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ABSTRACT. We prove that the map that associates to the initial value the set of solutions

to the Lipschitzian Quantum Stochastic Differential Inclusion (QSDI) admits a selection which is

continuous from the locally convex space of stochastic processes to the space of adapted and weakly

absolutely continuous solutions. As a corollary, the reachable set multifunction admits a continuous

selection. In the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus,

these results are achieved subject to some compactness conditions on the set of initial values and on

some coefficients of the inclusion.
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1. INTRODUCTION

This work is concerned with further investigations of the existence and appli-

cations of continuous selections of solution sets of quantum stochastic differential

inclusions (QSDI). In the context of classical differential inclusions defined in finite

dimensional Euclidean spaces, such investigations have attracted considerable atten-

tion in the literature. Some well known results on continuous selections and their

applications in the finite dimensional Euclidean settings can be found in [1, 2, 14,

15, 18, 20, 22]. As in [8, 18, 20, 22], selection results have been used among other

things for the interpolation of a given finite set of trajectories of classical differential

inclusions.

However, in the non commutative quantum setting, investigations of the exis-

tence of continuous selections and their applications have not received a comparable

attention in the literature. In the framework of the Hudson and Parthasarathy [17,

19] formulations of quantum stochastic calculus, we established in our previous work

[4], some continuous selections of solution sets of quantum stochastic differential in-

clusion (QSDI) defined on the set of the matrix elements of initial points with values
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in the set of matrix elements of solutions. However, on this occasion and in the same

framework of quantum stochastic calculus, we establish the existence of a selection

map continuous from a compact set of initial values contained in the space of quan-

tum stochastic processes into the locally convex space of adapted weakly absolutely

continuous quantum stochastic processes. In addition, as a corollary, we deduce that

the reachable set multifunction admits a continuous selection. This work, therefore,

complements our results in [4] where the set of the matrix elements of solutions and

the reachable set respectively admit continuous selections and some continuous rep-

resentations.

The proof of our main results here adapts the techniques employed in Cellina [1]

in a way that is suitable for the analysis of QSDI where the solutions live in certain

locally convex spaces. Our main tools in the construction of the selection are some

suitable use of Liapunov’s theorem on the range of vector measures (see [1, 15, 16])

and Ekhaguere’s existence result [11] for the solutions of QSDI (2.3). The result is a

generalization of Filippov’s extension of Gronwall’s inequalities to solutions of QSDI

(2.3).

The plan for the rest of the paper is as follows: In section 2, we present some

fundamental results, notations and assumptions. The main results of the paper are

reported in Section 3.

2. PRELIMINARY RESULTS AND ASSUMPTIONS

In what follows, we adopt the notations, formulation and the frameworks as

reported in [3, 4, 11, 12, 13]. Detailed definitions of various spaces that appear below

can be found in [11]. In the sequel, γ is a fixed Hilbert space, D is an inner product

space with R as its completion, and Γ(L2
γ(R+)) is the Boson Fock Space determined

by the function space L2
γ(R+). The set E is the subset of the Fock space generated by

the exponential vectors. If N is a topological space, then we denote by clos(N ) (resp.

comp(N )), the family of all nonempty closed subsets of N (resp. compact members

of clos(N )).

In our formulations, quantum stochastic processes are Ã-valued maps on [t0, T ].

The space Ã is the completion of the linear space

A = L+
W (D⊗E,R⊗ Γ(L2

γ(R+)))

endowed with the locally convex operator topology generated by the family of semi-

norms {x → ‖x‖ηξ = |〈η, xξ〉|, η, ξ ∈ D⊗E}. Here, A consists of linear operators

from D⊗E into R ⊗ Γ(L2
γ(R+)) with the property that the domain of the adjoint

operator contains D⊗E. We adopt the notation and the definitions of Hausdorff

topology on clos(Ã) as explained in [11]. The Hausdorff topology is determined by
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some family of pseudo-metrics. On the set C of complex numbers, we employ the met-

ric topology on clos(C) induced by the Hausdorff metric ρ. Thus for A, B,∈ clos(C),

ρ(A, B) is the Hausdorff distance between the sets and for arbitrary pair η, ξ ∈ D⊗E,

N ,M ∈ clos(Ã), ρηξ(N ,M) denotes pseudo-metrics as in [11, 12, 13].

A quantum stochastic process Φ : [t0, T ] → Ã will be said to be weakly continuous

on the interval I = [t0, T ] if for each pair η, ξ ∈ D⊗E, the map t → Φηξ(t) is

continuous. Here, Φηξ(t) := 〈η, Φ(t)ξ〉. We shall denote by C[I, Ã] the set of all

weakly continuous quantum stochastic processes on [t0, T ] and for each Φ ∈ C[I, Ã],

we set

(2.1) ‖Φηξ‖c := sup
I

|Φηξ(t)| = sup
I

‖Φ(t)‖ηξ.

By employing the symbol Ad(Ã)wc to denote the set of all adapted weakly continuous

stochastic processes, then we have the following set inclusion

Ad(Ã)wac ⊆ Ad(Ã)wc ⊆ C[I, Ã],

since all weakly absolutely continuous stochastic processes are weakly continuous.

As in [11], we denote by wac(Ã), the completion of Ad(Ã)wac in the topology

generated by the family of seminorms

(2.2) |Φ|ηξ = ‖Φ(t0)‖ηξ +

∫ T

t0

|
d

ds
〈η, Φ(s)ξ〉|ds

for each Φ ∈ Ad(Ã)wac and arbitrary η, ξ ∈ D⊗E.

The existence of the continuous selections which we study in this paper concerns

solution and the reachable sets of quantum stochastic differential inclusions in the

integral form given by:

X(t) ∈ a +

∫ t

0

(E(s, X(s))d ∧π (s) + F (s, X(s))dAf(s) + G(s, X(s))dA+
g (s)

+H(s, X(s))ds) , t ∈ [t0, T ],(2.3)

where the coefficients E, F, G, H are continuous and lie in the space L2
loc([t0, T ] ×

Ã))mvs, f, g ∈ L∞
γ,loc(R+), π ∈ L∞

B(γ),loc(R+). Here, B(γ) is the space of bounded

endomorphisms of γ and (t0, a) ∈ [t0, T ] × Ã is a fixed point.

For any pair of η, ξ ∈ D⊗E such that η = c⊗e(α), ξ = d⊗e(β), α, β ∈ L2
γ(R+),

c, d ∈ D, as in our previous works in [3, 4, 5, 6, 7], we shall in what follows, employ

the equivalent form of (2.3) as established in [11] given by the nonclassical ordinary

differential inclusion:

(2.4)
d

dt
〈η, X(t)ξ〉 ∈ P (t, X(t))(η, ξ), X(t0) = a, t ∈ [t0, T ].

The multivalued map P appearing in (2.4) is of the form

P (t, x)(η, ξ) = 〈η, Pαβ(t, x)ξ〉
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where the map Pαβ : [t0, T ] × Ã → 2Ã is given by

Pαβ(t, x) = µαβ(t)E(t, x) + νβ(t)F (t, x) + σα(t)G(t, x) + H(t, x).

The complex valued functions µαβ , νβ, σα : [t0, T ] → C are defined by

µαβ(t) = 〈α(t), π(t)β(t)〉γ, νβ(t) = 〈f(t), β(t)〉γ,

σα(t) = 〈α(t), g(t)〉γ, t ∈ [t0, T ]

for all (t, x) ∈ [0, T ] × Ã and the coefficients E, F, G, H belong to the space

L2
loc([t0, T ] × Ã)mvs of multivalued stochastic processes with closed values.

As explained in [11], the map P cannot in general be written in the form:

P (t, x)(η, ξ) = P̃ (t, 〈η, xξ〉)

for some complex valued multifunction P̃ defined on [t0, T ] × C, for t ∈ [t0, T ], x ∈

Ã, η, ξ ∈ D⊗E. Under the condition of compactness of the values of the map (t, x) →

P (t, x)(η, ξ) for arbitrary η, ξ ∈ D⊗E, we prove that the map which associates to the

initial point a ∈ Ã, the set of solutions S(T )(a) to (2.4) admits a continuous selection

from the space Ã to the completion (denoted by wac(Ã)) of the locally convex space

of adapted weakly absolutely continuous stochastic processes indexed by elements

of the interval [t0, T ]. In particular, we show that the map a → R(T )(a) admits a

continuous selection, where R(T )(a) is the reachable set at t = T of the QSDI (2.3).

To establish our main results, we need the notion of partition of unity subordinate

to any covering of a compact subset of Ã corresponding to an arbitrary pair of vectors

in E, the subspace of the Fock space generated by the exponential vectors. In what

follows, unless otherwise indicated, we consider quantum stochastic processes defined

on a simple Fock space. That is we shall take the initial space R = C so that

R⊗ Γ(L2
γ(R+)) ≡ Γ(L2

γ(R+)) and D⊗E ≡ E.

Definition 2.1. . Let A be a compact subset of the locally convex space Ã and let

{Ωi}i∈J be an open covering for A with a finite sub covering {Ωi, i = 1, 2, . . . , m}. A

family of functions {Πηξ,i(·)}, i = 1, 2, . . . , m corresponding to an arbitrary pair of

elements η, ξ ∈ E defined on A is called a Lipschitzian partition of unity subordinate

to the finite subcovering if:

(1) The map Πηξ,i(·) is Lipschitzian for all i = 1, 2, . . . , m. That is there exist constants

Lηξ > 0 such that for any pair a, a′ ∈ A,

|Πηξ,i(a) − Πηξ,i(a
′)| ≤ Lηξ‖a − a′‖ηξ.

(2) Πηξ,i(a) > 0 for a ∈ Ωi

⋂

A and Πηξ,i(a) = 0 for a ∈ A\Ωi.

(3) For each a ∈ A,
∑m

i=1 Πηξ,i(a) = 1.
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Lemma 2.2. . Let A be a compact subset of the space Ã. Then, there exists a family

of Lipschitzian partitions of unity subordinate to any finite subcovering of an open

covering for the set A.

Proof. We outline the proof as follows: Let {Ωi}, i = 1, 2, . . . , m be a finite open

subcovering of an open covering {Ωi}i∈J of A. First we claim that the map qηξ : Ã →

R+ defined by

qηξ(x) = dηξ(x, Q), Q ∈ clos(Ã),

satisfies for any pair x1, x2 ∈ Ã,

(2.5) |qηξ(x1) − qηξ(x2)| ≤ ‖x1 − x2‖ηξ.

Inequality (2.5) can be established as follows: Let ǫ > 0 be given. Since dηξ(x, Q) =

infy∈Q ‖x − y‖ηξ, then there exists y1 ∈ Q satisfying

‖x1 − y1‖ηξ ≤ dηξ(x1, Q) + ǫ.

Hence,

dηξ(x2, Q) ≤ ‖x2 − y1‖ηξ

≤ ‖x2 − x1‖ηξ + ‖x1 − y1‖ηξ

≤ ‖x2 − x1‖ηξ + dηξ(x1, Q) + ǫ.

Interchanging x1 and x2, we have

|dηξ(x1, Q) − dηξ(x2, Q)| ≤ ‖x1 − x2‖ηξ + ǫ.

Inequality (2.5) follows since ǫ is arbitrary.

For i = 1, 2, . . . , m, define the family of functions qηξ,i : A → R+ by

qηξ,i(a) = dηξ(a, A\Ωi)

and functions Πηξ,i : A → R+ defined by

(2.6) Πηξ,i(a) =
qηξ,i(a)

∑m

j=1 qηξ,j(a)

For at least one j ∈ {1, 2, . . . , m}, a ∈ Ωj . Hence,
∑m

j=1 qηξ,j(a) > 0. Also, by

the definition of the seminorm ‖ · ‖ηξ and the properties of the exponential vectors

η, ξ ∈ E, the value ‖x‖ηξ can never be zero when x is not a zero process. This

follows from the fact that for any pair of exponential vectors η, ξ ∈ E such that

η = e(α), ξ = e(β), α, β ∈ L2
γ(R+), we have 〈e(α), e(β)〉 = e〈α,β〉 (see [6] for some

details). Consequently, (2.6) is well defined. The rest of the proof follows a similar

argument as in the proof of Lemma 2.1 in [4]. This shows that {Πηξ,i(·)}m
i=1 is a family

of Lipschitzian partition of unity subordinate to the covering.
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In the proof of our main results, we shall make use of the following maps that

are associated with the family Πηξ,i(·)) given by (2.6). Define the maps

(2.7) σηξ(i, a) =
∑

1≤j≤i

Πηξ,j(a), a ∈ A, i ∈ {1, 2, . . . , m}.

Definition 2.3: Let ǫ > 0 be fixed. Then the common modulus of continuity Θηξ(ǫ)

depending on the pair η, ξ ∈ E, of the map a → σηξ(i, a) is defined by:

(2.8) Θηξ(ǫ) = sup{|σηξ(i, a)−σηξ(i, a
′)| : a, a′ ∈ A, ‖a−a′‖ηξ ≤ ǫ, i = 1, 2, . . . , m}.

Remarks: As in the case of the modulus of continuity of real valued functions defined

on the real line, (see [21, p. 2], for example), the modulus of continuity Θηξ(ǫ) defined

by (2.8) satisfies the following inequalities as consequences of the definition. That is,

Θηξ(ǫ) ≤ Θηξ(ǫ
′), whenever ǫ ≤ ǫ′

and

(2.9) Θηξ(λǫ) ≤ (1 + λ)Θηξ(ǫ), for any positive number λ.

These follow directly from (2.8).

In what follows, we shall employ the space of complex valued sesquilinear forms

on (D⊗E)2 denoted by Sesq(D⊗E) and assume that the multivalued map (t, x) →

P (t, x)(η, ξ) appearing in Equation (2.4) satisfies the following conditions:

S(a). P : Ω ⊆ [t0, T ] × Ã → 2Sesq(D⊗E) defined on an open subset Ω ⊆ [t0, T ] × Ã

bounded on Ω by constants Mηξ that depend on η, ξ, i.e

|P (t, x)(η, ξ)| ≤ Mηξ, (t, x) ∈ Ω, η, ξ ∈ D⊗E.

S(b). The map t → P (t, x)(η, ξ) is measurable for fixed x ∈ Ã and for all η, ξ ∈ D⊗E.

S(c). The map (t, x) → P (t, x)(η, ξ) is Lipschitzian with Lipschitz function Kηξ(t)

lying in L1
loc([t0, T ]), i.e. for x, y ∈ Ã

ρ(P (t, x)(η, ξ), P (t, y)(η, ξ)) ≤ Kηξ(t)‖x − y‖ηξ.

S(d). The set P (t, x)(η, ξ) is compact in C, the field of complex numbers, for all

(t, x) ∈ Ω, η, ξ ∈ D⊗E.

S(e). There exists a compact set A ⊆ Ã such that ∀η, ξ ∈ D⊗E, the set

{(t, a + v(t − t0) : a ∈ A, v ∈ Ã such that ‖v‖ηξ ≤ Mηξ, t ∈ [t0, T ]} ⊆ Ω.

Moreover, we set

(2.10) Yηξ(t) =

∫ t

t0

Kηξ(s)ds.

We shall assume that the interval I = [t0, T ] satisfies the following:

(2.11) Ληξ = 3(eYηξ−Yηξ(s) − 1) < 1; ∀ η, ξ ∈ D⊗E,
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where

Yηξ =

∫ T

t0

Kηξ(s)ds.

In what follows, we set

Γηξ =

∫ T

t0

eYηξ−Yηξ(s)ds.

3. ESTABLISHMENT OF THE SELECTION MAP

By a solution of QSDI (2.3) we mean a quantum stochastic process Φ : [t0, T ] → Ã

lying in Ad(Ã)wac

⋂

L2
loc(Ã) satisfying QSDI (2.3). We denote by S(T )(a), the set of

solutions of Lipschitzian QSDI (2.3). It has been established in [11] that under the

conditions S(a)−S(e), this set is not empty. Similar existence result under a general

Lipschitz condition has recently been established in [3]. Our main result below shows

that there exists a continuous map Φ̃ : A → wac(Ã) such that for each a ∈ A,

Φ̃(a) ∈ S(T )(a) ⊆ wac(Ã).

Theorem 3.1. Suppose that the map (t, x) → P (t, x)(η, ξ) satisfies the assumptions

S(a)–S(e). Then there exists a continuous map Φ̃ : A → wac(Ã) such that for every

a ∈ A, Φ̃(a) is a solution to the QSDI (2.4).

Proof. The proof shall be presented in six parts in what follows. The pair of elements

η, ξ ∈ E are arbitrary unless otherwise indicated. We note here that it would be

enough for us to establish the existence of the continuous selection by establishing

appropriate estimates in the seminorms that generate the topology of the spaces Ã

and wac(Ã). A justification for this can be found in [23, p. 5].

Part A: We claim that there exists two sequences of adapted stochastic processes

Φn(a), Ψn(a) : [t0, T ] → Ã such that

(i) Ψn(a) ∈ S(T )(a); Φn(a) is adapted weakly absolutely continuous

such that Φn(a)(t0) = a. Setting Φn
ηξ(a)(t) := 〈η, (Φn(a)(t))ξ〉, then,

(ii) ‖Φn
ηξ(a) − Ψn

ηξ(a)‖c = supI |〈η, (Φn(a)(t))ξ〉 − 〈η, (Ψn(a)(t))ξ〉| ≤ MηξΓηξΛ
n−1
ηξ .

(iii) For every ǫ > 0, there exists δ(ǫ) = δ(ǫ, n, η, ξ) > 0 and a function Rn
ηξ(a, ǫ) :

I → R+ satisfying

(3.1)

∫

I

Rn
ηξ(a, ǫ)(s)ds ≤ 2Mηξǫ

such that

|
d

dt
〈η, (Φn(a)(t))ξ〉 −

d

dt
〈η, (Φn(a′)(t))ξ〉| ≤ Rn

ηξ(a, ǫ)(t)

whenever ‖a − a′‖ηξ ≤ δ(ǫ).

(iv) |
d

dt
〈η, (Φn(a)(t))ξ〉 −

d

dt
〈η, (Ψn(a)(t))ξ〉| ≤ 3MηξΓηξΛ

n−2
ηξ Kηξ(t)e

Yηξ(t), n ≥ 2.

(v) |Φn(a) − Φn−1(a)|ηξ ≤ 3MηξΓηξΛ
n−1
ηξ , n ≥ 3.
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Part B: We apply mathematical induction as follows: Set Φ1(a) = a. Then

trivially, Φ1(a) lies in Ad(Ã)wac. Also by the boundedness of the map P ,

d

(

d

dt
〈η, (Φ1(a)(t))ξ〉, P (t, Φ1(t))(η, ξ)

)

= d(0, P (t, a)(η, ξ)) ≤ Mηξ.

By the existence results of Ekhaguere [11], there exists Ψ1(a) ∈ S(T )(a) such that

∀t ∈ [t0, T ],

‖Φ1(a)(t) − Ψ1(a)(t)‖ηξ ≤

∫ t

t0

e(Yηξ(t)−Yηξ(s))Mηξds ≤ MηξΓηξ.

The above shows that Φ1, Ψ1 satisfy items (i), (ii) in Part A, with n=1. Item (iii)

also holds by putting R1
ηξ(a, ǫ) = 0 for n=1.

Assume that we have defined Φν(a) and Ψν(a) satisfying items (i) – (iii), for ν =

1, 2, . . . , n − 1. We claim that we can define Φn(a) and Ψn(a) satisfying items (i) –

(iv) for n ≥ 2.

Part C: For notational simplification, we will denote Φn−1 by Φ and Ψn−1 by Ψ.

The map Φηξ : A → C[I, C], a → Φηξ(a) is uniformly continuous on account of our

assumption in Part A above. This can be shown as follows:

Let r > 0 be a real number satisfying r ≤ δ(ΓηξΛ
n−1
ηξ ), where δ is defined in Part

A, item (iii) above. Then a′, a′′ lying in the set B[a, r] = {x ∈ Ã : ‖x − a‖κϑ ≤

r, ∀κ, ϑ ∈ D⊗E} implies that ‖a − a′‖ηξ ≤ r ≤ δ and ‖a − a′′‖ηξ ≤ r ≤ δ.

By item (iii), Part A,

|
d

dt
〈η, (Φ(a)(t))ξ〉 −

d

dt
〈η, (Φ(a′(t))ξ〉| ≤ Rn−1

ηξ (a, ǫ)(t)

and

|
d

dt
〈η, (Φ(a)(t))ξ〉 −

d

dt
〈η, (Φ(a′′(t))ξ〉| ≤ Rn−1

ηξ (a, ǫ)(t)

so that

(3.2) |
d

dt
〈η, (Φ(a′)(t))ξ〉 −

d

dt
〈η, (Φ(a′′(t))ξ〉| ≤ 2Rn−1

ηξ (a, ǫ)(t).

But by the absolute continuity of the map t → (〈η, Φ(a′)(t)ξ〉 − 〈η, Φ(a′′)(t)ξ〉), we

have

|〈η, (Φ(a′)(t))ξ〉 − 〈η, (Φ(a′′(t))ξ〉|

= |

∫

I

d

ds
(〈η, (Φ(a′)(s))ξ〉 − 〈η, (Φ(a′′(s))ξ〉) ds|(3.3)

Hence from (3.3) and using (3.1)

|〈η, Φ(a′)(t)ξ〉 − 〈η, Φ(a′′)(t)ξ〉| ≤ 2

∫

I

Rn−1
ηξ (a, ǫ)(s)ds ≤ 4Mηξǫ.

If r ≤ 1
3
MηξΓηξΛ

n−2
ηξ , then ‖a′ − a′′‖ηξ ≤ 2r ≤ 2

3
MηξΓηξΛ

n−2
ηξ , implies that

‖Φ(a′)(t) − Φ(a′′)(t)‖ηξ ≤
1

3
MηξΓηξΛ

n−2
ηξ ,
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where ǫ is small enough so that

ǫ ≤
1

12
ΓηξΛ

n−1
ηξ ≤

1

12
ΓηξΛ

n−2
ηξ .

Consequently, we have for a′, a′′ ∈ B[a, r]

‖Φηξ(a
′) − Φηξ(a

′′)‖c ≤
1

3
MηξΓηξΛ

n−2
ηξ .

Our claim of uniform continuity of the map a → Φηξ(a) follows.

Let {B(ai, r), i = 1, 2, . . . , m} be a finite open cover of the compact set A, ai ∈

A ∀i and Πηξ,i : A → R+, a partition of unity subordinate to the cover. Here

B(a, r) = {x ∈ Ã : ‖x − a‖κϑ < r, ∀κ, ϑ ∈ D⊗E}

and
m

∑

i=1

Πηξ,i(a) = 1, Πηξ,i(a) > 0, ∀a ∈ A
⋂

B(ai, r).

The existence of such family of Lipschitzian partition of unity follows from Lemma 2.2.

Next, we define

σηξ(j, a) =
∑

1≤i≤j

Πηξ,i(a) and Ψi(t) = Ψ(ai)(t).

Let δ > 0 be such that T−t0
δ

= m′, an integer and δ < 1
12

ΓηξΛ
n−2
ηξ .

The subintervals

J(j) = [t0 + (j − 1)δ, t0 + jδ), j = 1, 2, . . . , m′

form a partition of the interval I = [t0, T ]. Corresponding to an arbitrary pair of

elements η, ξ ∈ E, we consider the family of complex valued maps on [t0, T ]) defined

by:

(3.4) Dηξ,i,j(t) =
d

dt
〈η, Ψi(t)ξ〉IJ(j)(t), i = 1, 2 . . . , m; j = 1, 2, . . . , m′,

where IJ(j) is the characteristic function on the set J(j). For α ∈ [0, 1], let {B(α)}

be a nested family of measurable subsets of the interval [t0, T ] such that B(0) =

∅, B(1) = [t0, T ] satisfying

(3.5)

∫

B(α)

Dηξ,i,j(t)dt = α

∫ T

t0

Dηξ,i,j(t)dt, µ(B(α)) = α(T − t0).

Such a family exists by a Corollary to Liapunov’s theorem (see [1, 15]).

Since Ψi ∈ S(T )(ai) then as shown in [11], there exists processes Vi : I → Ã lying

in L1
loc(Ã) such that Ψi(t) = ai +

∫ t

t0
Vi(s)ds and

d

dt
〈η, Ψi(t)ξ〉 = 〈η, Vi(t)ξ〉.

It follows from (3.4) that

Dηξ,i,j(t) = 〈η, Vi(t)IJ(j)(t)ξ〉, i = 1, 2, . . . , m; j = 1, 2, . . . , m′.
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Hence by (3.5) and putting

Vi,j(t) = Vi(t)IJ(j)(t), i = 1, 2, . . . , m, j = 1, 2, . . . , m′,

we have

(3.6)

∫

B(α)

Vi,j(t)dt = α

∫ T

t0

Vi,j(t)dt.

Next we define the stochastic process Φn(a) : [t0, T ] → Ã by

(3.7) Φn(a)(t) = a +
∑

i

∫ t

t0

Vi(s)IB(σηξ(i,a))\B(σηξ (i−1,a))(s)ds,

with its matrix element given by

〈η, (Φn(a)(t))ξ〉 = 〈η, aξ〉+
∑

i

∫ t

t0

〈η, (Vi(s))ξ〉IB(σηξ(i,a))\B(σηξ (i−1,a))(s)ds.

We remark that the process Φn(a) given by (3.7) lies in wac(Ã) since each Vi ∈ L1
loc(Ã)

and in addition, Φn(a) is an adapted and weakly absolutely continuous process.

To show that Φn(a) satisfies item (iii) of Part A, we note that as in the proof

of the only Theorem in [1], d
dt
〈η, Φn(a)ξ〉 and d

dt
〈η, Φn(a′)ξ〉 differ only on the subset

E ′ ⊂ [t0, T ] given by

E ′ =

m
⋃

i=1

{(B(σηξ(i, a))\B(σηξ(i − 1, a)))△(B(σηξ(i, a
′))\B(σηξ(i − 1, a′)))}

and that

(3.8) E ′ ⊂
m
⋃

i=1

{B(σηξ(i, a))△B(σηξ(i, a
′))},

where for any two subsets S, B of [t0, T ], S△B := (S ∪ B)\(S ∩ B).

As in [1], we fix ǫ > 0 and let Θηξ = Θηξ(ǫ) be the common modulus of continuity

of the map a → σηξ(i, a), given by (2.8). Then, whenever ‖a − a′‖ηξ < Θηξ(
ǫ

2m
), the

superset in (3.8) is contained in the set

(3.9) E ′′(a, ǫ) =

m
⋃

i=1

{B(σηξ(i, a) +
ǫ

2m
)\B(σηξ(i, a) −

ǫ

2m
)}

and the total measure of E ′′(a, ǫ) is bounded by ǫ or

(3.10)

∫

I

IE′′(a,ǫ) < ǫ.

The foregoing assertion follows from the fact that if

‖a − a′‖ηξ < Θηξ(
ǫ

2m
),

then

|σηξ(i, a) − σηξ(i, a
′)| ≤ Θηξ

(

Θηξ(
ǫ

2m
)
)

≤ Θηξ (Θηξ(ǫ)) .
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Since Θηξ(ǫ) is positive and finite, we can write Θηξ(ǫ) = ληξǫ for some ληξ > 0. Then,

by (2.9),

|σηξ(i, a) − σηξ(i, a
′)| ≤ (1 + ληξ)ληξǫ =

ǫ

2m
.

Thus,

(3.11) |σηξ(i, a) − σηξ(i, a
′)| ≤

ǫ

2m
,

for some positive number ληξ satisfying the algebraic equation

λ2
ηξ + ληξ −

1

2m
= 0.

The claim follows by employing (3.11) and the property of the nested family of sets

{B(·)}.

Consequently we have

|
d

dt
〈η, Φn(a)(t)ξ〉 −

d

dt
〈η, Φn(a′)(t)ξ〉| ≤ 2MηξIE′′(a,ǫ)(t)

so that item (iii) in Part A follows with

δ(ǫ) = Θηξ(
ǫ

2m
) and Rn

ηξ(a, ǫ)(t) = 2MηξIE′′(a,ǫ)(t).

Part D: We estimate here the pseudo-distance of Φn(a) from the set of solution

S(T )(a). To this end, let t ∈ [t0 + rδ, t0 + (r + 1)δ)). At the point t = t0 + rδ, the

integral in (3.7) can be written as

∑

i

∫ t0+rδ

t0

Vi(s)IB(σηξ(i,a))\B(σηξ (i−1,a))ds

=
∑

i

∑

l≤r

∫

Vi(s)IB(σηξ(i,a))\B(σηξ (i−1,a))IJ(l)(s)ds

=
∑

i

∑

l≤r

∫

Vi,l(s)IB(σηξ(i,a))\B(σηξ (i−1,a))(s)ds

=
∑

i

∑

l≤r

∫

B(σηξ(i,a))\B(σηξ (i−1,a))

Vi,l(s)ds

=
∑

l≤r

∑

i

Πηξ,i(a)

∫

I

Vi,l(s)ds,

=
∑

i

∑

l≤r

Πηξ,i(a){Ψi(t0 + lδ) − Ψi(t0 + (l − 1)δ)}

=
∑

i

Πηξ,i(a){Ψi(t0 + rδ) − Ψi(t0)}.

This follows from (3.6) and the definition of σηξ(·, ·).

Hence, we have

Φn(a)(t0 + rδ) − a =
∑

i

Πηξ,i(a)(Ψi(t0 + rδ) − ai)
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For any j ∈ {1, 2, . . . , m}, we can write

‖Φn(a)(t) − Ψj(t)‖ηξ ≤ ‖Φn(a)(t0 + rδ) − Ψj(t0 + rδ)‖ηξ

+ ‖Φn(a)(t0 + rδ) − Φn(a)(t)‖ηξ + ‖Ψj(t) − Ψj(t0 + rδ)‖ηξ(3.12)

Since

|
d

dt
< η, Φn(a)(t)ξ > | ≤ Mηξ

and

|
d

dt
< η, Ψj(t)ξ > | ≤ Mηξ,

by our choice of δ, the sum of the last two terms in (3.12) is bounded by 1
3
MηξΓηξΛ

n−2
ηξ .

Hence, from (3.12)

‖Φn(a)(t) − Ψj(t)‖ηξ ≤ ‖a −
∑

i

Πηξ,i(a)ai‖ηξ

+ ‖
∑

i

Πηξ,i(a) (Ψi(t0 + rδ) − Ψj(t0 + rδ)) ‖ηξ +
1

3
MηξΓηξΛ

n−2
ηξ .(3.13)

By our choice of r in Part C, whenever Πηξ,i(a) > 0, then

‖a − ai‖ηξ ≤
1

3
MηξΓηξΛ

n−2
ηξ .

This estimate also holds for the first term at the right hand side of (3.13). Further-

more,

‖Ψi(t0 + rδ) − Ψj(t0 + rδ)‖ηξ

≤ ‖Ψi(t0 + rδ) − Φ(ai)(t0 + rδ)‖ηξ + ‖Φ(ai)(t0 + rδ) − Φ(aj)(t0 + rδ)‖ηξ

+ ‖Φ(aj)(t0 + rδ) − Ψj(t0 + rδ)‖ηξ.(3.14)

When both Πηξ,i(a) > 0 and Πηξ,j(a) > 0 and by the choice of r, the second term on

the right of (3.14) satisfies

(3.15) ‖Φ(ai)(t0 + rδ) − Φ(aj)(t0 + rδ)‖ηξ ≤
1

3
MηξΓηξΛ

n−2
ηξ ,

so that by item (ii) in Part A and the recursive assumption, we finally have

(3.16) ‖Φn(a)(t) − Ψj(t)‖ηξ ≤ 3MηξΓηξΛ
n−2
ηξ ,

Equation (3.16) holds for every j such that Πηξ,j(a) > 0. By the definition of Φn(a)(t)

given by (3.7), at any point t except on a set of measure zero in I,

d

dt
〈η, Φn(a)(t)ξ〉 =

d

dt
〈η, Ψj(t)ξ〉

for some j such that Πηξ,j(a) > 0.

Since Ψj ∈ S(T )(aj), then

d

dt
〈η, Ψj(t)ξ〉 ∈ P (t, Ψj(t))(η, ξ)
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and therefore we have

d

(

d

dt
〈η, Φn(a)(t)ξ〉, P (t, Φn(a)(t))(η, ξ)

)

≤ ρ (P (t, Ψj(t))(η, ξ), P (t, Φn(a)(t))(η, ξ))

≤ Kηξ(t)‖Ψj(t) − Φn(a)(t)‖ηξ

≤ 3MηξΓηξΛ
n−2
ηξ Kηξ(t)(3.17)

on account of (3.16) and the fact that the map (t, x) → P (t, x)(η, ξ) is Lipschitzian.

We notice that estimate (3.17) is independent of j and therefore holds on I = [t0, T ].

Again by the existence result in [11], there exists a stochastic process Ψn(a) ∈ S(T )(a)

such that

(3.18) ‖Ψn(a)(t) − Φn(a)(t)‖ηξ ≤ 3MηξΓηξΛ
n−2
ηξ (eYηξ(t) − 1) ≤ MηξΓηξΛ

n−1
ηξ ,

and

(3.19) |
d

dt
〈η, Ψn(a)(t)ξ〉 −

d

dt
〈η, Φn(a)(t)ξ〉| ≤ 3MηξΓηξΛ

n−2
ηξ Kηξ(t)e

Yηξ(t).

Inequalities (3.18) and (3.19) prove items (ii) and (iv) in Part A for all n ≥ 2.

Part E: It is now left for us to show that if items (i)–(iv) hold up to n− 1, then

item (v) holds for n. We use the same notations as before to fix any t and let j be

such that
d

dt
〈η, Φn(a)(t)ξ〉 =

d

dt
〈η, Ψj(t)ξ〉

so that Πηξ,j(a) > 0. Then we have

|
d

dt
〈η, Φn(a)(t)ξ〉 −

d

dt
〈η, Φn−1(a)(t)ξ〉| = |

d

dt
〈η, Ψj(t)ξ〉 −

d

dt
〈η, Φ(a)(t)ξ〉|

≤ |
d

dt
〈η, Ψj(t)ξ〉 −

d

dt
〈η, Φ(aj)(t)ξ〉|

+ |
d

dt
〈η, Φ(aj)(t)ξ〉 −

d

dt
〈η, Φ(a)(t)ξ〉|(3.20)

By item (iv), the first term in (3.20) is bounded by 3MηξΓηξΛ
n−2
ηξ Kηξ(t)e

Yηξ(t) while

by the choice of r, and applying item (iii), the second term in (3.20) is bounded by

the functions Rn−1
ηξ (a, ΓηξΛ

n−1
ηξ ) : I → R+ satisfying the conditions of item (iii). These

bounds do not depend on j and so hold on the whole of interval I.

Since
∫

I

Rn−1
ηξ (a, ǫ)(t)dt < 2Mηξǫ,

we have

|Φn(a) − Φn−1(a)|ηξ =

∫

I

|
d

dt
〈η, (Φn(a)(t) − Φn−1(a)(t))ξ〉|dt

≤ 3

∫

I

MηξΓηξΛ
n−2
ηξ Kηξ(t)e

Yηξ(t)dt +

∫

I

Rn−1
ηξ (a, ΓηξΛ

n−1
ηξ )(t)dt

≤ MηξΓηξΛ
n−1
ηξ + 2MηξΓηξΛ

n−1
ηξ ,

proving item (v).
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Part F: By item (iii) in Part A, we have

|Φn(a) − Φn(a′)|ηξ = ‖a − a′‖ηξ +

∫ T

t0

d

dt
|〈η, Φn(a)(t)ξ〉 − 〈η, Φn(a′)(t)ξ〉|dt

≤ δ(ǫ) + 2Mηξǫ.

This shows that each map Φn : A → wac(Ã) is uniformly continuous. Since Ληξ < 1

for arbitrary pair η, ξ ∈ D⊗E, item (v) shows that the sequence {Φn(a)} is Cauchy.

Since wac(Ã) is complete, the sequence converges to a continuous map Φ̃ : A →

wac(Ã).

By construction, the sequence { d
dt
〈η, Φn(a)(t)ξ〉} converges in L1[I] to d

dt
〈η, Φ̃(a)(t)ξ〉.

Hence, a subsequence converges to d
dt
〈η, Φ̃(a)(t)ξ〉 pointwise almost everywhere.

By item (iv),

d

(

d

dt
〈η, Φn(a)(t)ξ〉, P (t, Φn(a)(t))(η, ξ)

)

→ 0 as n → ∞.

Since the images P (t, x)(η, ξ) are compact in the field of complex numbers, and there-

fore closed and since the map (t, x) → P (t, x)(η, ξ) is continuous, then we have:

d

dt
〈η, Φ̃(a)(t)ξ〉 ∈ P (t, Φ̃(a)(t))(η, ξ)

showing that

Φ̃(a) ∈ S(T )(a) ⊆ wac(Ã).

The next result is a direct consequence of Theorem 3.1 concerning the reachable

sets of QSDI (2.3) at the time t = T defined by:

(3.21) R(T )(a) = {Ψ(a)(T ) : Ψ(a) ∈ S(T )(a)} ⊆ Ã.

Corollary 3.2. The multivalued map R(T ) : A → 2Ã admits a continuous selection

where R(T )(a) is given by (3.21).

Proof. We define a continuous map h : wac(Ã) → Ã by

h(Φ(·)) = Φ(T ), Φ(·) ∈ wac(Ã).

Thus, by Theorem (3.1), the map h(Φ̃(a)(·)) = Φ̃(a)(T ) is continuous for each a ∈ A

and Φ̃(a)(T ) ∈ R(T )(a).

The conclusion of the corollary follows.
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