f(2") + f(2") — 2%, 2 — 27)
< (1= 0n)?llun — 2|7 + 200l [un — 27| - [[2n — 27|
+ 20, (f (%) — 2", 2, — %)

< (1= an)*lJun — 27[]* + ana{[Jun — 2*[]* + [ 20 — 27|}
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+ 20, (f (%) — 2", 2, — %)
and so, from (2.2),
(1—a,)* + aa 20, (f(x*) — x*, 2z, — x*)

[lzn — 2"||* < [lun — || +

1-— 1-—
(2.18) Onc An
(1—a,)?+ aya win . 20 (f(z*) — 2, 2, — %)
< |20 — 2"|]" + :
1—oa,a 1—o,x

511

Since «,, — 0, for any € > 0, there exists a nonnegative integer ng such that 1 —a«,, >

% for all n > ngy. Note that
(1—a,)? + a,a < 1—a,+a2
1— o, - 1-a,a

(2.19) < (- ay(1—a)) 4"

Thus, substituting (2.19) into (2.18) and noting (2.3), we have
[lzn = 21> < (1= an(1 = )l |20 — 27" + 205 M

(2.20) 20, (f(z*) — 2%, 2, — T¥)
T 1—a,x

) v77’2”07

where M = sup,s¢ ||z, — 2*[|>. And so, from (2.1), (2.20) and the convexity of

x — ||z||?, we have
2pir — 2| < Ballzn — 2*|* + (1 = Bo) |20 — =
< Ballwn = 2| + (1 = Ba){(1 = an(1 = @))[ |z, — 27|
200 (f (") — 2", 20 — :B*)}
1 —a,a
(2.21) < (1= (1= Ba)an(l — )|z, — 27|
20, (f(z*) — x*, 2z, — %)
1— o,
< (1= (1 =0b)an(1 — )|z, — ||
20, (f(x*) — ¥, 2, — x¥)

1—o,x

+ 202 M +

+202M + (1 — 3,)

+2a2M + (1 - 4,) , Yn >ng

From (2.7), since we have ||z, — z,|| — 0, it follows from (2.17) that

limsup(f(z*) — ", z, — ")

n—~o0

n—oo

= limsup(f(z*) — 2%, z, —2") <O0.

n—~0o0

Let
Tn = HlaX{O, <f(I*) - I*a Zn — I*>}
Then ~, > 0.
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Next, we prove that

(2.23) Yo — 0.

In fact, it follows from (2.22) that for any given ¢ > 0, there exists n; > ngy such
that
(f(z*) —a", z, —2") <e.
and so we have
0<y,<e as n— oo.
By the arbitrariness of € > 0, we get 7, — 0. By virtue of {~,}, we can rewrite (2.21)
as follows:

|20 — 2"

2.24
( ) <(1-01-=-ba,(1—a)|lz, — x*\|2 + QQiM + 4o, Y, VYN > ng.

Therefore, taking a, = ||z, — 2*[|%, A\n = (1 — b)a, (1 — ) and b,, = 202 M + 4, Y,
by Lemma 1.4 and the conditions (i)—(iii), the sequence =, — z* as n — oo. This
completes the proof.

From Theorem 2.1, we can obtain the following:

Theorem 2.2. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, T : C'— H be a nonexpansive mapping with F(T) # 0 and f : H — H
be a contraction mapping with a contractive constant o € (0,1). Let {a,}, {B.} be

two sequences in [0, 1] satisfying the following conditions:

(i) an = 05 Ygan =o00; [1- 2| = 0;

(ii) There exist a, b € (0,1) such that a < B, < b for all n > 0.
For any xo € H, let {z,} be the sequences defined by

{ Tntl = ﬂnxn + (1 - 6n)zn7

(2.25)
Zn = nf(uy) + (1 — )T (uy,), ¥Yn >0,

where u, = Pox, for alln > 0 and Py is the metric projection from H onto C'. Then
x, — x* € F(T) as n — oo, where z* = Pp(r) f(z*).

Proof. Taking ¢(x,y) = 0forall z,y € C'and r, = 1 for all n > 1 in Theorem 2.1,

then we have

(Y — Up, up —xy) >0, VyeC.
This implies that u, = Pcx,. Therefore, the conclusion of Theorem 2.2 can be
obtained from Theorem 2.1 immediately.

Theorem 2.3. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, ¢ : C x C'— R be a functional satisfying the conditions (A1)—(A4) such
that EP(¢) # 0 and f : H — H be a contraction mapping with a contractive constant
a € (0,1). Let {an}, {Bn} be two sequences in [0,1] and {r,} C (0,00) be a real
sequence satisfying the following conditions:
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(i) an —0; > o =00; |1—-22]—=0;

(i

Qn+1

i) There ezist a, b € (0,1) such that a < 3, < b for all n > 0;

(iii) 0 <r <, foralln >0 and |1, — rpi1] — 0 as n — oc.

For any xo € H, let {x,} and {u,} be the sequences defined by

1
O(Un,y) + —(y — up up — ) >0, Yy € C,

n

(2.26) Tot1 = Bun + (1 = Bn)zn,

Zn = anf(x,) + (1 — o)y, Yn > 0.

Then x, — x* € EP(¢) as n — oo, where * = Pppg) f(x").

Proof. Taking T = I in Theorem 2.1, then F(T)) = H and so Ppr)nepg) =

Pgp(g). Therefore, the conclusion of Theorem 2.3 can be obtained from Theorem 2.1.

ACKNOWLEDGEMENTS: The first author was supported by the Natural Sci-
ence foundation of Yibin University (No 2005-Z003) and the third author was sup-
ported by the Korea Research Foundation Grant funded by the Korea Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-C00201).

[1]

REFERENCES

A. S. Antipin and S. Flam, Equilibrium programming using proximal-like algorithms, Math.
Program, 78(1):29-41, 1997.

E. Blum and S. Oettli, From optimization and variational inequalities to equilibrium problems,
The Math. Student, 63(1-4):123-145, 1994.

S. S. Chang, Some results for asymptotically pseudo-contractive mappings and asymptotically
nonexpansive mappings, Proc. Amer. Math. Soc., 129:845-853, 2001.

P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear
Convex Anal., 6:117-135, 2005.

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced
Mathematics, 28: Cambridge Univ., Press, 1990.

L. S. Liu, Ishikawa and Manniterative processes with errors for nonlinear strongly accretive
mappings in Banach spaces, J. Math. Anal. Appl., 194:114-125, 1995.

A. Moudafi, Viscosity methods for fixed points problems, J. Math. Anal. Appl., 241:46-55, 2000.
A. Moudafi and M. Thera, Proximal and dynamical approaches to equilibrium problems, Lecture
Notes in Econom. and Math. Systems, Springer-Verlag, Berlin, 1990, 187—-201.

T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter

nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305:227-229, 2005.

[10] S. Takahashi and W. Takahashi, Viscosity approximation methods for Equilibrium problems and

fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2006, doi:10.1016/j.jmaa.2006.08.
036.

[11] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl.,

298:279-291, 2004.



