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ABSTRACT. By using the functions of the form H(t,s) and a generalized Riccati technique,
we establish new Kamenev-type and interval oscillation criteria for second-order nonlinear dynamic

equations on time scales of the form

(p(lt):cA(zt))A + f(t,z(a(t))) = 0.

The obtained interval oscillation criteria can be applied to equations with forcing term. Two exam-

ples are included to show the significance of the results.
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1. INTRODUCTION

In this paper, we study the second order nonlinear dynamic equation

(L1) (P(Oz™(0)" + £ (1, 2(0 (1)) = 0
on a time scale T, where p € C,4(T, (0,00)), f € C(T x R,R).

For convenience, we recall some concepts related to time scales. More details can
be found in [1, 2].
Definition 1.1. A time scale is an arbitrary nonempty closed subset of the set R of
real numbers with the topology and ordering inherited from R. Let T be a time scale,
for t € T the forward jump operator is defined by o(t) := inf{s € T : s > t}, the
backward jump operator by p(t) := sup{s € T : s < t}, and the graininess function
by p(t) := o(t) —t, where inf () := sup T and sup @) := inf T. If o(¢t) > ¢, t is said to be
right-scattered; otherwise, it is right-dense. If p(t) < ¢, ¢ is said to be left-scattered;
otherwise, it is left-dense. The set T* is defined as follows: If T has a left-scattered
maximum m, then T% = T — {m}; otherwise, T® = T.
Definition 1.2. For a function f: T — R and ¢t € T", we define the delta-derivative
f2(t) of f(t) to be the number (provided it exists) with the property that given any
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e > 0, there is a neighborhood U of t (i.e., U = (t —4,t+ ) NT for some J) such that
[f(o(t)) = f(s)] = fED[o(t) = s]| < elo(t) —s|  forall s € U.

We say that f is delta-differentiable (or in short: differentiable) on T* provided f2(t)
exists for all ¢t € T".

It is easily seen that if f is continuous at ¢t € T and t is right-scattered, then f is
differentiable at ¢t with

s Jl) — 10
PO=""w

Moreover, if t is right-dense then f is differential at ¢ iff the limit
oS0 = ()
s—t t—s

exists as a finite number. In this case

(0 — 1 O —I6)

s—t t—s

In addition, if 4 > 0, then f is nondecreasing. A useful formula is
(1.2) fo(t) = f(t) + u(t) f2(t), where fo(t) := f(o(t)).

We will make use of the following product and quotient rules for the derivative of
the product fg and the quotient f/g (where gg” # 0) of two differentiable functions
f and g:

(1.3) (f9)® = f2g+ [79% = fg° + [24°,
(1.4 ([)A I
' g 99°

Definition 1.3. Let f : T — R be a function, f is called right-dense continuous (rd-
continuous) if it is continuous at right-dense points in T and its left-sided limits exist
(finite) at left-dense points in T. A function F': T — R is called an antiderivative of f
provided F'2(t) = f(t) holds for all ¢ € T*. By the antiderivative, the Cauchy integral
of f is defined as fab f(s)As = F(b) — F(a), and [ f(s)As = limy—e fj f(s)As.
Let C,.4(T,R) denote the set of all rd-continuous functions mapping T to R. It is

shown in [2] that every rd-continuous function has an antiderivative.

An integration by parts formula is

b b
(1) | g mac=1roel] - [ e oar
and another useful formula is
b

(L6) FOAL = F(pB) (b= p(b)).

p(b)
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Without loss of generality, we assume throughout that 0 € T and sup T = oo since
we are interested in extending oscillation criteria for the corresponding differential and

difference equations, namely

(p()a' ()" + f(t, x(t)) = 0
with T = R, := [0, 00), and

A(ppnAzy,) + f(n,2p41) =0

with T = Ny, the set of nonnegative integers.

A solution z(t) of Eq. (1.1) is said to have a generalized zero at t* € T if
z(t)z(o(t*)) < 0, and it is said to be nonoscillatory on T if there exists ¢, € T
such that z(t)z(o(t)) > 0 for t > t,. Otherwise, it is oscillatory.

The theory of time scales, which has recently received a lot of attention, was intro-
duced by Stefan Hilger in his PhD thesis [8] in 1988 (supervised by Bernd Aulbach) in
order to unify continuous and discrete analysis. In recent years, there has been much
research activity concerning the oscillation and nonoscillation of solutions of dynamic
equation on time scales, e.g., see [2-7, 9-11, 15, 16] and the references therein. In

Dosly and Hilger [5], the authors considered the second-order dynamic equation

(1.7) (p(t)2>(1)> + q(t)z(o(t)) = 0,

and gave necessary and sufficient conditions for the oscillation of all solutions on
unbounded time scales. In Del Medico and Kong [4], the authors employed the

following Riccati transformation

p(t)z2 (1)
()

and gave the conditions for oscillation of Eq. (1.7) on a measure chain. And in Yang

(1.8) u(t) =

[14], the author considered the oscillation of solutions of the differential equation
(1.9) (@' (1)) + q(6) f ((2)) = g(t).

In this paper, we shall use a generalized Riccati transformation which is more
general than (1.8) and was used in [12, 13] for nonlinear differential equations, and
establish new Kamenev-type as well as interval oscillation criteria for Eq. (1.1) in
Sections 2 and 3, respectively. The obtained interval oscillation criteria can be applied
to such equations with forcing term as (1.9). Finally in Section 4, two examples are

included to show the significance of the results.

For simplicity, throughout this paper, we denote (a,b) (T by (a,b), where a,b €
R, and [a, b], [a, b), (a, b] are denoted similarly.
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2. KAMENEV-TYPE CRITERIA

In this section we establish Kamenev-type criteria for oscillation of Eq. (1.1). We
assume throughout this section that:

(Cl) f e C(TxR,R), uf(t,u) > 0 for u # 0, and there exists a function
q € Cpq(T,R) such that wf(t,u) > q(t)u?.

Our approach to oscillation problems of Eq. (1.1) is based largely on the appli-
cation of the Riccati transformation. Now, we give the first lemma.

Lemma 2.1. Assume x(t) is a solution of Eq. (1.1) satisfies x(t) > 0 for t € [tg, 00)
with ty € T. Fort € [ty,00), define

(2.1) ult) =

where A € C',(T,R.\{0}), B € CY(T,R), and A(t)p(t) + u(t)B(t) > 0 for t €
[to, 00), then u(t) satisfies
(2.2) p(t)u(t) — p(t)B(t) + Alt)p(t) > 0

and
(2.3)

+ B(t),

u®(t) + O (1)

Proof. First,

Apz?
pu —pB + Ap =p Z; + uB —uB + Ap
x’ —x 7

— Ap

+ Ap = Ap% >0,
i.e., (2.2) holds. Then differentiating (2.1) and using (1.1), it follows that

A AN A
o () () e

2 (px®)2x — p(a?)?

A
= — (u—B)+ A° B~
T (u )+ o +
AA AA Aaf p(xA)2
= — B~ B4 _p
A ut A z° zx°
As B\ p(z2)?
< - o _ _ (o _ 0'7
S 7 u+ A (A) A%q— A po
A o _ 2
B (O Chr )
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_ 1 s i N o
— A(uu—uB+Ap)( Au® + [(A” + A)B + A% Aplu — A°B?) — @4,

i.e., (2.3) holds. Lemma 2.1 is proved. O

Let Dy = {s €T :s>0}; D={(t,s) € T>:t > s > 0}. For any function
f(t,s): T2 — R, denote by f2 and f2 the partial derivatives of f with respect to t
and s, respectively. For F C R, denote by L;,.(E) the space of functions which are
integrable on any compact subset of F. Define

(o7, %) = {(A, B) : A(s) € Ciq(Do, R3\{0}), B(s) € Cpy(Dyo, R),

A(s)p(s) £ u(s)B(s) > 0,5 € Do};
H* ={H(t,s) € CY(D,Ry): H(t,t) =0,H(t,s) >0, H>(t,s) <0,t > s > 0};
H, = {H(t,s) € CY(D,Ry): H(t,t) =0, H(t,s) > 0, H>(t,s) > 0,t > s > 0};
H = A" A

These function classes will be used throughout this paper. Now, we are in a

position to give our first result.

Theorem 2.1. Assume that there exist (A, B) € (&, B) and H € F* such that
M (t,-) € L([0, p(t)]) and for any ty € T,

t p(t)
(2.4) h?iigp H(tl, ) {/to H(t,o(s))P1(s)As —/to M (t,s)As

(H(t,s)A(s)B(s) + H(t,o(s))A%(s)B(s)
AH(t,0(s))A(s) min{A(s)(A(s)p(s) — u(s)B(s)), A7 (s)(A(s)p(s) + n(s)B(s))}
Then Eq. (1.1) is oscillatory.

Ml(ta 3) £

Proof. Assume Eq. (1.1) is not oscillatory. Without loss of generality we may assume
there exists ¢y € [0,00) such that xz(tf) > 0 for ¢ € [tp,00). Let u(t) be defined by
(2.1). Then by Lemma 2.1, (2.2) and (2.3) hold.

For simplicity in the following, we let H, = H(t,o(s)),H = H(t,s), HS =
HZ2(t,s), and omit the arguments in the integrals. For s € T,

(2.5) H, — H = Hp.

Multiplying (2.3), where ¢ is replaced by s, by H,, and integrating it with respect
to s from to to t with ¢t € T and t > o(ty), we obtain

¢ t Au? — [(A° + A)B + AR A A° B?
/ H,9,As < —/ (H(,uA + H, w47+ A)B+ plu+ ) As.
to to A(:uu — pB+ Ap)
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Noting that H(t,t) = 0, by the integration by parts formula we have

t
(26) / ng)lAS

Au? — [(A° + A)B + A% Aplu + AUB2) As
A(pu — pB + Ap)
Au? — [(A°+ A)B + AAAp]u) As
A(pu — pB + Ap)

< H(t, to)u(to) + /t (HZAu — H,

to

< H(t, to)u(to) + /t (HZAu — H,

to

t
= H(t,to)u(to) +/ HYuAs
p(t)

P(t) Au? — [(A° + A)B + A% Aplu
+ H>u — H, ) As.
/to ( 2 A(pu — pB + Ap) ’

Since H2 < 0 on D, from (2.2) we see that for t > o(ty),
t
@) |, s = B p) )1 — )

= HA(t p())u(p()) n(p(t))Xe-pe)
< —Hy (t, p(1)) (A(p(t))p(p(t)) — 1(p()) B(p(£))) Xt ptt)-
For t > o(ty), s € [to, p(t)), and u(s) <0,
Au? — [(A° + A)B + A% Aplu
A(pu — pB + Ap)
= ;B Ty (FAH 4 [HAB + HATB 4 Ap(HA)>Ju)
B Hu? N HAB + H,A°B + Ap(HA)"?
pru — puB + Ap A(Ap — uB)
HAB + H,A°B + Ap(HA)” pu?
- A(Ap — nuB) pru — B + Ap
H,A?(Ap + uB)u? HAB + H,A°B + Ap(HA)?
~ A(Ap — puB)(pu — uB + Ap) A(Ap — uB)
H,A%(Ap + uB)u® HAB + H,A°B + Ap(HA)»
A(Ap — pB)? A(Ap — puB)
H,A?(Ap + uB) (Ap — uB)(HAB + H,A° B + Ap(HA)A) |
A(Ap —uB)2 " 2H,A(Ap + 1iB)
(HAB + H,A°B + Ap(HA)*)?
4H,A°(Ap+ nB)A
- (HAB + H,A°B + Ap(HA)*)?
~ 4H,Amin{A(Ap — uB), A°(Ap+ uB)}
Therefore, for all t > o(ty), s € [to, p(t)), we have
Au? — [(A? + A)B + A2 Aplu <M
A(pu — pB + Ap)

Hfu — H,

= M.

(2.8) Hu — H,
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Then from (2.6), (2.7) and (2.8) we obtain that for ¢ € T and t > o(ty),

t p(t)
(29) / HU(I)lAS S H(t,to)U(to) + MlAS
—Hy: (t, p(t)) (A(p(£))p(p(t)) — 11(p(£)) B(p(t))Xt-p(t)-
Hence
1 t p(t)

o) {/to H(t,o(s))P1(s)As — ) M (t, s)As

+H3 (¢, p(t) (A(p(t))p(p(t)) — lu(p(t))B(p(t)))Xt—p(t):| < u(to) < oo,
which contradicts (2.4) and completes the proof. O

In the sequel we define
(2.10) Ty ={s € T : s is right-dense} and Ty = {s € T : s is right-scattered }.

Note that this result does not apply to the case where all points in T are right-dense.

Theorem 2.2. Let (A, B) € (7, AB),H € ., My(-,t) € Lipe([o(t),00)), and Ty, Ty
be defined by (2.10). Then Eq. (1.1) is oscillatory provided there exists {t,}>>, C Ty,
t, — o0, such that for any tg € T, one of the following holds:

(1) limy— o0 N(tn, to) = 00 and
H(o
to

tn
(2.11) limsup [ dy(s)As — Mg(s,to)As] = o0;
n—oo tna tO o(to)
(ii) limsup,, ., N(t,,to) = o0 and
tn
(2.12) lim ——— [/ H(o Dy (s)As — MQ(S,T,(])AS:| = o0;
n—oo N tn,to to a(to)

(iii) limsup,,_, . N(tn, to) < 00 and

(2.13) lim sup [/ H(o(s),t0)®1(s)As — : MQ(S,to)AS:| = 00,
n—oo a(to)
where N(t,s) = H(t,s)(A(t)p(t) — w(t)B(t))/u(t), 1 is defined as before, and
(H(s,t)A(s)B(s) + H(o(s),t) A7 (s)B(s) + A(s)p(s) (H (s, ) A(s)) > )
4H (s,t)A(s) min{A(s)(A(s)p(s) — p(s)B(s)), A7 (s)(A(s)p(s) + n(s)B(s))}

M2(Svt) £

Proof. Assume that Eq. (1.1) is not oscillatory. Without loss of generality we may
assume there exists ¢y € [0, 00) such that x(t) > 0 for t € [ty, 00). Let u(t) be defined
by (2.1). Then by Lemma 2.1, (2.2) and (2.3) hold. For simplicity in the following,
we let H, = H(o(s),ty), H = H(s,ty), H® = H”(s,ty), and omit the arguments in
the integrals. Multiplying (2.3), where ¢ is replaced by s, by H!, and integrating it
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with respect to s from ty to t and then using the integration by parts formula we have
that

t
(2.14) | H,®1As

to

¢ , Au? — [(A7 4+ A)B + A Aplu + A° B?
< - Hu®+ H, A
/to ( " A(pu — uB + Ap) > i

 Au? — [(A7 + A)B + A® Aplu + AUB2> As

—H(t,to)u(t) +/ <Hl - H, A(pu — pB + Ap)

o(to) 7 Au — [(A% 4+ A)B + A Aplu >
H{(t, tp) HA As.
o </t0 /U(to ) < L A(pu — puB + Ap)

For s € [to, 1),

(2.15) H, — HAu=H.

Hence

o(to) , Au? — [(A° + A)B + A” Aplu
2.16 / (HAU —H, ) As
(2.16) to ' A(pu — pB + Ap)

s=to

, Au? A% + A)B + A Aplu
= #lto) (HlA e A[Euu - uz? + Ap) : )
[~AH' u? + (H AB + H,A°B + Ap(H A)*)u]p
B A(pu — pB + Ap)
(H,A°B + Ap(H A)*)uu
~ A(uu— pB + Ap)

, H A°B
< (b a + 28

s=to

s=to

Xnu(to)

= [p(to)HlA(to,to)Aa(to) + H(U(t0)72>(;40;(t0>3(t0>} Xp(to) -

Furthermore, for t > ¢, s € [o(to),t), and u(s) <0,

, Au? — [(A7 + A)B + A® Aplu
A(pu — pB + Ap)
- ;B S~ (ZAH 62+ [H AB + H,AB + Ap(H'AY*]u)
H'u? N H' AB + H,A°B + Ap(H A)»
pu — pB + Ap A(Ap — puB)
H'AB + H,A’B + Ap(H A)» p?
- A(Ap — uB) pu — B 4 Ap
B H A% (Ap + puB)u? N H'AB + H,A’B + Ap(H A)»
A(Ap — uB)(pu — pB + Ap) A(Ap — uB)
H_A°(Ap + uB)u®> H AB+ H,A°B + Ap(H A)*
~ A(Ap — pB)? A(Ap — pB)

H% — H,
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H.A?(Ap + uB) (Ap — uB)(H AB + H,A°B + Ap(H' A)*)]?
A(Ap —uB)2 "7 2H A°(Ap + iB)
(H'AB + H,A’B + Ap(H' A)»)?
AH  A°(Ap+ nB)A
- (H'AB + H,AB + Ap(H A)*)?
~ 4H'Amin{A(Ap — uB), A°(Ap+ uB)}
For t > ty, s € [o(to),t), and u(s) > 0,
Au? — [(A° + A)B + A% Aplu
A(pu — pB + Ap)
H, A?(Ap + puB)u® H'AB + H,A’B + Ap(H A)»
~ A(Ap — uB)(uu — uB + Ap) A(Ap — uB)
i H' AB + H,A°B + Ap(H A)A1?
pu— pB + Ap e 2H'A
(H' AB + H,A’B + Ap(H A)*)?
AH' A?(pu — uB + Ap)
_ (H'AB + H,A’B + Ap(H A)?)?
~ 4H'Amin{A(Ap — uB), A°(Ap + uB)}
Hence, for all t > g, s € [o(to),t), we have
, Au? — [(A° + A)B + A% Aplu <M.
A(pu — pB + Ap)
From (2.14), (2.16) and (2.17), we have

= MQ.

HAPu—H,

u

= M.

(2.17) Hfu— H,

(218) /t Hcqu)lAS < —H(t, to)U(t) + ; : MQ(S, to)AS
H(o(to), to)AU(to)B(to)]
A(to) Xu(to)-

+ {p(to)Hf(tmto)Ag(to) +
For t € Ty, (2.2) implies

CH(t to)u(t) < H(t, ) APO ZOBE) _ iy,

p(t)
Hence
t t
(2.19) / H(o(5), 1)1 (s)As < N(tto) + | Ma(s, tg)As
t O’(to)
H(o(to), to) A% (t) B(t
+ [pao)Hf(to,to)A"(to) L poe
(to)
Assume condition (i) holds. Let ¢t = ¢, in (2.19). Then we obtain
tn
|i/ H ( )AS — MQ(S,tO)AS]
tn,to to o(to)

Xu(to) - H(o(to), to)A” (to) B(to)
<1+ Nty to) {p(to)HlA(to,tO)A (to) + ) } .
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Taking the lim sup as n — oo on both sides, we have

tn
limsup {/ H(o dy(s)As — Ms(s,tg)As| < oo,

n—00 o(to)

which contradicts (2.11).

The conclusions with conditions (ii) and (iii) can be proved similarly. We omit
the details. O

When (A, B) = (1,0), Theorems 2.1 and 2.2 above reduce to the following two

corollaries, respectively.
Corollary 2.1. Assume that there exists H € F€* such that for any tg € T,

o) (HA(L. 5))?
(2.20) h?liljp tto {/ H(t, o As—/to %p(s)&s

Then Eq. (1.1) is oscillatory.

Corollary 2.2. Let H € 5, and let Ty, Ty be defined by (2.10). Then Eq. (1.1) is
oscillatory provided there exists {t,}>>, C Ta, t,, — 00, such that for any ty € T, one
of the following holds:

(1) lim,, oo H(tn,to)p(ts)/p(t,) = 0o and

tn tn Als 1, 2
limsup% [/to H(J(s),to)q(s)As—/U MP(S)AS

n—o00 (to) 4H($, t()
(ii) limsup,, .o H (tn, to)p(tn)/pu(tn) = 0o and
tn (HA(S to))2
lim ————— / H(o As—/ AL p(s)As| = oo
n—sc H (tn, to)p(tn) [ as) (to) 4H(s,to) pls)

(iii) limsup,, . H (tn, t0)p(tn)/p(t,) < 0o and

e (HE(s, 1))’
I H(o As — AL 9T p(s)A
im sup [/ q(s)As /uo) 1 (5. 1o) p(s)As
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3. INTERVAL CRITERIA WITH FORCING TERM

In this section, we establish interval criteria for oscillation of Eq. (1.1). First, we

give two lemmas.

Lemma 3.1. Assume that there exist ¢; < by < co < by, v > 1, functions q,g €
Cra(T,R) such that q(t) > 0 and q(t) £ 0 for t € [c1,b1] U[c2, ba],

(t)
{<Ote by,

and
B0 > oy - 22

) Y
for allt € [eq,bi) U[ez, ba] andy # 0. If z(t) is a solution of Eq. (1.1) such that x(t) >
0 on [c1,0(b1)] (or xz(t) <0 on [c2,0(ba)]), define u(t) as in (2.1) on [c;, bi],1 = 1, 2.
Then for any (A, B) € (o7, %), H € 7", and M(t,-) € L([0, p(t)]), we have

(3.1)

(3.2) / _iH(bi,o—(s))%(s)As < H(bi, ciyu(ci) + / p " My (b, 5)As
—H3 (bi, p(bs)) (A(p(6:))p(p(:)) = 1(p(b:) B(p(b:))) Xbs—p(b)» T = 1,2,

L1 A
where @y(s) = A°(s) (w—1><1—v>/wq<s>]v|g<s>| - (5) ) for 7 > 1, and
Dy (s) = P1(s) fory = 1. M is defined as before.

Proof. Suppose that x(t) is a solution of Eq. (1.1) such that x(t) > 0 on [¢1, 0(by)].
(i) v > 1. Note that ¢g(t) < 0 on [y, by], differentiating u(t) we have
AA A° Acrp(l.A)2

A (u—B)- 7y _ BA
= - B) - S - EEE
A% B\* 1 Ap(at)?
< A [ = — A0 |2 o\y—1| _ i Sl
- A v (A) {x" ala?) ] xx’

From Holder inequality we have

‘g| o\y—1
= Ta(@?)

=1/~ 1-2) 7T
v 1 g gl 1 Looyi=117
= < ) {'J} +-—-{Wﬁ/”kﬂ”(x )! ”}
v 71 z g

> 5y = 1) g |g] .

Therefore,

A A xx’
AR A% (u — B)?

—u —_ J—
A A(pu — pB + Ap)

A A L Ny O (o A2
w < Sruea (§) -l - THES

2.
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That is, for v > 1,

(3.3)  u(t) + Poft)
+A(t)u2(t) —[(A7(t) + A®)) B(t) + A2 () A()p(1)]u(t) + A% () B>(1)
A(t) (u(t)u(t) — p(t)B(t) + A(t)p(t))

<0.

(ii) For v = 1, we have

A A O ()2

A A o Tz’
AA Aop(l'A)2 B A

<« =, 280 ) o= _

= A" xx’ A <A> 1

Then (3.3) also holds.
From (i) and (ii) above, we see that (3.3) holds for v > 1. Following the proof of
Theorem 2.1, from (3.3) we have

t p(t)
/ HO-(PQAS S H(t,to)u(to) + MlAS
to

to

—Hy' (8, p(t) (Alp()p(p(t) — nlp() B(p(t)))Xe-p(e)

then letting tg = ¢q,t = by, we get

b1 p(b1)
(3.4) H(by,0(s))Ps(s)As < H(by,cq)uleq) + M (b1, s)As

C1 Cc1

—Hy (b1, p(b1)) (A(p(01))p(p(01)) = 1(p(b1)) B(p(1))) Xor—p(01)-

If 2(t) < 0 on [c2,0(be)], then we see that g(t) > 0 on [c2, be] and
AA B A"p(xA)z

AO’
A oA A o A
ut = — (u— B) = f(t,z%) o + B
AA B\* g Aop(zt)?
< A [ = — A | olv=1| _ el Sl
< Sperar(5) - eaer] S
Following the steps in case (1), we have
ba p(b2)
(3.5) H(by,0(8))Po(s)As < H(bg, co)u(ca) + M (by, s)As

—H3 (b, p(b2)) (A(p(b2))p(p(ba)) — 1(p(b2)) B(p(D2))) Xz p(t)-

From (3.4) and (3.5), we see that (3.2) holds for v > 1. The proof is complete. [

Lemma 3.2. Assume that there exist a; < ¢; < ag < ¢o, ¥ > 1, functions q,g €
Cra(T,R) such that q(t) > 0 and q(t) #Z 0 fort € [a1, c1|J|az, c2] and

g(t) { <0, te [0,1,01],

Z 0, te [CLQ,CQ],
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and (3.1) holds for allt € [ay, c1] U[ag, c2] and y # 0. If x(t) is a solution of Eq. (1.1)
such that x(t) > 0 on [ay1,0(c1)] (or z(t) < 0 on |ag, 0(ca)]), define u(t) as in (2.1) on
la;,¢;],i = 1,2. Then for any (A, B) € (/,B),H € H., Msy(-,t) € Lipe([o(t),0)),
we have
(3.6) / H(o(s), a)®s(s)As < —H (e au(c) + [ Ma(s,a)As
o(ai)

H{(o(ai), a;) A% (ai) B(a;)

A(az) } Xu(ai)>

v [pmi)Hf(ai, a)A7(a) +
where ®5 and My are defined as before.

Proof. By (3.3), following the proof of Theorem 2.2 we have

t
/ H(o(s), t0)01(s)As < —H(t to)u(t) + | Mo(s, to)As
o(to)
H(o(to), to) A% (to) B(t
+ [pao)Hf(to,to)A"(to) e
and then letting ty = a;,t = ¢; we get (3.6). O

Theorem 3.1. Assume that the following two conditions hold:

(C2) For any T > to, there exist T < a1 < by < as < by, v > 1, functions
q,9 € Cra(T,R) such that q(t) > 0 and q(t) Z 0 fort € [a1, bi] U]ag, ba],

<0, t b
g(t) = 07 € [alv 1]7
> 0, t e [ag,bg],
and (3.1) holds for all t € [ay, b1]J[az, be] and y # 0;

(C3) There exist ¢ € (ayb),i = 1,2, (A,B) € (o, B),H € A, Mi(t,-) €
L([0, p(t )]) My(-,t) € Lie([o(t), 00)) such that

3. 7 H CI,Z (I)g As — B M2 s, a; As
( H(ei, ) U ) o(as) (829 }
¢ A p(bi) A
H(b;, ;) [/ H(bi, 0(s))Pa2(s)As — M, (b, s)As
Ay .
H2 L) CAGp(0))p(0l0) (o0 BP0 -0
o(a;), a;)A%(a; a; )
_m [P(ai)HlA(ai,ai)A“(ai) + H{o(a:) Azai)( )B( )} Nuai = 1,2.

Then Eq. (1.1) is oscillatory.

Proof. Suppose that z(t) is a nonoscillatory solution of Eq. (1.1) which is eventually
positive, say z(¢) > 0 when t > T > t, for some 7" depending on the solution z(t).
From the assumption (C2), we can choose ai,b; > T so that g(¢) < 0 on the interval
I = [ay,by] with a; < by. From Lemmas 3.1 and 3.2 we see that (3.2) and (3.6) hold
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for i = 1. By dividing (3.2) and (3.6) by H (b1, c1) and H(cy,aq), respectively, and
then adding them, we have

1 ci i
m |: o H(U(S)a a’i)q)Q(S)AS — ) MQ(S, ai)AS:|
bi p(b:)
H(bza Ci) /Cz H(b“ O-(S>)(D2(8)AS - (o) Ml (b“ S)AS

A . .
< T2 L) (Ao b)) — n(p(0) B v

b H(o(a;), ai)A”(a,-)B(ai)]
H(c;, a;) Alay) wlai)

[za(ai)Hf(ai, a) A (@) +

which contradicts the assumption (3.7) with i = 1.

When xz(t) is eventually negative, we choose as, by > T so that g(t) > 0 on [az, bs)
to reach a similar contradiction. Hence every solution of Eq. (1.1) has at least one
generalized zero in (a1, by) or (as, bs).

Pick a sequence {7} C T such that 7; > T and 7; — oo as j — oco. By
assumption, for each j € N there exists a;, b;, ¢; € R such that T; < a; < ¢; < b; and
(3.7) holds, where a, b, ¢ are replaced by a;, b;, ¢;, respectively. Hence every solution
x(t) has at least one generalized zero t; € (a;,b;). Noting that t; > a; > Tj,j € N,
we see that every solution has arbitrarily large generalized zeros. Thus, Eq. (1.1) is
oscillatory. O

Corollary 3.1. Assume that (C3) holds and
(C4) There exist ¢; € (a;,b;),i = 1,2, (A,B) € (o, B),H € A, Mi(t,-) €

L([0, p(t)]), Ma(-t) € Lioe([o(t), 00)) such that
(3.8) / H(o(),a)0a(5)2s = [ Mo,
[ (a) HE (a5, 0,) A" (ar) + H(U(al)’ﬁzg(“lw(a”) Xt > 0,
and
(3.9) / H(bs,o(5))®a(s As—/l Mi (b, 5)A
—Hy* (bi, p(b:) (A(p (b 1(p(b:)) B(p(b:)))Xb,-p() > 0,

where Oy, My, My are defined as before. Then Eq. (1.1) is oscillatory.

Proof. By (3.8) and (3.9) we get (3.7). Therefore, Eq. (1.1) is oscillatory by Theo-
rem 3.1. U

When ¢ € C,4(T,R,), g(t) =0,y = 1, we have the following corollary.
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Corollary 3.2. Assume that (C1) holds and there exist (A, B) € (o, B),H € A,
M (t,-) € L([0, p(t)]), Ma(-,t) € Lipe([0(t), 00)) such that for anyl € T

(3.10) n?lilp{/ltff(a(s), ae- | C (s A

- [ + HEOEOZ ]xm} 0
and
(3.11) hItIiilolp [/ltH(t,a( s)As —/ M;(t, s)

+Hy (t, p(t) (Alp()p(p(t) — 1(p(t) B(p(£)))Xe—pr) | > 0.

Then Eq. (1.1) is oscillatory.

Proof. When (C1) holds, it follows that (C2) holds for g(t) = 0,7 = 1. Now ®,(s) =
®y(s). For any T' > ty, let ay = T. In (3.10) we choose | = a;. Then there exists
¢1 > aq such that

(3.12) / H(o(s),a1)®P1(s)As — : Ms(s,a1)As
o(a1)
o(ay),a,)A% (a1)B(a;
H(o(a1) Azal)( )B(a1) Yty > 0.

- [p<a1>Hf<a1,al>Ao<a1> n

In (3.11) we choose [ = ¢;. Then there exists b; > ¢; such that
b1 p(b1)

(3.13) H(by, 0(s))®1(5)As — Mi(t, 5)As

C1 C1

+H (b, p(b1)) (Alp(b1))p(p(b1)) — p(p(b1)) B(p(b1))) Xb1—p(sr) > 0-

Combining (3.12) and (3.13) we obtain (3.7) with ¢ = 1.

Next, choose [ = as = b;. Then there exists ¢y > a5 such that

(3.14) / H(o(s),a)®q1(s)As — N Ms(s, as)As

o(az)
H(o(az),as)A% (az)B(a
_ |:p(&2)H1A(CL2,a2)AU(a2)—I— ( ( 2) 2) ( 2) ( 2) Xp(az) > 0.
Alaz)
In (3.11) we choose | = ¢y. Then there exists by > ¢5 such that
b2 p(b2)
(3.15) H(by,0(s))P1(s)As — M (t, s)As
c2 c2

H3 (ba, p(b2))(A(p(b2))p(p(b2)) = 11(p(b2)) B(p(b2))) X0—p(o) > 0.

Combining (3.14) and (3.15) we obtain (3.7) with ¢ = 2. The conclusion thus follows
from Theorem 3.1. O
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4. EXAMPLES

In this section, we will show the application of our oscillation criteria in two
examples. We first give an example to show Corollary 2.1.

Example 4.1. Consider the equation

(4.1) (re2 1) + £ [12(o(t) + 1] 2(o(t) =0,
where p € C,4(T, (0,1]), t € T.

We choose ¢(s) = s* and H(t,s) = (t — s).
(1) T=Ry,

, 1 ‘ o0 (HR(t,s))"
h?iigp o) [/to H(t,a(s))q(s)As—/to mp(s)As

+H$<t,p(t))p(p(t))xt_,,@}

. 1 ¢
> lim sup m /t [(t — 3)252 _ 1] ds
0

t—o00
1 o 3 ty to
=1 e e Y O [T U A S}
l?lsol.fp(t—toﬂlso 3 <+2)+° 5
Bt tg\ 1 o\ 1
> 1 — =0 (142 o4ty 2) =
Hfls;l.fp[?)o 3 <+2>t+<0 5)4
= 0.

That is, (2.20) holds. By Corollary 2.1 we get that Eq. (4.1) is oscillatory.
(2) T = Ny,

p(t) (HA(t S))2
lims H(t, s)As — N2 07 n(s)As
w6 [/ o L sy
+H$<t,p<t>>p<p<t>>xt_p(t)}
n— n— 2 1)2
> lim sup l — 4 -1
n—00 n — k:l . )
n—2
. K 1 1
= h;rlnqs;}pz <ﬁ n 4An2(n—k — 1)2)
k=l
= 0.

That is, (2.20) holds. By Corollary 2.1 we get that Eq. (4.1) is oscillatory.
(3) T = {2”,7’L c No},

P (HA(, s))2
4H (t,0(s))

lim sup

to0 H(1 )[ tH(t7U(S))q(s)As—/

to to

+H$<t,p(t))p(p(t))xt_,,@]

p(s)As
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! Lt — §)2)As)2 .
> limsup ——5 / (t — 25)%s*As — / MAS _t
t—00 (t — t()) to to 4(t — 23) 2
1 nol n—2 ok 2
= li k+1y92k ok k
~msup g S -ttt S (14 )|
k=l k=l
=T k1 3k
2 2
=i +3k _ odk+1 _ ok
ey (27— 212 2 |t ontl _ kv (gnl _ 2k+2)2]
k=l
= k+1 o3k
2 2
> 1 - - ont+3k _ odk+1 _ ok _ e
= Hmsup e 2 | o
n—2
> i - 2TL+3]€ _ 24k+1 _ 2k o 2k+1 . Zk]
2 lmsup g 2 |
n—2
=limsup ——— 93k [gn _ok+1 _ 2—2k+2}
“—“X’p (2n —2)? k=l
n—2 93k on+31—6
> limsup =£=L-— = lim sup = 0.
- n—oo (2n - 21)2 n—00 7

That is, (2.20) holds. By Corollary 2.1 we get that Eq. (4.1) is oscillatory.
The second example illustrates Corollary 3.1.

Example 4.2. Consider the equation

)
t
sin® z(o(t)) fsin p = 0,

(42)  (p(H)z*(1)" + q(t)z(o(t) |2+ cos(o(t)) + 1T ceoselo®) 12

where p € C,4(T, (0,1]), t € T, and

1, t € [24n, 24n + 6] J[24n + 12, 24n + 18],

t =
() { cos 5(t —6), te€(24n+6,24n +12)(J(24n + 18,24n + 24), n € N,.

For any T' > 0, there exists n € Ny such that 24n > T. Let v = 1, a; = 24n,
by =24n+6, c; = 24n+ 3, ag = 24n + 12, by = 24n + 18, co = 24n + 15, (A, B) =
(1a 0)7 H(t> S) = (t - 5)2'

(1) T=Ry,
/Cl H(o(s),a1)®Ps(s)As — :1 | Ms(s,a1)As
+ [p(al)HlA(al,al)A”(m) + H(U(al)’izic;(al)B(al)} Xu(ar)
> /24n+3[(s —24n)? —1]ds =6 > 0.
/cz H(o(s),as)Ps(s)As — :2 | Ms(s, a9)As

o) P 0 00) 47 () TR EITE)
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24n+15
2/ [(s — 24n — 12)* — 1] ds = 6 > 0.
2

4n+12

b1 p(b1)
/ H(by,0(s))Ps(s)As — M (b1, s)As

C1 C1

—H23 (b1, p(b1)) (A(p(0:1))p(p(b1)) = p(p(01)) B(p(b1))) X1 — (o)

24n+6
2/ [(24n + 6 — 5)* — 1] ds = 6 > 0.
24n+3

b2 p(b2)
H(bQ,U(S))q)Q(S)AS — Ml(bg,S)AS

c2 c2

—H3 (ba, p(b2)) (A(p(b2))p(p(b2)) = 11(p(02)) B(p(2))) X i)

24n+18
z/ [(24n + 18 — 5)® — 1] ds = 6 > 0.
24n+-15

Hence (3.8) and (3.9) hold, by Corollary 3.1 we have that Eq. (4.2) is oscillatory.
(2) T = N07
c1
/ H(o(s),a1)®2(s)As — Mo (s, a1)As
o(a1)
H A° B
" |:p<a1)HlA<alaa1)Ag(a1> + (0(a1), a1) A7 (a1) B(ar)

A(a1> Xp(ar)
24n+2 24n+2
k+1—24n)? — (k — 24n)?)?
> k41— 24n)? — I 24
k=24n k=24n+1
163
e > 0.

/ H CL2 (I)Q( AS—/ M2 8 CLQ)A

H(U(a2)>az)A (a2) B(az) N
A(a2> u(az)

i [p<a2>Hf<a2, 02) A7 (ag) +

24n+14

> Y (k+1-24n—12)
k=24n+12
24n+14

[(k+1—24n —12)2 — (k — 24n — 12)2)2
> A(k — 24n — 12)?2

+ p(24n + 12)

k=24n+13
163
216 > 0.
b1 p(b1)
H(by,0(s))Ps(s)As — M (b, s)As
c1 C1

—H23 (b1, p(b1)) (A(p(0:1)p(p(b1)) = p(p(01)) B(p(01))) X1~ (o)



DYNAMIC EQUATIONS ON TIME SCALES 569

24n+5

> > (24n+6—k—1)
k=24n+3
24n+-4

[(24n +6 — k — 1)* — (24n + 6 — k)?]?
> 4(24n+6 — k — 1)2

-1
k=24n+3
3

=—>0.
16

ba p(b2)
H(by,0(s))Po(s)As — M (by, s)As

C2 Cc2

—H3 (b, p(b2)) (A(p(b2))p(p(b2)) — 1(p(b2)) B(p(b2))) Xz ()

24n+17

> Y (24n+18—k— 1)

k=24n+15
24n+16

B Z [(24n + 18 — k — 1)? — (24n + 18 — k)?]?

—1
4240+ 18 — k — 1)?

k=24n+15

3
—1—6>0.

Hence (3.8) and (3.9) hold, by Corollary 3.1 we have that Eq. (4.2) is oscillatory.
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