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ABSTRACT. The existence of nonoscillatory solutions with different asymptotic properties for a

two-dimensional nonlinear functional differential system is studied. Some discrepancies in the coexis-

tence of nonoscillatory solutions between the general nonlinear system and the Emden-Fowler system

or the half-linear equation are pointed out. The roles of deviating arguments are also discussed.
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1. INTRODUCTION

Consider the nonlinear differential system

(1.1)

{

x′ = a(t)f(y(r(t))

y′ = −b(t)g(x(s(t))

where a, b, r, s are positive continuous functions on [1,∞), r(∞) = s(∞) = ∞, and

f, g are nondecreasing continuous functions on R satisfying uf(u) > 0, ug(u) > 0 for

u 6= 0 and

(1.2) −f(u) = f(−u), − g(u) = g(−u) for u ∈ R.

A continuously differentiable vector function (x, y) defined on [t0,∞), t0 ≥ 1, is

said to be a solution of (1.1) on [t0,∞) if there exist two continuous functions x0, y0,

defined on (−∞, t0], such that (1.1) is satisfied on [t0,∞), where

x(t) = x0(t), y(t) = y0(t) for t ≤ t0.

Throughout this paper we shall consider only the solutions of (1.1) which exist on

some ray [T,∞), where T ≥ 1 may depend on the particular solution. For the

continuability problem we refer to [15, Proposition A]. As usually, a component x [y]
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of a solution (x, y) of (1.1), defined on some neighborhood of infinity, is said to be

nonoscillatory if x(t) 6= 0 [y(t) 6= 0] for any large t, and oscillatory otherwise. Clearly,

x is nonoscillatory if and only if y is nonoscillatory too. So, a solution (x, y) of (1.1) is

said to be oscillatory or nonoscillatory according to both components are oscillatory

or nonoscillatory, respectively.

Particular cases of (1.1) are the Emden-Fowler system

(1.3)

{

x′ = a(t)|y(t)|1/αsgn y(t)

y′ = −b(t)|x(t)|β sgn x(t)

where α > 0, β > 0, α 6= β, the nonlinear equation with p-Laplacian operator

(1.4) (A(t)|x′(t)|αsgn x′(t))′ + b(t)g(x(s(t))) = 0,

where A(t) = a−1/α(t), and the half-linear equation

(1.5) (A(t)|x′(t)|αsgn x′(t))′ + b(t)|x(t)|αsgn x(t) = 0.

System (1.1) with s(t) = r(t) = t and its particular cases (1.3), (1.4), (1.5), have

been widely investigated, see, e.g., the papers [2, 8, 10, 15] for oscillation problems,

[3, 5, 7, 11, 12, 14] for nonoscillation ones and [6, 8] for both. We refer also to

the monographs [4, 13], in which a detailed study of (1.3) and (1.5), respectively, is

presented and to [1, 9], in which a detailed analysis on the above topics, jointly with

some interesting open problems, are given.

Put

Ia =

∫

∞

1

a(τ)dτ, Ib =

∫

∞

1

b(τ)dτ.

Here two cases are considered, namely

I) Ia = ∞, Ib < ∞; II) Ia < ∞, Ib = ∞.

In both cases, nonoscillatory solutions of (1.1) can be classified as subdominant,

intermediate or dominant solutions, according to their asymptotic behavior (see below

for the definition). As it is claimed in [1, page 241], the existence of intermediate

solutions for (1.1) is a difficult problem, even in the special case where s(t) = r(t) = t.

Moreover, their possible coexistence with different types of nonoscillatory solutions is

a well-known problem (see, e.g., [6, page 213]), which has been completely resolved

for (1.5) in [3].

The aim of this paper is to study the existence of intermediate, subdominant

and dominant solutions of (1.1). We show some discrepancies in the coexistence of

these solutions for (1.1) and (1.3), which are caused by the growth of nonlinearities

f, g. Sections 3, 4 deal with the case I). In Section 5, by means of a duality property,

the obtained results are extended to the case II). Our results improve or generalize

analogous ones in [5, 7, 8, 12]. The role of the deviating arguments r, s are also

discussed and several examples illustrate the obtained results.
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2. PRELIMINARIES

When (1.1) is nonoscillatory, for sake of simplicity, we will restrict our attention

only to solutions (x, y) of (1.1) for which x is eventually positive. We will denote

such solutions as solutions of class M
+ or M

−, according to y is eventually positive

or eventually negative. The remaining cases can be easily treated using analogous

arguments.

If (x, y) ∈ M
+, then x is positive increasing and y is positive decreasing for large

t; if (x, y) ∈ M
−, then x is positive decreasing and y is negative decreasing for large t.

It is easy to show that, if Ia = ∞, then M
− = ∅. Similarly, if Ib = ∞, then M

+ = ∅.
So, if (x, y) ∈ M

+ and x is bounded, then limt→∞ y(t) = 0. Similarly, if (x, y) ∈ M
−

and limt→∞ x(t) > 0, then limt→∞ y(t) = −∞. Thus, in case I) solutions in M
+can

be a-priori divided into the subclasses:

M
+
∞,ℓ = {(x, y) ∈ M

+ : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = ℓy, 0 < ℓy < ∞},

M
+
∞,0 = {(x, y) ∈ M

+ : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = 0},

M
+
ℓ,0 = {(x, y) ∈ M

+ : lim
t→∞

x(t) = ℓx, lim
t→∞

y(t) = 0, 0 < ℓx < ∞},

and in case II) solutions in M
− into the subclasses:

M
−

ℓ,−∞
= {(x, y) ∈ M

− : lim
t→∞

x(t) = ℓx, lim
t→∞

y(t) = −∞, 0 < ℓx < ∞},

M
−

0,−∞
= {(x, y) ∈ M

− : lim
t→∞

x(t) = 0, lim
t→∞

y(t) = −∞},

M
−

0,−ℓ = {(x, y) ∈ M
− : lim

t→∞

x(t) = 0, lim
t→∞

y(t) = −ℓy, 0 < ℓy < ∞}.

Notice that this classification is similar to the one given in [12], when r(t) ≡ s(t) ≡ t.

Following [6], solutions in M
+
∞,ℓ, M

+
∞,0, M

+
ℓ,0 are called dominant solutions, in-

termediate solutions and subdominant solutions, respectively. This terminology is

due to the fact that, when g is unbounded and (x1, y1) ∈ M
+
∞,ℓ, (x2, y2) ∈ M

+
∞,0,

(x3, y3) ∈ M
+
ℓ,0, then x1(t) > x2(t) > x3(t) and y1(t) > y2(t) > y3(t) for any large t.

The same terminology of intermediate solutions is used for solutions in M
−

0,−∞
, for a

similar reason.

An important role in the existence of nonoscillatory solutions, is played by the

following integrals depending on the parameters. In case I) denote

Jµ =

∫

∞

1

a(τ)f

(

µ

∫

∞

r1(τ)

b(σ)dσ

)

dτ, Kλ =

∫

∞

1

b(τ)g

(

λ

∫ s1(τ)

1

a(σ)dσ

)

dτ,

and in case II)

Wλ =

∫

∞

1

a(τ)f

(

λ

∫ r1(τ)

1

b(σ)dσ

)

dτ, Zµ =

∫

∞

1

b(τ)g

(

µ

∫

∞

s1(τ)

a(σ)dσ

)

dτ,
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where

r1(t) = max {1, r(t)} , s1(t) = max {1, s(t)} .

3. ON INTERMEDIATE SOLUTIONS

Theorem 3.1. Assume Ia = ∞, Ib < ∞. If there exist two positive constants λ and

µ, where µ < limu→∞ g(u), such that

Kλ < ∞, Jµ = ∞,

then M
+
∞,0 6= ∅.

Proof. Let c be a positive constant such that

(3.1) g(c) > µ

and put

m = f−1(λ)/2.

Choose t0 ≥ 1 large enough such that r(t) ≥ 1, s(t) ≥ 1 for t ≥ t0 and

(3.2) g(c)

∫

∞

t0

b(σ)dσ ≤ m, c ≤ λ

∫ t0

1

a(σ)dσ,

(3.3)

∫

∞

t0

b(τ)g

(

λ

∫ s(τ)

1

a(σ)dσ

)

dτ ≤ m.

Put Ts = inf {t ≥ t0 : s(τ) ≥ t0 ∀τ ≥ t} and let s, r be the functions

(3.4) s(t) =

{

t0 for t ∈ [t0, Ts)

s(t) for t ≥ Ts

, r(t) = max {r(t), t0} .

Clearly, if Ts > t0, then s(Ts) = t0 and so s is continuous for t ≥ t0.

Denote with C[t0,∞) the Fréchet space of all continuous functions on [t0,∞)

endowed with the topology of uniform convergence on compact subintervals of [t0,∞)

and consider the set Ω ⊂ C[t0,∞) given by

Ω =

{

v ∈ C[t0,∞) : µ

∫

∞

t

b(σ)dσ ≤ v(t) ≤ 2m, t ≥ t0

}

.

Observe that from (3.1) and (3.2) we have µ
∫

∞

t
b(σ)dσ < 2m for t ≥ t0. Define in Ω

the operator T given by

T (v)(t) =

∫

∞

t

b(τ)g

(

c +

∫ s(τ)

t0

a(σ)f (v(r(σ))) dσ

)

dτ.

From (3.1) we have

T (v)(t) ≥ g(c)

∫

∞

t

b(τ)dτ ≥ µ

∫

∞

t

b(τ)dτ.
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Moreover, in virtue of (3.2), (3.3), we have

T (v)(t0) = g(c)

∫ Ts

t0

b(τ)dτ +

∫

∞

Ts

b(τ)g

(

c +

∫ s(τ)

t0

a(σ)f(v(r(σ)))dσ

)

dτ

≤ g(c)

∫

∞

t0

b(τ)dτ +

∫

∞

Ts

b(τ)g

(

c + λ

∫ s(τ)

t0

a(σ)dσ

)

dτ,

thus

(3.5) T (v)(t) ≤ g(c)

∫

∞

t0

b(τ)dτ +

∫

∞

Ts

b(τ)g

(

λ

∫ s(τ)

1

a(σ)dσ

)

dτ ≤ 2m,

and so T maps Ω into itself. Let us show that T (Ω) is relatively compact, i.e. T (Ω)

consists of functions equibounded and equicontinuous on every compact interval I

of [t0,∞). Because T (Ω) ⊂ Ω, the elements of T (Ω) are equibounded with first

derivatives equibounded on I and so the compactness follows. Now we show that T

is continuous in Ω ⊂ C[t0,∞). Let {vn}, n ∈ N, be a sequence in Ω which uniformly

converges on every compact interval of [t0,∞) to v̄ ∈ Ω. Because T (Ω) is relatively

compact, the sequence {T (vn)} admits a subsequence {T (vnj
)} converging, in the

topology of C[t0,∞), to z̄v. In view of (3.3) and (3.5), by applying the Lebesgue

dominated convergence theorem, the sequence {T (vnj
)(t)} pointwise converges to

T (v̄)(t). In view of the uniqueness of the limit, T (v̄) = z̄v is the only cluster point of

the compact sequence {T (vn)}, that is the continuity of T in the topology of C[t0,∞).

Hence, by the Tychonov fixed point Theorem there exists a solution of the integral

equation

(3.6) y(t) =

∫

∞

t

b(τ)g

(

c +

∫ s(τ)

t0

a(σ)f (y(r(σ))) dσ

)

dτ.

It is easy to verify that (x, y), where

(3.7) x(t) = c +

∫ t

t0

a(σ)f(y(r(σ)))dσ,

is a solution of (1.1) for large t, say t ≥ T1 ≥ Ts. Since y ∈ Ω, we have for t ≥ T1

x(t) − x(T1) ≥
∫ t

T1

a(τ)f

(

µ

∫

∞

r(τ)

b(σ)dσ

)

dτ

and so, because Jµ = ∞, we obtain x(∞) = ∞. From (3.2) and (3.6) it results for

t ≥ T1

y(t) ≤
∫

∞

t

b(τ)g

(

c + λ

∫ s(τ)

t0

a(σ)dσ

)

dτ ≤
∫

∞

t

b(τ)g

(

λ

∫ s(τ)

1

a(σ)dσ

)

dτ

and so, in view of Kλ < ∞, we get y(∞) = 0.
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Remark 3.2. As already claimed, when s(t) = r(t) = t, the existence of intermediate

solutions for (1.1) is considered in [12, Theorem 2.4] and, for an equation including

(1.4), in [5, Theorem 9], [8, Theorem 1.3]. Theorem 3.1 substantially extends [5,

Theorem 9], [8, Theorem 1.3], [12, Theorem 2.4], because in these results it is assumed

that Jµ = ∞ for any µ > 0. The Example 1 below illustrates this fact. Notice that

the proof of [12, Theorem 2.4] is different, since a different operator T and a different

set Ω is considered. Moreover, it is not complete, because it remains to verify that

the set Ψ, considered in the proof, is convex, which seems difficult to prove.

The following examples illustrate the role of the nonlinearity f and the condition

µ < limu→∞ g(u) in Theorem 3.1, respectively.

Example 3.3. Consider the system

(3.8) x′(t) = etf(y(t)), y′(t) = −2t−3g(x(t)),

where f, g are nondecreasing continuous functions on R such that uf(u) > 0, ug(u) >

0 for u 6= 0 and

f(u) = exp(−1/(
√

u) if 0 < u < 1

g(u) = log u if u > e − 1.

We have

K1 = 2

∫

∞

1

τ−3g(eτ − e)dτ < ∞, J1 =

∫

∞

1

eτe−τdτ = ∞,

and so, in view of Theorem 3.1, this system has intermediate solutions. Nevertheless

the assumption Jµ = ∞ does not hold for any µ > 0. Indeed for µ = 1/4 we have

J1/4 =
∫

∞

1
e−τdτ < ∞.

Example 3.4. Consider the system

x′(t) = t−2etf(y(t)), y′(t) = −2t−3g(x(t)),

where f, g are nondecreasing continuous functions on R such that uf(u) > 0, ug(u) >

0 for u 6= 0 and

f(u) = exp(−1/
√

u) if 0 < u < 1,

g(u) = 1 if u > 1.

Such a system does not have intermediate solution. Indeed, if there exists (x, y) ∈
M

+
∞,0, we have y(t) = t−2 for large t and so it results x′(t) = t−2, which contradicts

the unboundedness of x. Notice that Kλ < ∞ for λ > 0, Jµ < ∞ for 0 < µ ≤ 1 and

Jµ = ∞ for µ > 1(= limu→∞ g(u)).
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4. COEXISTENCE RESULTS

A natural question, which arises, is to study whenever the existence of subdom-

inant and dominant solutions depends on the limit value of their first and second

component, respectively. The following holds.

Theorem 4.1. Assume Ia = ∞, Ib < ∞.

i1) If there exists λ > 0 such that Kλ = ∞, then (1.1) does not have solutions

(x, y) satisfying

x(∞) = ∞, y(∞) = L, L > f−1(λ).

i2) If there exists λ > 0 such that Kλ < ∞, then (1.1) has solutions (x, y)

satisfying

x(∞) = ∞, y(∞) = L, 0 < L < f−1(λ).

Proof. Claim i1). By contradiction, assume there exists a solution (x, y) of (1.1) with

x(∞) = ∞, y(∞) = L > f−1(λ). Since y is eventually positive decreasing, without

loss of generality, we can assume x(t) > 0, L < y(r(t)) < 2L on [T,∞), T ≥ 1. From

the first equation in (1.1) we get

x(t) = x(T ) +

∫ t

T

a(τ)f(y(r(τ)))dτ ≥ f(L)

∫ t

T

a(τ)dτ.

Let T1 ≥ T such that s(t) ≥ T for t ≥ T1. Hence, from the second equation in (1.1)

we obtain for t ≥ T1

(4.1) y(T1) − L ≥
∫

∞

T1

b(τ)g

(

f(L)

∫ s(τ)

T

a(σ)dσ

)

dτ.

Since Ia = ∞, fixed ε with λ(f(L))−1 < ε < 1, it results for large τ, say τ ≥ T2 ≥ T1,
∫ s(τ)

T

a(σ)dσ > ε

∫ s(τ)

1

a(σ)dσ

and so from (4.1) we get
∫

∞

T2

b(τ)g

(

εf(L)

∫ s(τ)

1

a(σ)dσ

)

dτ < ∞.

Since εf(L) > λ, we obtain a contradiction with Kλ = ∞.

Claim i2). Fixed c > 0, choose t0 ≥ 1 satisfying (3.2), (3.3) with m = 2−1(f−1(λ)−
L) and r(t) ≥ 1, s(t) ≥ 1 for t ≥ t0. Let r, s be the functions defined in (3.4). Now

consider the set Ω ⊂ C[t0,∞) given by

Ω =
{

v ∈ C[t0,∞) : L ≤ v(t) ≤ f−1(λ) for t ≥ t0
}

and define in Ω the operator T as follows

T (v)(t) = L +

∫

∞

t

b(τ)g

(

c +

∫ s(τ)

t0

a(σ)f(v(r(σ)))dσ

)

dτ
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Reasoning as in the proof of Theorem 3.1, and applying the Tychonov fixed point

Theorem, we obtain that there exists a solution of the integral equation

y(t) = L −
∫

∞

t

b(τ)g

(

c +

∫ s(τ)

t0

a(σ)f(y(r(σ)))dσ

)

dτ (t ≥ t0).

It is easy to verify that (x, y), where x is given by (3.7), is a solution of (1.1) for

large t, say t ≥ T1 ≥ Ts. From (3.7), taking into account that y ∈ Ω, we obtain

x(t) ≥ f(L)
∫ t

t0
a(σ)dσ for t ≥ T1 and so x(∞) = ∞. Clearly y(∞) = L and the proof

is complete.

Theorem 4.2. Assume Ia = ∞, Ib < ∞.

i1) If there exists µ > 0 such that Jµ = ∞, then (1.1) does not have solutions

(x, y) satisfying

x(∞) = L, L > g−1(µ), y(∞) = 0.

i2) If there exists µ > 0 such that Jµ < ∞, then (1.1) has solutions (x, y) satisfying

x(∞) = L, 0 < L ≤ g−1(µ), y(∞) = 0.

Proof. Claim i1). By contradiction, assume there exists a solution (x, y) of (1.1)

with x(∞) = L > g−1(µ), y(∞) = 0. Let Lε such that L > Lε > g−1(µ). Since

(x, y) ∈ M
+
ℓ,0, we can suppose, without loss of generality, x(r(t)) > Lε, y(t) > 0 for

any t ≥ T ≥ 1. From the second equation in (1.1) we get for σ ≥ T

(4.2) y(σ) =

∫

∞

σ

b(τ)g(x(s(τ)))dτ.

Let T1 ≥ T such that r(t) ≥ T for t ≥ T1. Using (4.2), from the first equation in (1.1)

we obtain for t ≥ T1

L − x(T1) =

∫

∞

T1

a(σ)f

(
∫

∞

r(σ)

b(τ)g(x(r(τ)))dτ

)

dσ

≥
∫

∞

T1

a(σ)f

(

g(Lε)

∫

∞

r(σ)

b(τ)dτ

)

≥
∫

∞

T1

a(σ)f

(

µ

∫

∞

r(σ)

b(τ)dτ

)

,

which is a contradiction.

Claim i2). The assertion follows by applying the Tychonov fixed point theorem

to the operator T given by

T (u)(t) = L −
∫

∞

t

a(σ)f

(
∫

∞

r(σ)

b(τ)g(u(s(τ)))dτ

)

dσ

in the set Ω ⊂ C[t0,∞)

Ω =

{

u ∈ C[t0,∞) :
1

2
L ≤ u(t) ≤ L for t ≥ t0

}

.
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where r(t) = max {r(t), t0} , s(t) = max {s(t), t0} and t0 is large so that

∫

∞

t0

a(τ)f

(

g(L)

∫

∞

r(τ)

b(σ)dσ

)

dτ ≤ L

2
.

The argument is similar to the one given in [12, Theorem 2.2], with minor changes.

From Theorems 4.1, 4.2 we obtain the following.

Corollary 4.3. Assume Ia = ∞, Ib < ∞. Then

M
+
∞,ℓ 6= ∅ ⇐⇒ Kλ < ∞ for some λ > 0.

M
+
ℓ,0 6= ∅ ⇐⇒ Jµ < ∞ for some µ > 0.

Remark 4.4. Corollary 4.3 can be proved directly by using a similar argument to

the one given in [12, Theorems 2.2, 2.3], with minor changes.

For the Emden-Fowler system (1.3) the convergence or divergence of integrals

Kλ, Jµ does not depend on the choice of the parameters λ, µ and so in case I), if

K1 < ∞ [J1 < ∞], then (1.3) has a solution (x, y) ∈ M
+
∞,ℓ [M+

ℓ,0] such that y(∞) = L

[x(∞) = L] for any L > 0.

From Theorem 3.1 and Corollary 4.3, we obtain the following coexistence result.

Corollary 4.5. Assume Ia = ∞, Ib < ∞. If there exist three positive constants λ, µ

and ν, µ < ν < limu→∞ g(u), such that

Kλ < ∞, Jµ < ∞, Jν = ∞,

then all subclasses in M
+ are nonempty, i.e.

M
+
ℓ,0 6= ∅, M

+
∞,0 6= ∅, M

+
∞,ℓ 6= ∅.

Remark 4.6. As already claimed, the coexistence of all types of nonoscillatory so-

lutions is impossible for the half-linear equation (1.5). Example 3.3 illustrates that

this is possible for system (1.1), since K1 < ∞, J1/4 < ∞ and J1 = ∞.

Another possible discrepancy between (1.1) and (1.5), concerning the nonoscilla-

tory solutions, is a consequence of the following result.

Theorem 4.7. Assume Ia = ∞, Ib < ∞. If there exists µ > 0 such that

(4.3)

∫

∞

1

b(τ)g

(

∫ s1(τ)

T

a(σ)f

(

µ

∫

∞

r1(σ)

b(ξ)dξ

)

dσ

)

dτ = ∞,

for any T ≥ 1, then M
+
∞,0 = M

+
∞,ℓ = ∅.
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Proof. First, observe that assumption (4.3) yields g(∞) = ∞. Let (x, y) ∈ M
+
∞,0. Let

T ≥ 1 be such that x is positive increasing, y is positive decreasing for t ≥ T and

r(t) ≥ 1, s(t) ≥ 1 for t ≥ T. Using the l’Hopital rule, we obtain that there exists a

positive constant d such that y(t) > d
∫

∞

t
b(ξ)dξ for t ≥ T ≥ 1. Then eventually we

have

(4.4) y(r(t)) > d

∫

∞

r(t)

b(ξ)dξ.

Without loss of generality, suppose that (4.4) holds for any t ≥ T. Let T1 ≥ T such

that s(t) ≥ T on [T1,∞). From the first equation in (1.1) we obtain for t ≥ T

x(t) ≥
∫ t

T

a(σ)f (y(r(σ))) dσ ≥
∫ t

T

a(σ)f

(

d

∫

∞

r(σ)

b(ξ)dξ

)

dσ

and so for t ≥ T1

g (x(s(t)) ≥ g

(

∫ s(t)

T

a(σ)f

(

d

∫

∞

r(σ)

b(ξ)dξ

)

dσ

)

.

Hence

(4.5) −y′(t) = b(t)g(x(s(t)) ≥ b(t)g

(

∫ s(t)

T

a(σ)f

(

d

∫

∞

r(σ)

b(ξ)dξ

)

dσ

)

.

Integrating this inequality on (t,∞), t ≥ T1, we obtain a contradiction and so M
+
∞,0 =

∅. Let us show that M
+
∞,ℓ = ∅. Since Ib < ∞, from (4.3) we obtain that g is unbounded

and Jµ = ∞. Since intermediate solutions do not exist, by Theorem 3.1 we obtain

Kλ = ∞ for any λ > 0. Thus, applying Corollary 4.3 we get M
+
∞,ℓ = ∅.

The condition (4.3) has to be verified for any T ≥ 1. Two stronger conditions,

which do not depend on the choice of T , are given by the following:

Corollary 4.8. Assume Ia = ∞, Ib < ∞. Let one of the following conditions hold:

i1) there exist 0 < λ < 1 and µ > 0 such that

(4.6)

∫

∞

1

b(τ)g

(

λ

∫ s1(τ)

1

a(σ)f

(

µ

∫

∞

r1(σ)

b(ξ)dξ

)

dσ

)

dτ = ∞;

i2) g(uv) ≤ g(u)g(v) for any u > 1, v > 1 and for some µ > 0

(4.7)

∫

∞

1

b(τ)g

(

∫ s1(τ)

1

a(σ)f

(

µ

∫

∞

r1(σ)

b(ξ)dξ

)

dσ

)

dτ = ∞.

Then M
+
∞,0 = M

+
∞,ℓ = ∅.

Proof. Fixed T ≥ 1, set

J(T, t) =

∫ t

T

a(σ)f

(

µ

∫

∞

r1(σ)

b(ξ)dξ

)

dσ.
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Claim i1). Since Ib < ∞, the function g is unbounded and J(T,∞) = ∞. Hence

there exists λ ∈ (0, 1) such that λJ(1, s1(τ)) ≤ J(T, s1(τ)) for large τ . So, from the

monotonicity of g, (4.3) holds and the assertion follows from Theorem 4.7.

Claim i2). Choose τ ≥ T large so that J(1, T )[J(1, s1(τ))]−1 < 1. Hence the

assertion follows from Theorem 4.7 and

J(1, s1(τ)) = J(T, s1(τ))

(

1 +
J(1, T )

J(T, s1(τ))

)

≤ 2J(T, s1(τ)).

Remark 4.9. Theorem 4.7 is not significant for the Emden-Fowler system (1.3) with

α 6= β. Indeed for (1.3), the integrals Jµ, Kλ reads as

J =

∫

∞

1

a(τ)

(

µ

∫

∞

τ

b(σ)dσ

)1/α

dτ, K =

∫

∞

1

b(τ)

(

λ

∫ τ

1

a(σ)dσ

)β

dτ,

respectively, and so, when the case I) holds, (4.3) implies J = K = ∞. But, in such

a case, it is known that all solutions of (1.3) are oscillatory (see, e.g., [13, Theorems

11.3, 11.4]). When α = β, the following example illustrates a possible discrepancy

between the coexistence of solutions of (1.1) (with r(t) = s(t) = t) and (1.5).

Example 4.10. Consider the system

x′(t) = etf(y(t)), y′(t) = −2t−3|x(t))|x(t),

where f is a nondecreasing continuous function on R such that uf(u) > 0 for u 6= 0

and

f(u) = exp(−1/
√

u) if 0 < u < 1.

Then (4.3) is satisfied for µ = 1. Since J1/4 < ∞, in view of Corollaries 4.3, 4.8 we

have M
+
ℓ,0 6= ∅, M

−

∞,0 = ∅, M
−

∞,ℓ = ∅. Note that such situation never occurs for (1.5),

because solutions in M
+
ℓ,0 always coexist with solutions either in M

+
∞,0 or in M

+
∞,ℓ ([3]).

We close this section by illustrating the role of the deviating arguments to the

asymptotic properties of solutions of (1.1).

Example 4.11. Consider the system

(4.8) x′(t) = |y(t)|αsgn y(t), y′(t) = − 1

t3
g(x(s(t)))

where α ∈ (0, 1/2] and g is a nondecreasing continuous function on R such that

ug(u) > 0 for u 6= 0 and

g(u) =

{

eu if u ∈ [0, 1)

eu if u ≥ 1

If s(t) = 1 + log t, then Theorem 3.1 is applicable with λ = µ = 1, and (4.8) has

intermediate solutions. If s(t) = t, then Kλ = ∞ for any λ > 0 and all solutions of

this system are oscillatory, as follows from [10] (see also [1, Theorem 7.1.2]).
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Example 4.12. Consider the system

x′ =
1

t
y(r(t)), y′ = − 1

t2
x(t).

If r(t) = 1 + log t, assumptions in Theorem 3.1 are verified with λ = µ = 1 and

x ∈ M
+
∞,0 6= ∅, x ∈ M

+
∞,ℓ 6= ∅, x ∈ M

+
ℓ,0 = ∅.

If r(t) = t, from Corollary 4.3 we have M
+
∞,ℓ 6= ∅, M+

ℓ,0 6= ∅. Moreover, intermediate

solutions do not exist, because the system is linear.

5. THE CASE II)

In this Section we show how it is possible to extend all the above results to the

case II), i.e. when Ia < ∞, Ib = ∞. In view of (1.2), if (x, y) is a solution of (1.1),

then (y,−x) is a solution of the system

(5.1)

{

z′ = b(t)g(w(s(t))

w′ = −a(t)f(z(r(t))

and vice-versa, if (z, w) is a solution of (5.1), then (w,−z) is a solution of (1.1).

Observe that (5.1) comes out from (1.1) by interchanging the roles of the functions

a, f, r with b, g, s, respectively, and vice-versa. Moreover, the integrals Jµ, Kλ become

Zµ and Wλ, respectively. So, such a duality property permits us to extend all the

above results to case Ia < ∞, Ib = ∞ in a very simple way.

Nevertheless, we point out that the assumption (1.2) is not necessary for our

results, because the same results can be also proved in a direct way by adding suitable

assumptions on nonlinearities on (−∞, 0).

We recall that in case II), all nonoscillatory solutions of (1.1) belong to M
−.

Here we report only those results which are significative as regards the possible coex-

istence in the subclasses of M
− or the comparison with known results. The remaining

extensions are left to the reader.

Theorem 5.1. Assume Ia < ∞, Ib = ∞. If there exist two positive constants λ, µ,

µ < limu→∞ f(u), such that

Wλ < ∞, Zµ = ∞,

then M
−

0,−∞
6= ∅.

Proof. The assertion follows from Theorem 3.1, by applying the duality property.

Remark 5.2. When s(t) = r(t) = t, the existence of solutions in M
−

0,−∞
is considered

in [12, Theorem 3.7]. Theorem 5.1 substantially extends such a result, because The-

orem 3.7 requires Zµ = ∞ for any µ > 0 and, implicitly, also the boundedness of f .

Concerning the coexistence of nonoscillatory solutions, the following holds.
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Corollary 5.3. Assume Ia < ∞, Ib = ∞. If there exist three positive constants λ, µ

and ν, ν < µ < limu→∞ f(u), such that

Zν < ∞, Wλ < ∞, Zµ = ∞,

then all subclasses in M
− are nonempty, i.e.

M
−

0,−ℓ 6= ∅, M
−

0,−∞
6= ∅, M

−

ℓ,−∞
6= ∅.

Proof. The assertion follows from Theorem 5.1, applying the duality property to

Corollary 4.3.

Notice that Corollary 5.3 gives a possibility of coexistence of all three types of

nonoscillatory solutions of (1.1), which is impossible for (1.5), as already observed in

Remark 4.6.

Applying the duality property to Theorem 4.7, we obtain the following.

Theorem 5.4. Assume Ia < ∞, Ib = ∞. If there exists λ > 0 such that

(5.2)

∫

∞

1

a(τ)f

(

∫ r1(τ)

T

b(σ)g

(

λ

∫

∞

s1(σ)

a(ξ)dξ

)

dσ

)

dτ = ∞

for any T ≥ 1, then M
−

0,−∞
= M

−

ℓ,−∞
= ∅.

Remark 5.5. Theorem 5.4 extends [12, Theorem 3.8], where a necessary condition

for the existence of solutions in M
−

0,−∞
, when r(t) = s(t) = t, is given. However such

a result is not well formulated, because (3.8) in [12] should be (5.2) (with r1(τ) = τ ,

s1(σ) = σ), as it follows from the proof of Theorem 3.8.

Acknowledgment. The research of the second author was supported by the Re-

search Project 0021622409 of the Ministery of Education of the Czech Republic and

by the Grant 201/08/046 of the Grant Agency of the Czech Republic.

REFERENCES

[1] R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation Theory for Second Order Linear, Half-

Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Acad. Publ. G, Dordrecht, 2003.
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