Dynamic Systems and Applications 17 (2008) 637-652

TRIPLE POSITIVE SOLUTIONS OF THREE-POINT BOUNDARY
VALUE PROBLEM FOR SECOND-ORDER IMPULSIVE
DIFFERENTIAL EQUATIONS ON THE HALF-LINE

YU TIAN AND WEIGAO GE

School of Science, Beijing University of Posts and Telecommunications
Beijing 100876, P.R. China

Department of Applied Mathematics, Beijing Institute of Technology
Beijing 100081, P.R. China

ABSTRACT. In this paper we consider the existence of triple positive solutions for second-order
three-point boundary value problem with impulse effects on the half-line. Main results are besed
on fixed point theorem on cone. In particular, the nonlinear term is involved with the first-order

derivative.
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1. INTRODUCTION

This paper is concerned with the existence of positive solutions to three-point

impulsive boundary value problem (IBVP for short) on the half-line

(Dp(p(8)2' (1)) +q(t) f(t, x(t), 2'(2) =0, t#ti,t €,
(1.1) Az(t;) = Li(z(t:), —AD(p(t:)2'(t:) = Jix(t)), i=1,2,....m,
P(0) = ax(e),  lm_p(0(1) =0,

here J = [0,400), ®pz := |22z, p > 1,0 =tg < t; < -+ < &, < 00, a > 0,
0<¢é< o0, aé <1, p, I;, J;, q, f satisty the following assumptions

(H1) p € C[0,+00) N CH(0, +00), p(t) > 0 is increasing on [0, +00), [;* pidt < 00;
(H2) I;, J; € C(J, J), Az(t;) = z(t}) — z(t; ), where x(t]") (respectively z(t;)) de-
note the right limit (respectively left limit ) of z(¢) at t = t;, AD,(p(t;)2'(t;)) =
D, (p(tH)' (t1)) — @, (p(t; )2/ (t;)), where 2/ (t]) (respectively 2/(t;)) denote the right
limit (respectively left limit ) of 2/(¢) at t = t;;

(H3) g € LY(J,J), f: J x J x J — J is an L'-Carathédory function, that is,

(i) t — f(t,x,y) is measurable for any (x,y) € J X J,

Supported by grant 10671012 from National Natural Sciences Foundation of P.R. China and grant
20050007011 from Foundation for PhD Specialities of Educational Department of P.R. China,

Tianyuan Fund of Mathematics in China (10726038).
Received October 18, 2007 1056-2176 $15.00 @Dynamic Publishers, Inc.



638 Y. TTAN AND W. GE

(ii) (x,y) — f(t,z,y) is continuous for a.e. t € J,
(iii) for each ry,79 > 0, there exists I, ,, such that ¢ - ., ,, € L'(J) and

|f(t, (L +t)x,y)| <l r(t) for |z| <y, |yl <79, ae. t € J.

In recent years, a great deal of work has been done in the study of the boundary
value problems with impulses, by which a number of physical, biological, medical
phenomena are described, please refer to [6], [7], [12], [13], [14], [15], [16]. On the
other hand, boundary value problems on the half-line occur naturally in the study of
radically symmetric solutions of nonlinear elliptic equations, see [5], [11], and various
physical phenomena [3], [10], and there are many results, see [1], [2], [8], [9], [17], [19],
20].

As far as we know, there are few papers to study the impulsive boundary value
problems on the half-line. In [18], by using Leray-Schauder theorem and fixed point
index theory, Yan established the existence of positive solutions of impulsive boundary

value problem on the half-line

(LSO @) + fta) =0, t#t,
Axliy, = Ix(x,), k=1,2,...,m,
\e(0) — B lim p(t)s' (1) = o,

ya(00) + 6 lim p(t)a'(t) = b,

x(t) is bounded on [0, +00),

\

2(t+s), t>t+s>0,
O(t+s), —oco<t+s<O,
C([0,+00), R) N C*(0,+00), p(t) > 0, A, 3,7, > 0 with Sy + AJ + Ay > 0,a,b > 0.

But, there are no papers to study multi-point impulsive boundary value problems on

where & € BM;,((—00,0], R), z:(s) = and p €

the half-line. This paper is to fill this gap. We first transform impulsive boundary
value problem into the integral equation. By applying fixed point theorem [4], we
get the existence of at least three positive solutions. To apply fixed point theorem
[4], it is very important to accomplish three suitable functionals «, 3, ¢ satisfying the

assumptions of fixed point theorem [4] (see Lemma 3.1, Lemma 3.2).

This paper is organized as follows: In Section 2, we present related lemmas.
First we state the fixed point theorem in [4] as basic tool. Then we transform the
solution of IBVP (1.1) into the fixed point of some operator and verify the completely
continuity of the operator. In Section 3, we obtain the main results by defining
suitable functionals and applying the fixed point theorem. Besides, an example is

presented to illustrate our main result.
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2. RELATED LEMMAS

In order to establish the existence of at least three positive solutions for IBVP

(1.1), we introduce some notations.

Definition 2.1. The map v is said to be a nonnegative continuous concave functional

on cone P provided that ¢ : P — [0, 00) is continuous and

Pt + (1 —t)y) > tp(x) + (1 - )Y (y)

for all z,y € P and 0 < ¢t < 1. Similarly, we say the map « is a nonnegative

continuous convex functional on P provided that: « : P — [0, 00) is continuous and
a(tr + (1 —t)y) < ta(z) + (1 - t)a(y)
forall z,y € Pand 0 <t < 1.

Let r > a > 0,L > 0 be constants, ¢ is a nonnegative continuous concave
functional and «, § nonnegative continuous convex functionals on the cone P. Define

convex sets
Pla,r; 8, L) = {y € Pla(y) <r,8(y) < L},
Pla,r;8,L) ={y € Pla(y) <r,A8(y) < L},
Plo,r; 8, L, a) = {y € Pla(y) <r B(y) < L,¢(y) > a},
Pla,r; B, Li,a) = {y € Pla(y) <r,8(y) < L,¥(y) > a}.
The following assumptions about the nonnegative continuous convex functionals
a, B will be used:

(A1) there exists M > 0 such that ||z|| < M max{«a(zx), 5(z)} for all x € P;
(A2) P(a,r; 8,L) # ) for all r > 0, L > 0.

Lemma 2.1 (Bai and Ge [4]). Let E be a Banach space, P C E a cone and
ro >d>b>r > 0,Ly > L > 0. Assume that o, 3 are nonnegative contin-
uous conver functionals satisfying (Al) and (A2), v is a nonnegative continuous
concave functional on P such that ¥(y) < a(y) for all y € P(a,79; 3, Ls), and
T : P(a,ro; 3, Ly) — P(a,79; 3, Lo) is a completely continuous operator. Suppose
(B1) {y € P(av,d; B, La; 10, b)[o(y) > b} # 0,9(Ty) > b fory € P(a, d; B3, La; 1, b);
(B2) a(Ty) <11, 8(Ty) < Ly for ally € P(a,r1; 3, L1);

(B3) (Ty) > b for all y € P(a,ry; 3, La; 1, b) with o(Ty) > d.

Then T has at least three fized points y1,ys and ys in P(o,r9; 3, Lo) with

y1 € P(a,r;8,L1),  ya € {P(a,ry; 6, La; ¥, 0) [1h(y) > b}
and
ys € Pa,m9; 8, La)\(P(cv, 72; 3, Lo; 1, b) U P(av, 13 3, Ly)).
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Let J/ = J\ {tl,tg, e ,tm},
PC(']7 R) = (titiv1)
€ Clti,tin), a(ty) = (), Ja(tf), i=1,2,...,m},

7

PCYJ,R) ={x € PC(J,R) : /|t 1..1)
€ Cltitivr), o' (t;)=2'(t;), F2'(tF), i=1,2,...,m}.
Definition 2.2. A function z(t) € PC'(J, R), (®,(p(t)2'(t))) € L'(J', R) is said to

be a positive solution of impulsive boundary value problem (1.1), if z(¢) > 0, and =

satisfies differential equation

(Pp(p(t)2'(1)) + q(t) f (£, x(t),2'(t)) =0, teS

and impulsive condition

Az(t;) = Li(x(t), —AP(p(t)2'(t:)) = Ji(z(t:), i=1,2,....m,

and the three-point boundary conditions x'(0) = ax(§), tlim p(t)x'(t) = 0.

Lemma 2.2. Assume that g € C(J) with [;° g(s)ds < oo, a;,b; € C(J,R). Then
xz € PCYJ,R), (®,(p(t)2'(t))) € C(J,R) is a solutzon of IBVP

(p(p()2'(1))) +9(t) =0, tF#t,te
(2.1) Ax(t) = ai(t), —AD,(p(t)a'(t) = bi(t), i =1,2,...,m,
#'(0) = ax(§),  lim p(t)a’(t) =0,

if and only if v € PC(J, R) is a solution of the following integral equation

I N A “
x(t)zap(o)@p [ /0 g(s)ds+;bi(t,) + ) at)

E<t;<t

t 1 . 00 | )
+/§ @cbp [/ g(0)do + " bi(t;) | d

ti>s

(2.2)
tel

Proof. If x € PC(J,R), (®,(p(t)2'(t))) € C(J) is a solution of (2.1), integrating
equation in (2.1) from ¢ to oo, one has
— &, (p(t)2'(t)) +/ g(s)ds =y A®,(p(t;)a’ (t:) = 0.
t ti>t

By the second impulsive condition,

b, (p(t)e/ (1)) + / T g()ds + S bilts) =

(2.3) 2'(t) = %@;1 [ /t " gs)ds + Zbi(ti)] .
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Again integrating (2.3) from & to ¢, one has

x(t) — Z Ax(t;) —x(§) = / ch;l [/Oog(e)dﬁ + sz(tz)] ds.

5Sti<t 5 p(S) S tiZS

By the first impulsive condition,

1) s =se+ Y ai(ti>+/tiq>;1 [/Oog(e)dH—FZbi(ti)] ds.

£<t;<t ¢ Ps) s ti>s

The first boundary condition implies that

1 / — 1 -1 > s\)ds . e
(2.5) z(§) = P (0) = ) D, [/0 g(s)ds + ZZ:;b,(t,)] .

Substituting (2.5) into (2.4), = satisfies (2.2).

If x € PC(J,R) is a solution of integral equation (2.2), then it is easy to see
from condition [;~ g(s)ds < oo that x € PC'(J, R), (®,(p(t)2'(t))) € C(J', R) is a
solution of problem (2.1). O

t——+o00 t——+o0 1+t

Now we define the space X = {x € PCYJ,R): lim p(t)'(t) =0, lim 12U < oo}

with the norm ||z|| = max< sup %, sup |2/(t)| p. Evidently, X is a Banach
t€[0,4-00) t€[0,+00)
space.

Choose P C X be a cone defined by
P={zxe X :z(t) >0,2'(t) > 0,t € J,2'(t) is nonincreasing on J'}.

Define the operator T': P — X by

(Ta)(t) = sy [fo°°q<s>f<s,x<s>,x'<s>>ds+i@-(x(ti»] T Y L)

i=1 E<t<t

+ J¢ 595" {ffo q(0) £(0,2(0),2'(0))d0 + J,-(a:(t,-))} ds, teJ

tiZS
Lemma 2.2 means that z(t) € PC'(J, R), (®,(p(t)2'(t))) € L'(J', R) is a solution of
IBVP (1.1) if and only if z is a fixed point of the operator 7.

Lemma 2.3. Suppose that (H1)-(H3) hold. Then T : P — P is completely continu-

ous.

Proof. (1) First we show that the operator T': P — P. By the expression of Tz, it is

clear that (Tx)'(t) > 0 is nonincreasing on .J, and

1 -1 - ! -
(Tx)(t) > ap(o)q)p [/0 Q(S)f(sax(S)ﬁC(8))d8+;Ji(x(ti))]

§ [e.e]
_/0 L@;l [/ q(0)f(0,x(0),2'(0))do + ij(if(tz))] ds

p(s) =
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1
o

a0

1 [/000 q(s)f(s,x(s),2'(s))ds + Z Jz(ﬂf(tz))]

1=1

§ -1 = / (x(t;
- [/0 q(@)f(@,:z(@),x(9))d9+2<]z( (tz))]

_ (2 _ 5) L(p];l [/OOO q(0)f(0,z(0),2'(0))db + Z Ji(z(t;))

>0, te
p(0)

(2) We will show that T : P — P is continuous. For this, let {x,} C P,x € P and
z, — x in X as n — oo. Then there exists an M > 0 such that ||z, < M. By

expression of Tz, we have

[Tz, (t) — Tx(t)|

. [ JRCICRCREITESS Ji<x<ti>>] ‘
(2.6) + Z | Li(xn(t:i) — Li(z(t))]

;! [/OO a(0)f (0,2 (0), 27,(0))d0 + Ji(x"(tm]

—o! [ / 400, 2(0), 2/(0))d0 + 3 Ji(x(ti))] ds.

Since f is an L'-Carathédory function and (H3) holds, we have

(2.7) / ) (5, a(s), 2(5)) — F(s,2(s), 2 (s)]ds < 2 / " () lanaa(s)|ds < o0
and

(2.8) lim f(t,x,(t), 2, (t) = f(t, z(t), 2'(t)).

n—oo

According to Lebesgue’s Dominated Convergence Theorem, we have

o0

(2.9) Tim i q(s)|f (s, 2a(s), 2, (s)) — f(s,2(s),2(s))|ds = 0.
Since [;, J; € C(J, J), we have
(2.10) nh_{lolo Ii(w,(t:) — Li(z(t:) = 0, nh_{Iolo Ji(wn(t:)) — Ji(x(t:i)) = 0.

Using the continuity of ®;*, (2.6) (2.9) (2.10) mean that

Tx,(t) — Tx(t .
lim sup [T (t) z(®)] < lim sup |Tx,(t) — Tx(t)| = 0.
n—00 e 1+t n—0o0 e g
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Similarly, one has

lim sup |(Tz,) (t) — (Tx)'(t)|

3! [/tooq( ) (5, 5(s), 2 (5))ds + 3 it ]

t; >t

= lim sup —
n—oo yey p(t)

—¢! [/tooq(s)f( ds+ZJ

= 0.

So T : P — P is continuous.
(3) We will show that 7" : P — P is relatively compact.

Given a bounded set D C P. Choose M > 0 such that ||z|| < M for all z € D.

Then 0 < 29 < M,0 < 2/(t) < M and

sup 20 < ey [ | s ate 6)ds + 30 hattn)| + X Halto)

+ sup —1|—t /g L<I>1;1 [/SOO q(0)f(6,z(0),2'(6))do + Z Ji(x(t;)) | ds

ti>s

<1 cp;l[ () nrt (s) ds+z max Ji((1+1)7)

z€[0,M

+ max} L((1+t)x)

=

=& 1 | [T
+stlel?mm®p1[/0 q(0)ara(0) d9+z max J;((1+t;)x)

2€(0,M]
< 00,
and
/ 1 > /
sup(T) ()] = sup o, [ / q<s>f<s,x<s>,x<s>>ds+;Ji<x<ti>>]
< p(lo)q);l [/0 q(8) v (s)ds + 2 xrer%(%c/ﬂ Ji((L+1t;)x)
< oQ.

So {T'D(t)} and {(T'D)'(t)} are uniformly bounded. At the same time, the fact

{(T'D)'(t)} is uniformly bounded implies that {T'D(t)} is locally equicontinuous on
any interval of [0, co).
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Now we show that {(7'D)’(¢)} is locally equicontinuous on any interval of [0, co).
For any t > 0, s1,$2 € [0,%],81 < s2 and x € D, then

[(Tz)'(s1) = (Tx)'(s2)]
1 -1 = /
m‘bp (/Sl q(s)f(s,x(s),2'(s))ds + Z Jz@(@)))

1 —1 - / (x(t;
% ( / a(s) f(s,2(s), 2/ ())ds + 3 Jif <tz>>>‘

: ‘pél) ko (/ 20 s + 3 L-(as(t»))
+p(22) ot /OO q(s)f(s,z(s),2'(s))ds + Z Jz(af(t,)))
" </ 20 s + 3 J,-(x(t,-))) ‘ |

Since 55 € C([0,00)), for any € > 0, there exists d; > 0 such that
‘ 1 1 £

(fo g )ds+§Ji((1+ti)g;))

o1 pls)| =

(2.11)

for |s1 — so| < 81, s1,82 € [0,1].

Since @, 1is continuous, for € > 0, there exists d, > 0, such that

(I);l (/OO q(s)f(s,z(s),2'(s))ds + Z Jz(I(tz)))

t;>s1

for

I () f(s,2(5),2/(s))ds + Y J,-(:):(ti))‘ <6,

51<t;<s2

Since f is an L'-Carathédory function, we have for d, > 0, there exists d3 > 0

such that
/ a(5)f(s,2(5),/(s)ds + ¥ il

s1<t;<s2

<52

for ‘81 — 82‘ < 53.
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So
v, ( | st a s+ 3 Ji<x<ti>>)
(2.12) K s
;" ( | st asnas+ 3 Ji<x<ti>>> < e

for ‘81 — 82‘ < 53.

Let § = min{dy,d3}, by (2.11) (2.12)

(T2 (1) — (T2 ()] < & 4 - 222

for |s;—sa| < 0, s1,52 € [0,7]. Since ¢ is arbitrary, {(TD)’(t)} is locally equicontinuous
on any interval of [0, c0).

(4) T : P — P is equiconvergent at oc.

Now for x € D, one has

i 172 = Tr(o0)]

e
t1—>ool+t 0% 1 [/000‘1 /(5))d8+;Ji(x(ti))]
! o N (x(t; s
+ 3 Hal)+ /5 ek [/ o0 F10.4(0)5'0)0 + 3 <tz>>]d
1 -1 / = (e ] — (2(t.
—ap(())q)p [/0 q(s)f(s,z(s),x (S))ds+;Jl( (tz))] &;tm Li(z(t;))
[T | [T a0 56,00, 000+ Y At 4
e pls) s 1 L P AN
_/t s, [/ 4(0)£(0, 2(6) d9+t§>;] ] }
, 1oy 1 [
:tlirilo_1+t/t p(s)q)p [/ a(6)7(6,(6) d9+§J ]

tiZS
lim [L20-Tz() _ g,

1+t

t—o0

If lim = ﬁ@ljl [fsoo q(0)f(0,z(0),2'(6))do + > J,(x(tz))] ds < oo, then
0)

=0
Ifllm ftoo > 5% ! {f""q(e)f(e

s

x(0),2'(0))do + > Jz(x(tl))] ds = 0o, then by L’Hospital

ti>s
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rule and fooo ﬁdt < 00

. 1 > 1 -1 * /
;%1+J m%[1«w@wm@w+;Mwww
. | > / _
— tlggo m(;[)p (/t q(s)f(s,z(s),2'(s))ds + ; Jl(x(tl))> =0.
So, tlim w = (. Similarly,
lim [(T)'(t) — (Tx)'(o0)|

jﬂm@[[«wammwm+2uwwz

ti>t
Therefore, T': P — P is equiconvergent at oco.

From (1)—(4), T': P — P is completely continuous. O

3. THE EXISTENCE OF TRIPLE POSITIVE SOLUTIONS

In order to apply Lemma 2.1, we define three functionals as follows

|z(2)] 1
o\r) = ) = xT
( ) te[ovoo) 1 + t t6[0700) ]. ‘I’ tl te[tl tz}

|z (t)].

Then «, : P — [0,00) are nonnegative continuous convex functionals satisfying
(A1), (A2); ¢ is a nonnegative continuous concave functional.

Lemma 3.1. Forz € P, ¢(z) < a(z).

Proof. For x € P, inf x(t) = x(t;). Then we have

te(t,t2]

—_
+
~
—

|
~
m
=

8
—_
+
~

Lemma 3.2. Forz € P, ¢¥(x) > 1+t )2a(93)

Proof. First we claim that { } has a maximum at the point o € [0, 00). In fact,

T+t
since thm p(t)z'(t) = 0 and p(t) is increasing on [0, 00), we have hm 2'(t) = 0, which

lz@®]
1+t

t
ap P01 _ (o)
t€[0,00) 1+t 1+o0

implies that tlim |z(t)| < 400 and {

1.e.

} has a maximum at the point o € [0, 00),
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Following we will show that ¢ (z) > (pf—il)Qa(x). From z € P, it follows that ¢ (z) =
1+t1 tel[?ft }:c(t) = 1+t . Since z(t) is concave on [t1,to], let A = zH—,
t 2
x(t1)) = = <(1 - )\)( 1) + )\a)
o
t t1(1
> Aa(o) = — p(o) = 1(1+0) (o)
tl +o0 tl +o0 1+o
tl ZL’(O’) . tl
1+t 1+o0 1+t1a(x)'
So (w) = £ > hma(x). 0

For convenience, we denote

P(r)= Z rnax}]((l +t)x), Qr)= Z max J;((1+¢;)x),

i—1 z€[0,r i—1 z€[0,r]

ri—P(r;
M—knsbxnn@gy@mm Ni = i (9, ((0) L) = Q(r))
1=1,2,

e (1)

Theorem 3.3. Suppose that (H1)—(H3) hold. Assume there exist constants
7«227[)(1;1&1)2 >b>r1 >0, Ly>L; >0

such that

K < min{M,, Ny}, P(r;) < i,

Q(r;) < min {cbp(p(O)Li), o, (pl(ol(rma;g(;}),)) } . i=1,2.

Moreover, assume that:

(C1) f(s,(1+ s)x,y) < min{M;, N1} for (s,z,y) € [0,00) x [0,71] x [0, Ly];
(C2) (s, (1+ 5)a,y) > K for (s,2,y) € b 1] x b, 2] x [0, Lo);

(C3) f(s,(1+ s)x,y) < min{Ms, Na} for (s,z,y) € [0,00) X [0,72]x € [0, Lo].
Then problem (1.1) has at least three positive solutions 1, xe, T3 with

(T .
OSZE()STZ, ng;(t)SLza Z:1727
1+t
t
ry < z3(t) < 1y, 0 < a5(t) < Lo, t € ]0,00),

1+t~

l’g(t) 1+ tl)b, l’g(t) < (1 + tl)b,t € [tl,tg].

—~

Proof. We will apply Lemma 2.1 to verify the existence of fixed points of the operator
T. Lemma 2.3 has shown 7" : P — P is completely continuous. Lemma 3.1 has shown

Y(x) < a(x) for x € P. Now we will verify that all the conditions of Lemma 2.1 are
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satisfied. First we show T : P(a,ry; 8, Ly) — P(a,72; 8, La). If x € P(a,ra; 3, Ly),

then 0 < ngft < 19,0 < 2'(t) < Ly. The assumption (C3) implies
_ Tz (2)]
Oé(TI) B te[0,00) 1+t
< ot | [ artsate) s + zmj (et + 3 Attt
=&l 1 | [T
ok T e 20 [/ 100,20 N0 Z e ]
< Ly g EE) L
T o\a ooy 14+t ) p(0)
x®, ! [/0 q(0) £(0,2(0), 2 (0))d0 + Y Ji(a(t:))| + D Lilx(t))
=1 =1
1 1
< (a+max{1,§}> m
x® ! [/OO q(s)ds sup f(s,(1+s)x,y)+ Q(ra) | + P(rs)
0 (s,2,y)€[0,00) X [0,72] X [0,L2]
< T9,
B(Tx) = S |(T)'(1)]
< sup L(I)_l /OO q(s)f(s,z(s),2'(s))ds + i Ji(x(t;))
T iefoe0) P(E) T 0 i=1
< L@‘l /OO q(s)ds sup f(s,(1+s)x,y)+ Q(r2)
— p0)” 0 (s,2,y)€[0,00) x[0,r2] X [0, L]
< L.

Hence T : P(a,72;3,Ly) — P(a,79; 3, Ly). In the same way we can show 7T :
P(a,r; 8, L) — P(a,ry; 3, L), so the condition (B2) is satisfied.

To check the condition (B1) in Lemma 2.1, we choose z((t) = M telJ. It
is easy to see that xo(t) = b(Htl € P(a, b(Htl i B, Lo; 0, b), (o) = b(l%tl > b,
and consequently, {:c € P(a, 1+t1 .3, Lo; 1), ) sp(z) > } £ ().

For z € P(a, 1+t1 1B, Ly;,b), then b < 249 < b<1+t1> e [t,ts],0 < /(1) <

Ly, t € J. Now we Wlll show ¢(T'z) > b. By the condltlon (C2),

W(Tx) = —— inf (T)(t) = ——(Tw)(t)

1+ tq tefta,ta] 1+t

1 IR Y / m
1+t {ap(o)q)p [/0 q(s)f(s,x(s),2'(s))ds + ; Jz(x(t7,>>]
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—/jﬁq’f [/OO (0)£(0, 2(6) d9+ZJ ] }

2
4 t (s,0,)€ltn t]x [, 275 [0, o]

> b
Finally, we Verify that the condition (B3) in Lemma 2.1 holds. For x € P(a, 79; 3, Lo; 9, b)
with a(Tz) > b(Htl , then by the definition ¢ and Lemma 3.2 we have

t1 t1 ‘ b(l +t1)
(1+11)° (1+11)? t1

Therefore, the operator T' has three fixed points z; € P(a,79; 3, Ly), i = 1,2, 3, with
w1 € P(a,r1; 8, L), @3 € {P(a,ry; B, La; 9, b)[00(y) > b}

=b.

(Tz) >

a(Tx) >

and
z3 € P(a,ra; 8, La)\(P(cv, ra; 8, La; 1, b) U P, 715 3, Ly)).
Also (H3) implies

/000 q(s)f(s,x:i(s),2(s))ds < /000 q(8)lry ry(8)ds < 0.

So by Lemma 2.2, problem (1.1) has at least three positive solutions x; € P(a, ry; 3, L),
i=1,2,3 with
nlt) | (1)

0< T4 =T 0<zi(t)< L, i=1,2, r < 11 <y, 0 < a5(t) < Loyt € [0,00),
l’g(t) > (1 + t1>b, Ig(t) ~ (1 + tl)b,t c [tl,tg].
U
Example 3.4. Consider the following impulsive boundary value problem
(3((1+1)%2'(1)) + e f(t,2(t),2'(t) =0, t#1t#2t€][0,00),
(3.1) Az(t;) = Li(x(t;), —APs((1+t)%2' () = Ji(x(ty)), i = 1,2
2/(0) = 2z(3), hm (1 +t)%2/(t) = 0.
Corresponding to (1.1), p = ( )=1+0)%qt)=etti =1t =2,a =2, =1,
I (u) = {5, Ix(u ) = 15, Ji(u ) =15 (15) > L2(u) = 55 (%)
22800 (_) v+ 218 ’ (t,u,v) € [07 OO) X [07 %} X [07 00)7
f(t u,v) = 1+t [(4 = 53505) v = 3 + mmmg0ea) (v +218), (£,u,v) €[0,00) x [5, 5] x [0,00),
(1+t) (v +218), (t,u,v) € [0,00) x [1,00) x [0,00)
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Let r; = é, ro = 100,b = i, L, =10, Ly, = 20, we obtain that
1 1 100 1000
(7’1) o4 1, Q(T’l) 64 % 180’ (7“2) 3 T2, Q(T’2) 18

min {ép(p(O)Ll), P, (%)} = &z, min {(I)p(P(U)Lz), D, (%)} —
400.

So Q(r;) < min {q)p(p(O)Li), o, (%)} =12

min{ My, M} = min{z — g7, 100 — 5515} > 300

min{Ms, N5} = min{1639%0 — 1080 400 — 1990} > 340,

K =12 <36. So K < min{My, Ny}.

It is easy to verify that all the assumptions in Theorem 3.3 are satisfied. So

problem (3.1) has at least three positive solutions.
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