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ABSTRACT. For a class of non-autonomous dynamic systems in the positive cone R
n

+ of R
n we

prove the blow up of all solutions having sufficiently large initial values. To more specialized non-

autonomous systems we present explicit lower and upper bounds for solutions as well as for the time

of their blowing up.
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1. INTRODUCTION

1.1. Problems and results. In this note we will consider dynamic systems

(1.1) ẋ = f(t, x)

(

ẋ =
d

dt
x

)

in the time-space cylinder [0,∞)×R
n
+ over the open positive cone Rn

+ = {x = (xi) ∈

R
n
∣

∣0 < xi for all i = 1, . . . , n}, n ≥ 2. The right-hand sides f = (fi) taken into

account are

(1.2) fi(t, x) = ψi

(

t,

[

bi(t) ·
∏

j 6=i

|xj |
αij − |xi|

γi

])

· gi(t, x).

Under the assumptions of section 2 below concerning the functions fi we will show

the blow up of all solutions having sufficiently large initial values x(0) ∈ R
n
+ (Theo-

rem 2.1).

Note that the requirements of Theorem 2.1 below do not imply that system (1.1)

is quasimonotone (or cooperative) in the classical sense of [13, 3, 12].

In the case of more special right hand sides

(1.3) fi(t, x) =

(

bi(t) ·
∏

j 6=i

|xj|
αij − |xi|

γi

)

· |xi|
ζi,

with the assumptions of section 3 (which ensure the quasimonotonicity of the vector

function f = (fi(t, x)) from (1.3) with respect to x) we will construct lower and

upper bounds for solutions x(t) to (1.1) as well as for the time of their blowing up,
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(Theorem 3.1, Corollary 3.1). Some global results will be presented in Section 4,

(Proposition 4.1 and its Corollaries).

Related autonomous systems

(1.4) ẋ = f(x)

in R
n
+ with right hand sides f = (fi),

(1.5) fi(x) = ψi

(

∏

j 6=i

|xj|
αij − |xi|

γi

)

· gi(x)

have been studied in [7-10]. There we have assumed:

(1) ψi : R → R being continuous, odd, strictly increasing, ψi(0) = 0,

(2) gi : R
n
+ → R

1
+ being continuous, gi(x) ≥ c0 if x ≥ E with constant c0 > 0,

(3) α = (δijγj − αij), detα 6= 0,

(4) αii = 0 < αij , i 6= j, 0 < γi.

Then the global behavior of the solutions x(t) to (1.4), (1.5) is governed by the

geometric properties of the matrix α = (δijγj − αij):

(a) In case α being M-matrix, a monotone family of attracting n-dimensional rect-

angles exists which are contracting to the single point set {E}, E = (1, . . . , 1)T

denoting the unit point in R
n
+. Thus all solutions to (1.4) starting at t = 0 at

some point x0 ∈ R
n
+ exist globally for all t ≥ 0 and have the common limit set

{E}, [10].

(b) Otherwise if there exist points A ∈ R
n
+, δ ∈ R

n
+ fulfilling α · A = −δ (thus α

being not an M-matrix), then the unique stationary point E of (1.5) is unstable,

and a monotone family of attracting cones above E exists which are contracting

to ∞. Therefore all solutions of (1.4), (1.5) starting about E in R
n
+ blow up in

finite or infinite time, [9].

1.2. Applications. By the well known comparison theorems [5, 13], our results be-

low concerning the system (1.1), (1.2) with f(t, x) being quasi-monotone increasing in

x ∈ Rn
+ apply to suitable solutions u(t, ·) : Ω → R

n
+ of weakly coupled quasi-monotone

parabolic systems in a smoothly bounded domain Ω ⊂ R
m, m ≥ 1, z = (z1, . . . , zm)

denoting the spatial variable in u = u(t, z):

(1.6)
∂

∂t
ui = Fi(t, u, uiz, uizz) , (t, z) ∈ (0, T ) × Ω,

where

(1.7) Fi(t, x, 0, 0) ≡ fi(t, x), fi from (1.2)

for all i = 1, . . . , n, with Dirichlet- or Neumann boundary conditions on (0, T )× ∂Ω,

[5, 13].
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The system (1.1), (1.2) is modelling a society of n members which are cooperative

in a generalized sense: The ith member has the prosperity function xi(t) > 0. The

exponent αij measures the support given from member i to member j, the exponent

γi expresses the self-restriction of member i, while the functions bi, ψi, gi specify the

increase of xi(t).

Similarly the parabolic system (1.6), (1.7) with Neumann boundary condition

would describe some cooperative society with spatial prosperity diffusion in a domain

Ω, where the flux of the prosperity functions ui(t, z) across the boundary (0, T )× ∂Ω

is given. On the other side, with Dirichlet boundary condition to (1.6), we would

model a cooperative society with spatial prosperity diffusion in a domain Ω having a

closed boundary on which the values of the prosperity functions are prescribed, c.p.

[10] for the autonomous case.

Note: Aside from the short remarks above, here we will restrict us to ordinary

differential equations of the general shape (1.1), (1.2). For a guidance to the rapidly

evolving theory of nonlinear parabolic problems, the reader should consult the recent

book [15] and the many citations there.

2. BLOW UP IN CASE OF LARGE INITIAL VALUES

By any point a = (ai) ∈ R
n
+ we define the closed cone

Qa = {x ∈ R
n | a ≤ x},

a being its lowest point. We denote the n− 1-dimensional faces of Qa by

Qa,i = {x ∈ Qa | xi = ai}, i = 1, . . . , n.

Here and below we use the partial order of R
n explained by x ≤ y ⇔ xi ≤ yi,

x < y ⇔ xi < yi for all i = 1, . . . , n, and we also will write x ≤ c or x ∈ [c, C]

if xi ≤ c ∈ R or c ≤ xi ≤ C, respectively, holds for all i = 1, . . . , n. For any two

points a, b ∈ R
n, a < b, by [a, b] we will denote the n-dimensional closed interval

[a, b] = {x ∈ R
n | a ≤ x ≤ b}.

Proposition 2.1. Assume the continuous map f = (fi) : [0, T ) × R
n
+ −→ R

n obeys

the following direction condition for its restriction fi(t, ·)|Qa,i
to the face Qa,i:

(2.1) fi(t, ·)|Qa,i
> 0 for all i = 1, . . . , n and all t ∈ [0, T ).

Then the closed cone Qa is flow invariant for the differential equation

(2.2) ẋ = f(t, x)

(

ẋ =
d

dt
x

)

,

i.e. each solution x(t) of (2.2) starting at any point x(0) ∈ Qa will remain in Qa for

all t of its right maximal interval of existence in [0, T ).
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Note: Since (2.1) excludes fi(t, x) = 0 for any t ∈ [0, T ), x ∈ Qa,i, flow invariance

of Qa does not require any uniqueness condition for (2.2).

Proof. By contradiction: Let x(t) for t ∈ [0, t1] denote a solution of (2.2) starting at

x(0) ∈ Qa, but reaching x(t1) 6∈ Qa. Consequently there exists

t∗ = sup{t ∈ [0, t1] | x(t) ∈ Qa} < t1,

and we conclude x(t∗) ∈ ∂Qa =
n
⋃

i=1

Qa,i because of the continuity of x(t). Con-

sider the set of indices J = {i | xi(t
∗) = ai} 6= ∅ and its complementary set

J ′ = {1, 2, . . . , n} \ J . From (2.1) we see 0 < ǫ1 = min
i∈J

{fi(t
∗, x(t∗))}, and in ad-

dition 0 < ǫ2 = min
j∈J ′

{xj(t
∗)−aj} because of x(t∗) ∈ ∂Qa ⊂ Qa. The solution x(t) and

f(t, x(t)) being continuous we see that there exists δ ∈ (0, t1 − t∗) such that

(a) min
i∈J

{fi(t, x(t))} ≥ ǫ1
2
, and

(b) min
j∈J ′

{xj(t) − aj} ≥ ǫ2
2

hold for all t ∈ [t∗, t∗ + δ]. But then from (b) and the consequence of (a), namely

xi(t) − ai =

∫ t

t∗
fi(τ, x(τ))dτ > 0

for all t ∈ (t∗, t∗ + δ] and all i ∈ J we find x(t) ∈ Qa for t ∈ [t∗, t∗ + δ] in contradiction

to the definition of t∗.

We consider the initial value problem

(2.3) ẋ = f(t, x) , x(0) ∈ R
n
+

with the vector function f(t, x) = (fi),

(2.4) fi(t, x) = ψi

(

t,

[

bi(t) ·
∏

j 6=i

|xj |
αij − |xi|

γi

])

· gi(t, x).

For all t ≥ 0 and i = 1, . . . , n we require:

(2.5) ψi : [0,∞) × R → R being continuous in (t, r) ∈ [0,∞) × R,

odd, strictly monotone increasing and continuously differentiable with respect to its

second argument r, ψi(t, 0) ≡ 0, cψ ≤ ∂
∂r
ψi(t, r) ≤ Cψ for all t ≥ 0, r ∈ R with

constants cψ, Cψ, 0 < cψ < Cψ.

(2.6) bi : [0,∞) → R
1
+ continuously differentiable,

cb ≤ bi ≤ Cb, cḃ ≤ ḃi(t) ≤ Cḃ with constants cb, Cb, cḃ ∈ R, Cḃ and 0 < cb < Cb,

cḃ < Cḃ.

(2.7) gi : [0,∞) × R
n
+ → R

1
+ continuous, fulfilling

gi(t, x) ≥ cg for all x ≥ ǫ∗ > 0 with some constants ǫ∗, cg > 0.

(2.8) constants αii = 0 < αij , i 6= j, 0 < γi,
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the matrix α = (δijγj − αij) having the determinant detα 6= 0 (δij denoting Kro-

necker’s index δii = 1, δij = 0 for i 6= j).

(2.9) There exist some vectors A = (Ai) ∈ R
n
+, δ = (δi) ∈ R

n
+ fulfilling α·A = −δ.

Note: Because of (2.9), α is not M−matrix, i.e. its inverse matrix α−1 = (βij)

being not positive [1].

Proposition 2.2. Assume (2.3)–(2.9). Then (1) in R
n
+ for all t ≥ 0, the vector

function f(t, x) = (fi) has the unique critical point ξ = (ξi(t)) ∈ R
n
+,

(2.10) ξi(t) =

n
∏

j=1

b
βij

j (t), where (βij) = α−1,

cξ ≤ ξi(t) ≤ Cξ, cξ̇ ≤ ξ̇i ≤ Cξ̇ with constants cξ ∈ (0, 1] and Cξ > cξ, cξ̇ ∈ R, Cξ̇ > cξ̇.

(2) Written in terms of the variables yi = xi · ξ
−1
i (t), the initial value problem

(2.3), (2.4) reads

(2.11) ẏ = F (t, y) , y(0) = (xi(0) · ξ−1
i (0))

with the vector function F (t, y) = (Fi),

Fi(t, y) = F ∗
i (t, y) ·Gi(t, y) − ξ̇i(t) · ξ

−1
i (t) · yi , where(2.12)

F ∗
i (t, y) = ψi

(

t, ξ
γi

i (t)

[

∏

j 6=i

|yj|
αij − |yi|

γi

])

,

Gi(t, y) = gi(t, (yi · ξi(t))) · ξ
−1
i (t) for all i = 1, . . . , n.

Proof: (1) Because of (2.5), (2.6) the equation f(t, x) = 0 holds with x ∈ R
n
+ if and

only if we have xγi

i = bi(t) ·
∏

j 6=i x
αij

j or, equivalently, xi = ξi(t) from (2.10), where

the bounds have to be fixed in dependence on the bounds for bi(t), ḃi(t) in (2.6).

(2) Recalling our assumption (2.6) on bi(t) and writing xi = yi · ξi(t) in (2.3),

(2.4) we get the system (2.11), (2.12).

Remark 2.1. From (2.5), (2.6), (2.10) we see that the functions F ∗
i (t, y) in (2.12)

have continuous gradients with respect to y ∈ R
n
+ which are uniformly bounded on

[0,∞) ×K for each compact subset K ⊂ R
n
+, i.e. for each such K there exists some

constant CF ∗,K with

(2.13) |∇yF
∗
i (t, y)| ≤ CF ∗,K

for all y ∈ K, t ≥ 0, i = 1, . . . , n.

Remark 2.2. Because of our requirement (2.8), in R
n
+ the system (2.11), (2.12) has

the unique critical point y = E = (1, . . . , 1)T for all t ≥ 0. Evidently the inequalities

y > E and (xi) ≡ (yi · ξi(t)) > (ξi) imply each other for any y ∈ R
n
+.
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Remark 2.3. Writing (2.3), (2.4) on [0,∞)× R
n
+ in terms of variables zi = x

1
µ

i with

any µ > 0, we get an equivalent system now having the new exponents µ · αij , µ · γi

in place of αij, γi (and, of course, with analogous new constants in the estimates for

bi, ξi). The requirements (2.8), (2.9) remain valid for the new exponents, (2.9) with

µ · δi instead of δi. Thus without any restriction of the generality, below in order to

simplify our estimates, we always will suppose

(2.14) 1 < γi, 1 ≤ Ai, 1 ≤ δi for all i = 1, . . . , n, and ǫ∗ ≤ cξ.

Proposition 2.3. Assume (2.3)–(2.9), (2.14), and s ≫ 1, as = (as,i) = (sAi) ∈ R
n
+,

Qs = {y ∈ R
n
∣

∣as ≤ y}. Then

(1) there exists s∗ > 1 and some constant cF > 0 such that for all s ≥ s∗ we have

(2.15) cF ≤ Fi(t, y) for all y ∈ Qs,i, t ≥ 0, i = 1, . . . , n,

(2) the cone Qs being flow invariant with respect to (2.11), (2.12) for all s ≥ s∗.

Proof. (1) In (2.12) the vector function

F ∗ = (F ∗
i (t, y)) , F ∗

i (t, y) = ψi

(

t, ξ
γi

i (t) ·

[

∏

j 6=i

|yj|
αij − |yi|

γi

])

(with prescribed function ξi(t) ≥ cξ > 0) being quasimonotone increasing in y because

of (2.5) and αij ≥ 0, from (2.5), (2.8)–(2.10) we conclude

(2.16) F ∗
i (t, y) ≥ F ∗

i (t, as) ≥ cψ · cγi

ξ · sγi·Ai = cs

for all y ∈ Qs,i, t ≥ 0 if s ≥ 2.

Recalling (2.7), (2.10), from (2.12), (2.16) we see

(2.17) Fi(t, y) ≥ {cg · cψ · cγi

ξ · s(γi−1)Ai − Cξ̇} · s
Ai · C−1

ξ

for all y ∈ Qs,i, t ≥ 0, i = 1, . . . , n, if s ≥ 2. Thus an obvious calculation shows that

(2.15) certainly holds true for all s ≥ s∗, if we take

(2.18) s∗ = max
{

([

Cξ̇ + 1
]

· c−1
)

1
(cγ−1)·cA , (cFCξ)

1
cA , 2

}

,

where

1 < cγ = min
i
{γi}, Cγ = max

i
{γi}, 1 ≤ cA = min

i
{Ai},(2.19)

c = cg · cψ · c
Cγ

ξ .(2.20)

The inequalities hold because of our assumption (2.14).

(2) From (2.15) the flow invariance of Qs with respect to (2.11), (2.12) results by

Proposition 2.1 for all s ≥ s∗.

The following subsets of R
n
+ have evident geometric relations to the cones

Qs = {y ∈ R
n | as ≤ y} where as = (sAi), s > 1.
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For ǫ = (ǫi) ∈ R
n
+, ǫi < sAi − 1, we will consider the ǫ-neighbourhood of Qs:

Qǫ
s = {y ∈ R

n
+ | sAi − ǫi ≤ yi for all i = 1, . . . , n},

ǫ-retract of Qs:

Q−ǫ
s = {y ∈ R

n
+ | sAi + ǫi ≤ yi for all i = 1, . . . , n},

η-cone near Qs with any η = (ηi) ∈ R
n, |ηi| < sAi − 1:

Qη
s = {y ∈ R

n
+ | sAi − ηi ≤ yi for all i = 1, . . . , n},

and the ǫ-neighbourhood of the ith n− 1-dimensional face Qs,i of Qs:

Qǫ
s,i = {y ∈ Qǫ

s | yi ≤ sAi + ǫi}.

Remark 2.4. For all s > 1, ǫ ∈ R
n
+ with ǫi < sAi −1 there exists σ > s and τ ∈ (1, s)

such that

(a) Q−ǫ
s ⊂ Qσ ⊂ Qs and

(b) Qσ ⊂ Qǫ
s ⊂ Qτ hold.

Corollary 2.1. Let us assume (2.4)–(2.9), (2.14).

(1) Then there exist s∗∗ ≥ s∗, δ∗ > 0 such that

(2.21) o <
cF

2
≤ Fi(t, y)

holds true for all y ∈ Qǫ
s,i, 0 < ǫ = (ǫi) ≤ δ∗, s ≥ s∗∗, t ≥ 0, i = 1, . . . , n with

cF from (2.15).

(2) Thus the cone Qη
s is flow invariant with respect to (2.11), (2.12) for all η =

(ηi) ∈ R
n, |ηj| ≤ δ∗, t ≥ 0.

Proof: (1) We take 0 < ǫ = (ǫi) ≤ δ∗ with some δ∗ > 0. In order to find a positive

lower bound for the restriction Fi(t, ·)|Qǫ
s,i

of Fi(t, ·), recalling (2.16) we project each

point y ∈ Qǫ
s,i on the point y(i) ≤ y, y(i) having the coordinates.

y(i)i = yi , y(i)j = as,j − ǫj for j 6= i,

thus y(i) being the lowest point of the n − 1-dimensional cone of all points z ∈ Qǫ
s,i

which belong to the hyperplane zi = yi. Since y(i) differs from as − ǫ in the ith

coordinate only, we get |y(i) − (as − ǫ)| ≤ 2ǫi.

The quasimonotonicity of the first factor F ∗(t, ·) = (F ∗
i (t, ·)) of F (t, ·) from (2.12)

gives F ∗
i (t, y(i)) ≤ F ∗

i (t, y) for all i and all t ≥ 0. Recalling Remark 2.1 we take

δ∗ ∈ (0, 1) so small that

|F ∗
i (t, as + u) − F ∗

i (t, as + v)| ≤
cs

4
with cs from (2.16)
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for all u, v ∈ R
n, |ui|, |vi| ≤ 2δ∗, all t ≥ 0, and i = 1, . . . , n. Then from (2.16) we see

cs

2
≤ F ∗

i (t, as) − |F ∗
i (t, as) − F ∗

i (t, as − ǫ)|(2.22)

− |F ∗
i (t, as − ǫ) − Fi(t, y(i))| ≤ F ∗

i (t, y(i)) ≤ F ∗
i (t, y).

Recalling our bounds in (2.7), (2.10), (2.14), (2.19) and noting yi ∈ [sAi − ǫi, s
Ai + ǫi]

for y ∈ Qǫ
s,i, from (2.12), (2.22) we get

(2.23)
1

2
sAi · C−1

ξ · {cgcψc
Cγ

ξ · s(cγ−1)cA − 2Cξ̇} ≤ Fi(t, y).

Finally from (2.23), by a short calculation we find the sufficient condition

(2.24) s ≥ s∗ = max
{

([4Cξ̇ + 1]c−1)
1

(cγ−1)cA , (cFCξ)
1

cA , 2
}

for the direction condition (2.21) being valid.

(2) For all η ∈ R
n, (|ηi| ≤ ǫ, each n − 1-dimensional face (Qη

s)i of the cone Qη
s

near Qs is contained in the ǫ-neighbourhood (Qs,i)
ǫ of Qs,i. Therefore with s∗∗, δ∗

from (1) and any ǫ, 0 < ǫ ≤ δ∗, the direction condition (2.21) holds true on all faces

(Qη
s)i for all s ≥ s∗∗, t ≥ 0. But then Proposition 2.1 shows the flow invariance of the

cone Qη
s with respect to (2.11), (2.12).

Corollary 2.2. Let y(t) ∈ R
n
+ for t ∈ [0,∞) denote a solution of (2.11), (2.12).

Then for all s ≥ s∗∗, with s∗∗ from the last Corollary 2.1 there exist some δ(s) ∈

R
n
+and τ > 0, such that y(t0) ∈ Q

δ(s)
s implies y(t0 + τ) ∈ Q

−δ(s)
s .

Proof. (c.p. [9, p. 675): By definition of the η-neighbourhood of Qs, we have x ∈ Qη
s

if and only if for each i = 1, . . . , n either (a) as,i + ηi ≤ yi(t) or (b) as,i− ηi ≤ yi(t) <

as,i + ηi holds. Taking η ∈ (0, δ∗], from Corollary 2.1 we find that inequality (a) is

flow invariant for (2.11), (2.12): If it holds for any t0 ≥ 0 then it holds for all t ≥ t0,

too. If additionally we require 2η ≤ τ · cF
2

, from (b) for t = t0 we conclude:

as,i + ηi ≤ as,i − ηi + τ ·
cF

2
≤ yi(t0 + τ)

for each i = 1, . . . , n, thus y(t0 + τ) ∈ Q−η
s .

Theorem 2.1. Assume (2.4)–(2.9), (2.14). Let y(t) denote any solution of (2.11),

(2.12), [0, T ) being its right maximal interval of existence, y(0) ∈ Qs∗∗ with s∗∗ from

Corollary 2.1.

Then either (1): with t → T ≤ ∞, y(t) is entering each Qs, s > s∗∗, or (2):

s̃ = sup{s ≥ s∗∗ | ∃ t = ts, y(ts) ∈ Qs} <∞ holds, and |y(ts)| → ∞ with s→ s̃ (thus

ts → T ).

Proof [9, p. 675–676]: The supremum s̃ is well defined since y(t) ∈ Qs holds for

some t ≥ 0, s ≥ s∗∗ because of y(0) ∈ Qs∗∗ , and s̃ > s∗∗ results from Corollary 2.2.

(a) In case s̃ = ∞ we have (1). (b) Otherwise in case s̃ < ∞, there exist a strictly
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increasing sequence (sk) ↑ s̃ and a sequence (tk) ⊂ [0, T ) with y(tk) ∈ Qsk
, where the

sequence (Qsk
) is contracting to the closed cone Qs̃.

(b1) If (y(tk)) does not contain a bounded subsequence, we have (2).

(b2) Otherwise there would exist a bounded subsequence (y(tk′)) ⊂ (y(tk)),

|y(tk′)| ≤M <∞. But then (y(tk′)) contains a convergent subsequence (y(tk′′)) → ỹ,

thus ỹ ∈ ∂Qs̃ =
n
⋃

i=1

Qs̃,i. Without loss of generality we may assume that the re-

lated sequences (tk), (tk′′) are monotone increasing because each Qs, s ≥ s∗∗, is flow

invariant for (2.11), (2.12).

(b2.1) In case (tk′′) being bounded there exists t̃ = lim
k′′→∞

tk′′ ∈ (0, T ]. Thus by

the extension theorem for ordinary differential equations [2, p. 13-14, Lemma 3.1] the

solution y(t) can be extended to [0, t̃ ] with y(t̃) = ỹ, and subsequently to [0, t̃ + τ)

for some τ > 0 by the local existence theorem. However, as shown in Corollary 2.1,

the vector F (t̃, y(t̃)) is pointing strictly inwards to
◦

Qs̃=
⋃

s>s̃Qs. From this we get

y(t) ∈ Qs for some s > s̃ > s∗∗ in contradiction to the definition of s̃.

(b2.2) Otherwise the sequence (tk′′) is unbounded: We have (tk′′) ↑ ∞ = T .

Then because of Qsk
↓ Qs̃, for each η ∈ R

n
+ there exists some kη ∈ N such that

Qsk′′
⊂ (Qs̃)

η for all k′′ ≥ kη. Choosing η ∈ (0, δ(s̃)) and recalling Corollary 2.2, from

y(tk′′) ∈ Q
η
s̃ we find y(tk′′ +τ) ∈ Q

−η
s̃ ⊂

⋃

s>s̃

Qs for some τ > 0, which again contradicts

the definition of s̃.

An evident consequence of Theorem 2.1 is the following

Corollary 2.3. The cone Q∗
s∗∗ = {x = (xi) ∈ R

n
+

∣

∣Cξ ·(s
∗∗)Ai ≤ xi for all i = 1, . . . , n}

belongs to the domain of attraction of ∞ with respect to (2.3), (2.4).

Proof: Recalling x(t) ≡ ξ(t) · y(t), Remark 2.2 and the uniform lower and upper

bounds for ξ(t) in (2.10), we find the claim of Corollary 2.3 from Theorem 2.1.

3. CONSTRUCTION OF SUB- AND SUPERSOLUTIONS

In addition to Theorem 2.1, to systems (2.3) with more special right hand sides

than in (2.4) we will find explicit subsolutions as well as supersolutions, both types

blowing up in finite time, by the well known comparison method [13]. With respect to

x ∈ R
n
+ the systems below are quasimonotone in the sense of [13] and also cooperative

in the sense of [3, 12].

We consider the initial value problem

(3.1) ẋ = f(t, x), x(0) = x0 ∈ R
n
+ ,

with the vector function f = (fi) : [0,∞) × R
n
+ → R

n,

(3.2) fi(t, x) = (bi(t) ·
∏

j 6=i

|xj |
αij − |xi|

γi) · |xi|
ζi , i = 1, . . . , n,
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where ζi ∈ R are prescribed real constants. Concerning bi(t) and αij, γi we require

again (2.6), (2.8), (2.9), (2.14). Thus the unique critical point ξ(t) ∈ R
n
+ of f(t, x) is

given by (2.10) in Proposition 2.2 for all t ≥ 0.

Additionally we assume

(3.3) Ai · (1 − [γi + ζi]) < δi , i = 1, . . . , n,

and with any c0 ∈ (0, 1) we define the real constants

(3.4) M = inf
i,t≥0

{

c0 · [Ai · ξ
1−[γi+ζi]
i (t)]−1

}

,

(3.5) N = sup
i,t≥0

{

ξ̇i(t) · [c0 · ξ
γi+ζi
i (t)]−1

}

,

(3.6) µ = min
i

{δi −Ai(1 − [γi + ζi])} ,

(3.7) ϕ0 ≥ (1 − c0)
−1 and ϕµ0 > N.

In the following we will only consider the case N 6= 0. Otherwise if N = 0, lower and

upper bounds for solutions x(t) to (3.1), (3.2) and their blow up time can be found

in a similar manner.

Theorem 3.1. Let x(t) = (xi) denote the solution of (3.1), (3.2) on its right maximal

interval [0, T ) of existence. Then for each sufficiently large initial value

(3.8) x(0) = (xi(0)) ≥ (ξi(0) · ϕAi

0 ) ∈ R
n
+

we find: The solution ϕ : [0, T ∗) → R
1
+ of the initial value problem

(3.9) ϕ̇ = M · ϕ · {ϕµ −N} , ϕ(0) = ϕ0

gives the lower bound

(3.10) v(t) = (vi) = (ξi(t) · ϕ
Ai(t)) ≤ x(t)

for all t ∈ [0, T ), the function ϕ(t) being strictly monotone blowing up to ∞ with

(3.11) t ↑ T ∗ =
− ln(1 −N · ϕ−µ

0 )

µ ·M ·N
=

ln(1 + (−N)ϕ−µ
0 )

µ ·M · (−N)
> 0,

thus the real number

(3.12) T ∗ ≥ T

represents an upper bound for T .
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Proof. Recalling the unique critical point ξ(t) = (ξi(t)) ∈ R
n
+ of the vector function

f(t, x) = (fi) from (3.2), ξ given again by (2.10) in Proposition 2.2, and using the

transformed variables yi = ξ−1
i (t) · xi, from (3.1), (3.2) we are led to the equivalent

system

ẏi = |yi|
ζi ·

(

∏

j 6=i

|yj|
αij − |yi|

γi

)

· ξγi+ζi−1
i − ξ̇i · ξ

−1
i · yi(3.13)

= Hi(t, y),(3.14)

yi(0) = ξ−1
i (0) · xi(0) , i = 1, . . . , n.

Since the right hand side H = (Hi(t, y)) is quasimonotone increasing in y ∈ Rn
+ and

locally Lipschitz continuous, each solution w(t) = (wi) of

(3.15) ẇi ≤ Hi(t, w) , wi(0) ≤ yi(0) , i = 1, . . . , n,

defines a subfunction w(t) ≤ y(t) to y(t) from (3.13), thus v(t) = (vi) = (ξi(t)·wi(t)) ≤

x(t) on the right maximal interval [0, T ) ⊂ [0, T ∗), where these solutions exist, [13,

pp. 65, 69, 92–96].

Setting

(3.16) wi(t) = ϕAi(t)

with some function ϕ(t) > 0 which has to be calculated, we get

(3.17) ẇi = Ai · ϕ
Ai−1 · ϕ̇

and

(3.18) Hi(t, w) = ξ
γi+ζi−1
i (t) · ϕAi(γi+ζi)+δi(t) · (1 − ϕ−δi) − ξ̇i · ξ

−1
i · ϕAi

because of −α · A = δ in (2.9).

A short calculation shows that (3.15), (3.17), (3.18) are fulfilled all together for

all i = 1, . . . , n, t ≥ 0, if we define wi(t) in (3.16) by the solution ϕ(t) of (3.9).

Evidently, this solution ϕ(t) from

ϕµ(t) = ϕ
µ
0 ·N · {ϕµ0 − eµMNt · (ϕµ0 −N)}−1(3.19)

= ϕ
µ
0 · (−N) · {eµMNt · (ϕµ0 −N) − ϕ

µ
0}

−1

calculated to the Bernoulli-type equation (3.9), exists on [0, T ∗), T ∗ from (3.11), ϕ(t)

being strictly monotone blowing up with t ↑ T ∗ because of our second assumption in

(3.7), the first assumption in (3.7) implying 0 < c0 ≤ 1 − ϕ−δi
0 for all i. Similarly,

requiring

(3.20) ẇ∗
i ≥ Hi(t, w

∗) , w∗
i (0) ≥ yi(0), i = 1, . . . , n,
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each solution w∗(t) = (w∗
i ) defines a superfunction w∗(t) ≥ y(t) to y(t) from (3.13),

thus v∗(t) = (v∗i ) = (ξi(t)·w
∗
i (t)) ≥ x(t) on the right maximal interval [0, T∗) ⊂ [0, T ∗),

where w∗(t) exists.

Now setting

M∗ = sup
i,t≥0

{[Ai · ξ
1−(γi+ζi)
i (t)]−1},(3.21)

N∗ = inf
i,t≥0

{ξ̇i(t) · ξ
−(γi+ζi)
i } 6= 0,(3.22)

µ∗ = max
i

{δi − Ai(1 − ·[γi + ζi])},(3.23)

ϕ0∗ > ϕ0 , ϕ
µ∗
0∗ > N∗,(3.24)

we solve (3.20) by w∗
i (t) = ϕAi

∗ (t) for all i = 1, . . . , n, getting

(3.25) v∗(t) = (v∗i ) = (ξi(t) · ϕ
Ai
∗ (t)),

now ϕ∗ denoting the solution of the initial value problem

(3.26) ϕ̇∗ = M∗ · ϕ∗ · {ϕ
µ∗ −N∗}, ϕ∗(0) = ϕ0∗

on its right maximal interval of existence [0, T∗), where

(3.27) T∗ =
− ln(1 −N∗ϕ

−µ∗
0∗ )

µ∗ ·M∗ ·N∗

≤ T ≤ T ∗,

quite analogous to (3.11). The latter two inequalities hold true by definition of the

superfunction w∗(t) ≥ y(t). Thus we have proved

Corollary 3.1. Each solution x(t) to the initial value problem (3.1), (3.2), x(t) having

any initial value (xi(0)) ∈ [(ξi(0) · ϕAi

0 ), (ξi(0) · ϕAi

0∗ )], blows up at some finite time

(3.28) T ∈ [T∗, T
∗].

The bounds ϕ0, ϕ0,∗, T∗, T
∗ are given in (3.7), (3.24), (3.11), (3.27), respectively.

4. GLOBAL BOUNDS IMPLYING GLOBAL SOLUTIONS

The initial value problem (3.26) with large ϕ0∗ > 0 has the global solution ϕ∗(t)

existing for all t ∈ [0,∞) certainly, if instead of (3.3) we require µ∗ ≤ 0. Then our

construction in section 3 leads to global sub- and superfunctions v(t), v∗(t) to (3.1),

(3.2), and the extension theorem for ordinary differential equations shows that the

solution x(t) ∈ [v(t), v∗(t)] to this initial value problem has the right maximal interval

of existence [0,∞).

Remark 4.1. Because of (2.9) α · A = −δ, the matrix α = (δijγj − αij) is not

M-matrix, and our new assumption µ∗ = maxi{δi − Ai[1 − (γi + ζi)]} ≤ 0 together

with (2.9) gives the inequality (αij) · A ≤ (δij · [1 − ζi]) · A. Therefore we must take

each ζi small or even negative large enough in order to fulfill the latter inequality and
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to avoid the estimate 1 − ζi < γi, which, holding for all i = 1, . . . , n, would imply

(αij) ·A < (δij · γj) ·A, thus α being M-matrix [1, p. 137].

Proposition 4.1. We assume (2.6), (2.8), (2.9), (2.14). Recalling the notations

(3.4)–(3.6), (3.21)–(3.23), we require (3.7), (3.24) and

(4.1) µ ≤ µ∗ < 0 , N∗ ≤ N < 0.

(1) Then the solutions ϕ(t) to (3.9), ϕ∗(t) to (3.26) as well as the sub- and super-

functions v(t) from (3.10), v∗(t) from (3.25) exist for all t ∈ [0,∞).

(2) For all initial values

(4.2) x0 = (xi(0)) ∈ [(ξi(0) · ϕAi

0 ), (ξi(0) · ϕAi

0∗ )],

the solution x(t) to (3.1), (3.2) fulfills

(4.3) x(t) ∈ [v(t), v∗(t)]

for all t of its right maximal interval of existence [0, T ).

Proof: With the requirements of Proposition 4.1, the solution ϕ(t) to (3.9) is pre-

sented by (3.19) or, equivalently, by

(4.4) ϕ(t) = ϕ0 · (−N)
1
µ · [e(−µ)·M ·(−N)·t · (ϕµ0 + (−N)) − ϕ

µ
0 ]−

1
µ ,

evidently for all t ∈ [0,∞). Similarly the solution ϕ∗(t) to (3.26) is given by (4.4)

with ϕ0∗, µ∗, M∗, N∗ written in place of ϕ0, µ, M , N . Consequently for all t ∈ [0,∞)

we get v(t) from (3.10), v∗(t) from (3.25), and (4.3) holds true for t ∈ [0, T ) because

of our assumptions above, due to the comparison principle [13, p. 94, 96].

In case µ < 0 < N , the equivalence of the inequalities

(4.5) N < ϕµ ⇐⇒ ϕ < N
1
µ for all values ϕ > 0

shows that then the value ϕ = N
1
µ is the unique stationary point in R

1
+ of the

differential equation (3.9), ϕ = N
1
µ being stable and having the domain of attraction

R
1
+. Consequently the solution ϕ(t) to (3.9) exists for all initial values ϕ0 > 0 for all

t ∈ [0,∞), ϕ(t) being monotone increasing (decreasing) to N
1
µ in case ϕ0 < N

1
µ (in

case N
1
µ < ϕ0, respectively). Thus in case ϕµ0 < N and ϕ

µ∗
0∗ < N∗ the brackets in

(3.9), (3.26) becoming negative, in order to fulfill (3.15), (3.20) we have to interchange

the factors M and M∗ of these brackets in both equations.

Corollary 4.1. Assume (2.6), (2.8), (2.9), (2.14). In addition we require

(4.6) µ ≤ µ∗ < 0 < N∗ ≤ N < (1 − c0)
− 1

µ ,

(1 − c0)
−1 < ϕ0 ≤ ϕ0∗, N∗ < (1 − c0)

− 1
µ∗ .

(a) In case ϕµ0 ≥ N and ϕµ∗0∗ ≥ N∗, we calculate ϕ(t) from (3.9), ϕ∗(t) from (3.26).
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(b) In case ϕµ0 < N and ϕµ∗0∗ < N∗, first of all we rewrite (3.9) with M∗ instead of M ,

(3.26) with M instead of M∗ and calculate ϕ(t), ϕ∗(t) from the modified equations.

Then the conclusions (1) and (2) of Proposition 4.1 hold true, but now, in addi-

tion, the functions v(t), v∗(t) remain uniformly bounded in t ∈ [0,∞).

Proof: Recalling the assumptions of Corollary 4.1, in case (a) the solution to (3.9)

is given by (3.19) or, equivalently, by

(4.7) ϕ(t) = ϕ0 ·N
1
µ · {ϕµ0 − eµMNt · (ϕµ0 −N)}−

1
µ

evidently for all t ∈ [0,∞). In case (b) we have to rewrite (4.7) with M∗ in place of

M . Similarly we find the solution ϕ∗(t) to (3.26) from (4.7) with ϕ0∗, µ∗, M∗, N∗ in

place of ϕ0, µ, M , N in case (a), and with ϕ0∗, µ∗, N∗ instead of ϕ0, µ, N in case (b).

Then, due to the comparison principle [13, pp. 94, 96], from (3.10), (3.25) we get the

subfunction v(t) and the superfunction v∗(t), respectively, to (3.1), (3.2) because of

our requirements above for case (a) as well as for case (b).

Corollary 4.2. Under the assumptions of Proposition 4.1 or Corollary 4.1, each

solution x(t) to (3.1), (3.2), x(t) having any initial value

(4.8) x0 = (xi(0)) ∈ [(ξi(0) · ϕAi

0 ), (ξi(0) · ϕAi

0∗ )],

exists globally for all t ∈ [0,∞), and x(t) obeys (4.3).

Proof by contradiction: Under the assumptions of Proposition 4.1 or Corollary 4.1,

the lower function v(t) from (3.10) and the upper function v∗(t) from (3.25) exist for

all t ∈ [0,∞), defining the subsets

(4.9) St = {(τ, z) ∈ [0, t] × R
n
+

∣

∣0 ≤ τ ≤ t , v(τ) ≤ z ≤ v∗(τ)}.

For each solution x(t) to (3.1), (3.2) on its right maximal interval [0, T ), x(t) with

initial value x0 fulfilling (4.8) we find: If we had T <∞, the subset ST being compact,

then the extension theorem for ordinary differential equations [2, pp. 12–14] would

imply (t, x(t)) 6∈ ST for all t ∈ [0, T ), t being sufficiently near to T , in contradiction

to the result (t, x(t)) ∈ ST for all t ∈ [0, T ) because of (4.3) in Proposition 4.1 or

Corollary 4.1.

Obviously, similar results can be proved also in the special cases where some of

the constants µ, N , µ∗, N∗ are zero or where we have N∗ ≤ 0 ≤ N .
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