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ABSTRACT. In this paper we study the limit cycles of polynomial vector fields in R
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bifurcates from three different kinds of two dimensional centers (non-degenerate and degenerate).

The study is down using the averaging theory.
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1. INTRODUCTIONS AND STATEMENT

OF THE MAIN RESULTS

One of the main problems in the theory of differential systems is the study of

their periodic orbits, their existence, their number and their stability. In this paper

the study of the existence of periodic orbits of a differential system is reduced using

the averaging theory to study the zeroes of a system of functions. One of the main

problems for applying the averaging theory is to transform the differential system that

we want to study into the normal form for applying the averaging method. When this

method cannot be applied, sometimes there are other ways to reduce the problem of

studying the existence of periodic orbits to study the zeroes of a system of functions.

In general these methods are called alternative methods (see for instance Section 2.4

of Chow and Hale [4]), one of these particular alternative methods is the well known

Liapunov–Schmidt method.

As usual a limit cycle of a differential equation is a periodic orbit isolated in the

set of all periodic orbits of the differential equation. In this paper we shall study

the limit cycles which bifurcate from the periodic orbits of three kinds of different

2–dimensional centers contained in a differential system of R
3 when we perturb it.

These kinds of bifurcations have been studied extensively for 2–dimensional systems

(see for instance the book [6] and the references quoted there), but for 3–dimensional

systems there are very few results, see for instance [1, 2, 7, 8].
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First we shall study the perturbation of a 2–dimensional linear center inside R
3,

and after the perturbation of two degenerate 2–dimensional centers also inside R
3.

We consider the following system

(1.1)

ẋ = −y + εP (x, y, z),

ẏ = x + εQ(x, y, z) + ε cos t,

ż = az + εR(x, y, z),

where a 6= 0 and

P =
n
∑

i+j+k=0

ai,j,kx
iyjzk, Q =

n
∑

i+j+k=0

bi,j,kx
iyjzk R =

n
∑

i+j+k=0

ci,j,kx
iyjzk.

System (1.1) has been studied in [5] when a = 0 and without the perturbation

due to ε cos t. When a and ε are zero the unperturbed system has all R
3 except the

z–axis filled by periodic orbits. For a 6= 0 and ε = 0 the unperturbed system (1.1)

only has the plane z = 0 except the origin filled of periodic orbits. The center on the

plane z = 0 is called nondegenerate when the eigenvalues of its linear part are of the

form ±bi with b 6= 0. When we have a center having zero eigenvalues we say that it

is degenerate.

Theorem 1.1. The linear differential system (1.1) with ε = 0 restricted to the plane

z = 0 has a global center at the origin (i.e. all the orbits contained in z = 0 with the

exception of the origin are periodic). Then for convenient polynomials P , Q and R,

system (1.1) with ε 6= 0 sufficiently small has at least m ∈ {1, 2, . . . , 2[(n− 1)/2] + 1}

limit cycles bifurcating from the periodic orbits of the linear center contained in z = 0

when ε = 0, where [·] denotes the integer part function. Moreover the existence or

not of these limit cycles only depends on the coefficients ai,j,0 and bi,j,0 with i+ j odd.

The proof of Theorem 1.1 is given in Section 2.

Now we consider the polynomial differential system in R
3 given by

(1.2)

ẋ = −y(3x2 + y2) + εP (x, y, z),

ẏ = x(x2 − y2) + εQ(x, y, z),

ż = z(x2 + y2) + εR(x, y, z).

The unperturbed system (1.2) with ε = 0 has a degenerate center at the ori-

gin of the plane z = 0 (for more details see Section 3), a main difference with the

unperturbed system (1.1) with ε = 0 whose center is non–degenerate.

Theorem 1.2. The homogeneous polynomial differential system (1.2) with ε = 0

restricted to the plane z = 0 has a global center at the origin. Let P , Q and R

be polynomials of degree at most n. Then for convenient polynomials P , Q and R,

system (1.2) with ε 6= 0 sufficiently small has at least m ∈ {1, 2, . . . , [(n−1)/2]} limit

cycles bifurcating from the periodic orbits of the center contained in z = 0 when ε = 0.
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The proof of Theorem 1.2 is given in Section 3. We remark that the perturbation

of the degenerate center at the plane z = 0 inside the class of planar vector fields has

been studied in [7].

Finally we consider the polynomial differential system in R
3 defined by

(1.3)

ẋ = −y(x2 + y2) + εP (x, y, z),

ẏ = x(x2 + y2) + εQ(x, y, z),

ż = z(x2 + y2) + εR(x, y, z).

Theorem 1.3. The homogeneous polynomial differential system (1.3) with ε = 0

restricted to the plane z = 0 has a global center at the origin. For convenient polyno-

mials P , Q and R of degree at most n, system (1.3) with ε 6= 0 sufficiently small has

at least m ∈ {1, 2, . . . , [(n − 1)/2]} limit cycles bifurcating from the periodic orbits of

the center contained in z = 0 when ε = 0.

2. PROOF OF THEOREM 1.1

The origin (0, 0, 0) is the unique singular point of system (1.1) when ε = 0. The

eigenvalues of the linearized system at this singular point are ±i and a. So it has

a linear center on the plane z = 0. Outside this plane all the orbits tends to it in

forward time if a < 0, or in backward time if a > 0.

If we apply the notation introduced in the Appendix to system (1.1) we have that

x = (x, y, z), F0(x, t) = (−y, x, az)T , F1(x, t) = (P, Q + cos t, R)T and F2(x, t) = 0.

Let x(t; x0, y0, z0, ε) be the solution of system (1.1) such that x(0; x0, y0, z0, ε) =

(x0, y0, z0). The periodic solution x(t; x0, y0, 0, 0) = (x(t), y(t), z(t))T of the unper-

turbed system (1.1) with ε = 0 is

(2.1) x(t) = x0 cos t − y0 sin t, y(t) = y0 cos t + x0 sin t, z(t) = 0.

Note that all the periodic orbits of the linear center have period 2π.

For our system the V and the α of Theorem 5.1 of the Appendix are V =

{(x, y, 0) : 0 < x2 + y2 < ρ} for some arbitrary ρ > 0 and α = (x0, y0) ∈ V .

The fundamental solution matrix M(t) of the variational equation of the unper-

turbed system (1.1)ε=0 with respect to the periodic orbits (2.1) satisfying that M(0)

is the identity matrix is

M(t) =







cos t − sin t 0

sin t cos t 0

0 0 eat






.
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We remark that it is independent of the initial condition (x0, y0, 0). Moreover an easy

computation shows that

M−1(0) − M−1(2π) =







0 0 0

0 0 0

0 0 1 − e−2πa






.

In short we have shown that all the assumptions of Theorem 5.1 of the Appendix

hold. Hence we shall study the zeros α = (x0, y0) ∈ V of the two components of the

function F(α) given in (5.4). More precisely we have F(α) = (F1(α),F2(α)) where

F1(α) =

∫ 2π

0

(cos t P (x(t; X0)) + sin t (Q(x(t; X0)) + cos t)) dt

=

∫ 2π

0

cos t

(

n
∑

i+j=0

ai,j,0X(t)iY (t)j

)

dt

+

∫ 2π

0

sin t

(

n
∑

i+j=0

bi,j,0X(t)iY (t)j

)

dt,

F2(α) =

∫ 2π

0

(− sin t P (x(t; X0)) + cos t (Q(x(t; X0)) + cos t)) dt

= π −

∫ 2π

0

sin t

(

n
∑

i+j=0

ai,j,0X(t)iY (t)j

)

dt

+

∫ 2π

0

cos t

(

n
∑

i+j=0

bi,j,0X(t)iY (t)j

)

dt,

with X0 = (x0, y0, 0, 0), X(t) = x0 cos t − y0 sin t and Y (t) = x0 sin t + y0 cos t.

To simplify the computation of these two previous integrals we do the change of

variables (x0, y0) 7−→ (r, s) given by

(2.2) x0 = r cos s, y0 = −r sin s,

where r > 0 and s ∈ [0, 2π). In order to estimate the number of the periodic solutions

of system (1.1), according with Theorem 5.1 we must study the solutions of the system

F1(x0, y0) = F2(x0, y0) = 0.

From the change (2.2) and the expressions (2.1) a monomial xiyj which appears

in P (x, y, z) and Q(x, y, z) becomes (−1)jri+j cosi(t− s) sinj(t− s). Hence we obtain

the following expressions

F1(r, s) =

∫ 2π

0

cos t

n
∑

i+j=0

(−1)jai,j,0 ri+j cosi(t − s) sinj(t − s)dt +

∫ 2π

0

sin t

n
∑

i+j=0

(−1)jbi,j,0 ri+j cosi(t − s) sinj(t − s)dt,
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F2(r, s) = π −

∫ 2π

0

sin t

n
∑

i+j=0

(−1)jai,j,0 ri+j cosi(t − s) sinj(t − s)dt +

∫ 2π

0

cos t
n
∑

i+j=0

(−1)jbi,j,0 ri+j cosi(t − s) sinj(t − s)dt.

Taking u = t − s the functions F1 and F2 can be written as

(2.3)
F1(r, s) = cos s(Ia1 + Ib2) − sin s(Ia2 − Ib1),

F2(r, s) = − sin s(Ia1 + Ib2) − cos s(Ia2 − Ib1) + π,

where

Ia1 = Ia1(r) =

n
∑

i+j=0

(−1)jri+jai,j,0

∫ 2π

0

cosi+1 u sinj u du,

Ia2 = Ia2(r) =
n
∑

i+j=0

(−1)jri+jai,j,0

∫ 2π

0

cosi u sinj+1 u du,

Ib1 = Ib1(r) =

n
∑

i+j=0

(−1)jri+jbi,j,0

∫ 2π

0

cosi+1 u sinj u du,

Ib2 = Ib2(r) =
n
∑

i+j=0

(−1)jri+jbi,j,0

∫ 2π

0

cosi u sinj+1 u du.

Set

I1(r) = Ia1(r) + Ib2(r), I2(r) = Ia2(r) − Ib1(r).

Using symmetries the integral
∫ 2π

0
cosp u sinq u du is not zero if and only if p and

q are even. So I1(r) and I2(r) are polynomials in r having all their monomials of odd

degree. Moreover if n is even the degree in the variable r of the polynomials I1(r)

and I2(r) is n− 1, and if n is odd that degree is n. So their degree always is odd and

equal to 2[(n− 1)/2] + 1. Of course we are playing with the fact that the coefficients

of those polynomials can be chosen arbitrarily.

It is clear that the system F1 = F2 = 0 given by (2.3) is equivalent to the system

(2.4)

(

I1(r)

I2(r)

)

=

(

cos s − sin s

− sin s − cos s

)(

0

−π

)

= π

(

sin s

cos s

)

.

We claim that system (2.4) has at most 2[(n − 1)/2] + 1 solutions providing

different limit cycles of system (1.1), and that this number is reached.

For proving the claim first we observe that system (2.4) is equivalent to the system

(2.5) I2
1 (r) + I2

2 (r) = π2,
I1(r)

I2(r)
= tan s.

Since the first equation of system (2.5) is a polynomial equation in the variable r2

of degree 2[(n−1)/2]+1 playing with the fact that the coefficients of the polynomials

I1(r) and I2(r) are arbitrary, it follows that it has at most 2[(n − 1)/2] + 1 zeros in
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(0,∞), and we can choose the coefficients ai,j,0 and bi,j,0 such that it has exactly m

simple zeros ri > 0 with m ∈ {1, 2, . . . , 2[(n − 1)/2] + 1}.

There are two solutions si and si + π in [0, 2π) of the second equation for each

zero ri > 0 of the first equation of (2.5). But these two solutions only provides two

different initial conditions of the same periodic orbit. In short applying Theorem 5.1

we would get at most 2[(n − 1)/2] + 1 limit cycles for system (1.1) if the jacobian

det
(

∂(F1,F2)/∂(r, s)
)

6= 0 at (r, s) = (ri, si).

Playing with the coefficients ai,j,0 and bi,j,0 we get

(2.6) I1(ri)I
′

1(ri) + I2(ri)I
′

2(ri) 6= 0,

for every solution (ri, si) of system (2.5). Hence it is easy to check that
∣

∣

∣

∣

∂(F1(r, s),F2(r, s))

∂(r, s)

∣

∣

∣

∣

(r,s)=(ri,si)

= I1(ri)I
′

1(ri) + I2(ri)I
′

2(ri) 6= 0.

In short the claim is proved and consequently Theorem 1.1.

3. PROOF OF THEOREM 1.2

System (1.2) restricted to z = 0 and with ε = 0 becomes the homogeneous

polynomial differential system

ẋ = −y(3x2 + y2), ẏ = x(x2 − y2),

of degree 3 that has the non–rational first integral

H(x, y) = (x2 + y2) exp

(

−
2x2

x2 + y2

)

,

as it is easy to check.

Doing the transformation (x, y, z) → (r cos θ, r sin θ, z) system (1.2) becomes

ṙ = −r3 sin 2θ + ε
(

cos θP + sin θQ
)

,

θ̇ = r2 + ε
1

r

(

cos θQ − sin θP
)

,

ż = zr2 + εR,

where P = P (r cos θ, r sin θ, z), Q = Q(r cos θ, r sin θ, z) and R = R(r cos θ, r sin θ, z).

This system is equivalent to

(3.1)

dr

dθ
= −r sin 2θ + εF1 + O(ε2),

dz

dθ
= z + εG1 + O(ε2),

where

F1 = F1(r cos θ, r sin θ, z) =
1

2r2

(

(cos θ + cos 3θ)P + (3 sin θ + sin 3θ)Q
)

,

G1 = G1(r cos θ, r sin θ, z) =
1

r3

(

rR − z(cos θQ − sin θP )
)

.
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System (3.1)|ε=0 restricted in z = 0 is a global center around the origin with

periodic orbits

(3.2) r = r0e
− sin2 θ, z = 0,

satisfying r(0, r0) = r0 and all of them with period 2π. The fundamental solution

matrix M(θ) of the variational equation of the unperturbed system (3.1)ε=0 with

respect to the periodic orbits (3.2) satisfying that M(0) is the identity matrix is

M(θ) =

(

e− sin2 θ 0

0 eθ

)

.

We remark that it is independent of the initial condition (r0, 0). Moreover an easy

computation shows that

M−1(0) − M−1(2π) =

(

0 0

0 1 − e−2π

)

.

Hence from Theorem 5.1 we must estimate the zeros of the function

F(r0) = 2

∫ 2π

0

esin2 θF1(r0e
− sin2 θ cos θ, r0e

− sin2 θ sin θ, 0)dθ.

Writing

P (x, y, 0) =
n
∑

l=0

Pl(x, y), Q(x, y, 0) =
n
∑

l=0

Ql(x, y),

where Pl is a homogeneous polynomial of degree l. Then

F(r0) =

n
∑

k=0

rk−2
0 Ik,

where

Ik =

∫ 2π

0

e(3−k) sin2 θ [(cos θ + cos 3θ)Pk(cos θ, sin θ)

+(3 sin θ + sin 3θ)Qk(cos θ, sin θ)] dθ,

is a function of the coefficients of Pk and Qk.

By symmetry the integral Ik ≡ 0 if k is even. So, we have

(3.3) F(r0) =
1

r0

[(n−1)/2]
∑

v=0

r2v
0 I2v+1.

This implies that F(r0) can have at most [(n − 1)/2] positive real roots. Conse-

quently, using Theorem 5.1 we can get at most [(n−1)/2] limit cycles of system (1.2)

bifurcating from the periodic orbits of system (1.2) with ǫ = 0 in the plane z = 0.
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We shall prove that the function F(r0) can have m ∈ {1, 2, . . . , [(n − 1)/2]}

positive real zeros for suitable choice of the coefficients of P and Q with the maximum

degree n. For example set

P (x, y, z) = 0, Q(x, y, z) =

[(n−1)/2]
∑

v=0

b2v+1y
2v+1.

Now the function F(r0) in (3.3) has the I2v+1 as follows

I2v+1 = b2v+1

∫ 2π

0

e2(1−v) sin2 θ(3 sin θ + sin 3θ) sin2v+1 θdθ = b2v+1K2v+1.

With the help of Mathematica we get that

K2v+1 = J2v+1/
(

22vΓ(2 + v)Γ(3 + v)π−1
)

,

where

J2v+1 = 3(2 + v)Γ(3 + 2v)M

[

3

2
+ v, 2 + v, 2 − 2v

]

−Γ(4 + 2v)M

[

5

2
+ v, 3 + v, 2 − 2v

]

,

and Γ is the Gamma function, and M is the Kummer confluent hypergeometric func-

tion defined by

M [a, b, z] =

∞
∑

k=0

Γ(a + k)Γ(b)

Γ(a)Γ(b + k)

zk

k!
.

Using the properties of the Gamma function and the integral representation of

the Kummer function, i.e.,

M [a, b, z] =
Γ(b)

Γ(b − a)Γ(a)

∫ 1

0

ezttz−1(1 − t)b−a−1dt,

we can prove that

J2v+1 =
Γ(3 + 2v)Γ(2 + v)

Γ(1
2
)Γ(3

2
+ v)

(2 + v)

∫ 1

0

e(2−2v)tt1−2v(1 − t)−
1

2 dt.

This means that I2v+1 is always the product of b2v+1 with a positive number depending

on v. Hence in the polynomial (3.3) we always can choose the coefficients b2v+1

conveniently in order that the polynomial can have 1, 2, . . . , [(n− 1)/2] positive roots

(by the Descartes rule). This completes the proof of Theorem 1.2.

4. PROOF OF THEOREM 1.3

System (1.3) under the transformation (x, y, z) → (r cos θ, r sin θ, z) becomes

ṙ = ε
(

cos θP + sin θQ
)

,

θ̇ = r2 + ε
1

r

(

cos θQ − sin θP
)

,

ż = zr2 + εR,
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where P = P (r cos θ, r sin θ, z), Q = Q(r cos θ, r sin θ, z) and R = R(r cos θ, r sin θ, z).

This system is equivalent to

(4.1)

dr

dθ
= ε

1

r2
(cos θP + sin θQ) + O(ε2),

dz

dθ
= z + ε

1

r3

(

rR − z(cos θQ − sin θP )
)

+ O(ε2).

System (4.1)|ε=0 restricted in z = 0 is a global center around the origin with

periodic orbits

(4.2) r = r0, z = 0,

satisfying r(0, r0) = r0 and all of them with period 2π. The fundamental solution

matrix M(θ) of the variational equation of the unperturbed system (4.1)ε=0 with

respect to the periodic orbits (4.2) satisfying that M(0) is the identity matrix is

M(θ) =

(

1 0

0 eθ

)

.

By the fundamental solution matrix and Theorem 5.1, to prove Theorem 1.3 it is

sufficient to estimate the zeros of the function

F(r0) =
1

r2
0

∫ 2π

0

cos θP (r0 cos θ, r0 sin θ, 0) + sin θQ(r0 cos θ, r0 sin θ, 0)dθ.

Writing

P (x, y, 0) =
n
∑

l=0

Pl(x, y), Q(x, y, 0) =
n
∑

l=0

Ql(x, y),

where Pl is a homogeneous polynomial of degree l. Then

(4.3) F(r0) =
1

r0

[(n−1)/2]
∑

v=0

r2v
0 I2v+1

where

Ik =

∫ 2π

0

cos θPk(cos θ, sin θ) + sin θQk(cos θ, sin θ)dθ,

and we have used the fact that the integral Ik ≡ 0 if k is even. Hence F(r0) has

at most [(n − 1)/2] positive roots. Consequently, system (1.3) can have at most

[(n − 1)/2] limit cycles bifurcating from the periodic orbits of the z = 0 plane when

ǫ = 0.

By choosing

P (x, y, z) =

[(n−1)/2]
∑

v=0

a2v+1x
2v+1, Q(x, y, z) ≡ 0,

we get that

I2v+1 = a2v+1

2π
∫

0

(cos θ)2v+2dθ.
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This implies that for convenient choice of a2v+1 system (1.3) with the given P and Q

can have m ∈ {1, 2, . . . , [(n − 1)/2]} limit cycles. This proves the theorem.

5. APPENDIX

In this appendix we present the basic result from the averaging theory that we

shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from the

differential system

(5.1) x′(t) = F0(x, t) + εF1(x, t) + ε2F2(x, t, ε),

with ε = 0 to ε 6= 0 sufficiently small. The functions F0, F1 : Ω × R → R
n and

F2 : Ω × R × (−ε0, ε0) → R
n are C2 functions, T–periodic in the variable t, and Ω is

an open subset of R
n. One of the main assumptions is that the unperturbed system

(5.2) x′(t) = F0(x, t),

has a submanifold of periodic solutions. A solution of this problem is given using the

averaging theory. For a general introduction to the averaging theory see the books of

Sanders and Verhulst [11], and of Verhulst [12].

Let x(t, z) be the solution of the unperturbed system (5.2) such that x(0, z) = z.

We write the linearization of the unperturbed system along the periodic solution

x(t, z) as

(5.3) y′ = D
x
F0(x(t, z), t)y.

In what follows we denote by M
z
(t) some fundamental matrix of the linear differential

system (5.3), and by ξ : R
k × R

n−k → R
k the projection of R

n onto its first k

coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 5.1. Let V ⊂ R
k be open and bounded, and let β0 : Cl(V ) → R

n−k be a C2

function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the solution

x(t, zα) of (5.2) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix M
zα

(t) of (5.3) such that the

matrix M−1
zα

(0)−M−1
zα

(T ) has in the right up corner the k× (n−k) zero matrix,

and in the right down corner a (n − k) × (n − k) matrix ∆α with det(∆α) 6= 0.

We consider the function F : Cl(V ) → R
k

(5.4) F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(x(t, zα), t)dt

)

.

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) 6= 0, then there is a T–

periodic solution ϕ(t, ε) of system (5.1) such that ϕ(0, ε) → za as ε → 0.
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Theorem 5.1 goes back to Malkin [9] and Roseau [10], for a shorter proof see [3].
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