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ABSTRACT. Blow-up phenomena are analyzed for both the delay-differential equation

(DDE) u′(t) = B′(t)u(t − τ),

and the associated parabolic PDE

(PDDE) ∂tu = ∆u + B′(t)u(t − τ, x),

where B : [0, τ ] → R is a positive L1 function which behaves like 1/ |t − t∗|
α
, for some α ∈ (0, 1)

and t∗ ∈ (0, τ). Here B′ represents its distributional derivative. For initial functions satisfying

u(t∗ − τ) > 0, blow up takes place as t ր t∗ and the behavior of the solution near t∗ is given by

u(t) ≃ B(t)u(t − τ), and a similar result holds for the PDDE. The extension to some nonlinear

equations is also studied: we use the Alekseev’s formula (case of nonlinear (DDE)) and comparison

arguments (case of nonlinear (PDDE)). The existence of solutions in some generalized sense, beyond

t = t∗ is also addressed. This results is connected with a similar question raised by A. Friedman

and J. B. McLeod in 1985 for the case of semilinear parabolic equations.
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1. INTRODUCTION

Blow-up or explosion phenomena is a general term that refers to the fact that

some solutions of an evolution equation in a Banach space tend to infinity in norm

as t approaches some finite explosion time t∗ which depends on the solution. This

behavior has been extensively studied in the last few decades. In the ODE case

(when the Banach space is finite-dimensional) it is more commonly referred to with

expressions like non existence of global solutions, since the theory of continuation of

solutions shows that, under very general hypotheses, blow-up is the only possibility for

a maximal solution to be defined only on a finite time interval. In the PDE framework,

however, more diversity of results is found: for instance, the solution might explode
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in some norm but not on others (shock waves), or might explode at some points of the

spatial domain but not on others, and so on. An extensive bibliography is available.

Let us just mention [1] and [14], and the references indicated for semilinear equations

at the end of this section.

The relation of blow-up and time delay has not been studied in detail, and the

purpose of this paper is to give a class of delay equations (both ODE and PDE) in

which this phenomenon appears. The authors (see [4]) have done a similar analysis

for the “opposite” situation, namely, finite-time extinction, in which some (nonzero)

solutions vanish identically after some finite “extinction time”. Some of the techniques

used are similar in both cases, but there are important differences. The first of

these comes from the very nature of blow-up and how “infinity” is involved, which

requires analyzing some technical aspects of the regularity properties of the solution

and which is not necessary in finite-time extinction processes, except for the fact

that non-Lipschitz functions are usually involved. The second difference is that the

structure of the equation enables us to apply delay-PDE comparison techniques which

are not usually available in the extinction phenomenon.

We first analyze the delay-differential equation

(1.1) (DDE)







u′(t) = B′(t)u(t − τ), 0 < t,

u(θ) = ξ(θ) given, −τ ≤ θ ≤ 0,

and then some delay-PDEs of the type

(1.2) (PN)



















∂u
∂t

− ∆u = B′(t)u(t − τ,x), (t,x) ∈ (0, +∞) × Ω,

∂u
∂n

(t,x) = 0, (t,x) ∈ (0, +∞) × ∂Ω,

u(θ,x) = ξ(θ,x), (θ,x) ∈ (−τ, 0) × Ω,

where B : [0, τ ] → R is a positive L1 function which behaves like 1/ |t − t∗|α, for

some α ∈ (0, 1) and t∗ ∈ (0, τ), and B′ represents its distributional derivative. In

(DDE), initial functions with u(t∗ − τ) > 0 blow up like B(t)u(t− τ)as t ր t∗, and a

similar result holds for the PDDE due to the applicability of comparison arguments.

Other boundary conditions can be studied in the same way, but have been omitted

for simplicity.

The extension to some nonlinear equations is also studied: we use the Alekseev’s

formula for

(1.3) (NLDDE)







u′(t) = f(t, u(t)) + B′(t)g(t, u(t− τ)), 0 < t

u(θ) = ξ(θ), τ ≤ θ ≤ 0,
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where f is C2 and g is C1 (see subsection 2.7) and some comparison arguments, for

the case of

(NLPN )



















∂u
∂t

− ∆u = f(t, u(t, x), u(t − τ ,x)), (t, x) ∈ (0, +∞) × Ω,

∂u
∂n

(t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω,

u(θ, x) = ξ(θ, x), (θ, x) ∈ (−τ, 0) × Ω,

(see subsection 3.2).

The possibility of extending these blow-up solutions beyond the explosion time

t∗, that is, the question of existence of solutions in some generalized sense in the whole

interval [0, T ], when T > t∗, is much more delicate.

It seems that this type of questions was raised by first time in Friedman and

McLeod [8] when analyzing blow-up properties of solutions of the semilinear equation

(1.4) (SP )



















∂u
∂t

− ∆u = |u|p−1 u, in (0, +∞) × Ω,

u = 0, on (0, +∞) × ∂Ω,

u(0,x) = u0(x), on Ω.

They consider the case in which p > 1 and u0 ∈ L∞(Ω) such that

lim
t↑Tmax

‖u(t, ·)‖L∞ = +∞

for some Tmax < +∞. The open question raised in [8] is to know if ‖u(t, ·)‖Lq remains

bounded as t ↑ Tmax for q in the “subcritical case,” i.e. for q such that 1 ≤ q ≤ N(p−1)
2

(it is known that the answer is negative if q > N(p−1)
2

: [8], [3] and its references).

For a very complete survey on the blow-up phenomenon results for the semilinear

problem (SP ) until 1995 we send the reader to the monograph [16]. Many other

more recent results are available today in the literature (see, e.g. the papers [18], [5]

and their references). We also mention that many sufficient conditions on Ω, u0, p

and N implying that the explosion region {x ∈ Ω : u(x, t) ↑ +∞ when t ↑ Tmax} is

confined to a proper subset of Ω are well-known for the semilinear problem (SP ) (see

the above indicated references and specially the extension to quasilinear equations

made in [16]).

We define generalized solution by means of the following integral identity in a

suitable space of functions on Ω

(1.5) u(t) = eAtξ(0) + B(t)ξ(t − τ) +

∫ t

0

eA(t−s)B(s) [−Aξ(s − τ) + ξ′(s − τ)] ds,

where A is the abstract operator associated to −∆ with Neumann boundary con-

ditions and eAt is the associated semigroup, and give sufficient conditions for the

integral to exist beyond t = t∗ (for instance on [0, τ ]).
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2. SETTING OF THE PROBLEM

subsectionPreliminary analysis

Let t∗ > 0, let b : [0, t∗) → R be a continuous function such that b(t) ≥ 0 on

[0, t∗) and assume that b “blows up” at t∗, that is, b(t) → ∞ as t ր t∗. Consider the

delay differential equation (DDE)

(2.1)







u′(t) = b(t)u(t − τ), for 0 ≤ t < t∗,

u(θ) = ξ(θ), for −τ ≤ θ ≤ 0,

where τ > t∗ is a given delay and ξ represents the “history” or “initial function”,

which is usually assumed to be continuous on [−τ, 0], although other function spaces

can also also be considered. For a general study of this type of equations see [11].

If ξ(t) ≡ ξ ∈ R is a nonzero constant, then direct integration of both sides of

equation (2.1) gives

(2.2) u(t) = u(t, ξ) = u(0) +

∫ t

0

b(s)ξds = ξ(1 + B(t)), 0 ≤ t < t∗,

where we have denoted B(t) =
∫ t

0
b(s)ds. If b is integrable on (0, t∗) then B(t∗) =

limt→t∗ B(t) exists. Otherwise, u blows up at t∗ but the singularity of the solution is

weaker than that of b, a fact that reminds the “smoothing effect” usually found on

delay equations.

If the initial condition ξ is not constant and if ξ(t∗−τ) > 0, then ξ(t) ≥ ξ(t∗−τ)/2

on some interval [t∗−τ −δ, t∗−τ ] (where 0 < δ < t∗) and we may write for t ∈ [0, t∗) :

u(t) = u(t, ξ) = u(t∗ − δ) +

∫ t

t∗−δ

b(s)ξ(s − τ)ds ≥(2.3)

≥ u(t∗ − δ) +
ξ(t∗ − τ)

2
[B(t) − B(t∗ − δ)]

which implies that, u(t, ξ) blows up at t∗ like B(t) as before. Obviously, if ξ(t∗− τ) =

0, the product b(t)ξ(t − τ) may be integrable or not on (0, t∗), depending on the

(fractional) order of t∗ − τ as a zero of ξ. If ξ is C1, for instance, the order will be an

integer and the product will certainly be integrable.

If the function b is also defined and is continuous for t > t∗, it is natural to ask

whether the solution itself can be continued beyond t∗ in some sense. In other words,

can the formal integral expression

u(t, ξ) = ξ(0) +

∫ t

0

b(s)ξ(s − τ)ds, 0 ≤ t ≤ τ,

be considered a as an “integralsolution” of some kind, defined on the whole interval

[0, τ ]? This is the real difficulty, since continuation beyond τ is always possible as

long as b remains continuous.
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Let us start again with constant initial functions ξ(t) ≡ ξ. If B ∈ Lp(0, τ) for

some p ∈ [1,∞], the function

u(t, ξ) = ξ(1 + B(t)),

is a well-defined Lp function. For a general continuous initial ξ, the function

u(t, ξ) = ξ(0) +

∫ t

0

b(s)ξ(s − τ)ds, 0 ≤ t ≤ τ,

is also well defined and belongs to the same Lp class as B does, it is also C1 except

a t = t∗ and satisfies the differential equation for all t ∈ [0, τ ] except for t∗.

Of course, one could define an integral solution to be just that, but it is clear

that further analysis is necessary in order to justify such a procedure. This is the

purpose of the next section, which deals with primitives B(t) only assumed to be in

Lp(0, τ), thus allowing for infinitely many singularities and other more complicated

situations.

2.1. The basic equation. Let B ∈ Lp(0, τ) such that B′ /∈ L1
loc(0, τ), where B′ is to

be understood in the sense of distributions. Without loss of generality we will assume

that B(0) = 0.

We consider the retarded functional differential equation

(2.4)







u′(t) = B′(t)u(t − τ), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

where ξ is a given initial function whose smoothness properties will be discussed

below. For the time being we will concentrate on the initial “basic interval” [0, τ ].

As discussed in the previous section, if B is C1 except for a singularity t∗ ∈ (0, τ).

for instance

(2.5) B(t) = 1/ |t − t∗|α , where 0 < α < 1,

we can integrate both sides, thus obtaining

(2.6) u(t) = ξ(0) +

∫ t

0

B′(s)ξ(s − τ)ds,

but, in general, this formula will make sense only for t ∈ [0, t∗) because the product

B′(t)ξ(t − τ) need not be integrable. In fact, it will never be integrable for nonzero

constants ξ. As mentioned above, in order to get a better understanding of the

problem and check whether the solution can be continued “beyond” the singular point

t∗ in a meaningful way we need to give a more precise meaning to the right-hand side

of (2.4). A standard strategy in the theory of differential equations with discontinuous

right-hand sides (see Filippov [9]) is to try to transform the equation into another

with integrable discontinuities, that is, a “Carathéodory form”, as follows.
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2.2. Equivalent neutral equation. By writing

(2.7) B′(t)u(t − τ) = [B(t)u(t − τ)]′ − B(t)u′(t − τ),

equation (2.4) becomes

(2.8)







d

dt
[u(t) − B(t)u(t − τ)] = −B(t)u′(t − τ), t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

which is a neutral differential-delay equation. Integrating (formally) both sides of

(2.4) on [0, τ ] and taking into account the (nonessential) assumption B(0) = 0 we

obtain

(2.9) u(t) = ξ(0) + B(t)ξ(t − τ) −

∫ t

0

B(s)ξ′(s − τ)ds, 0 ≤ t ≤ τ

which gives an explicit representation of the solution in terms of the initial function.

Of course, this is just the standard “method of steps” as long as the integral in the

right-hand side is defined. As is usual in neutral FDE’s, more smoothness in the initial

function is required than in the retarded case. Since B ∈ Lp(0, τ), the hypothesis

ξ′ ∈ Lq(−τ, 0) (1/p + 1/q = 1) will be enough. We have just proved the following

result:

Theorem 2.1. 1. Let B ∈ Lp(0, τ). Then, for every ξ ∈ W 1,q(0, τ) (where 1/p +

1/q = 1) the Cauchy problem (2.8) has a unique solution given by the identity

(2.10) u(t) = ξ(0) + B(t)ξ(t − τ) −

∫ t

0

B(s)ξ′(s − τ)ds, 0 ≤ t ≤ τ,

Therefore u ∈ Lp(0, τ) and u(t)−B(t)ξ(t−τ) is an absolutely continuous function

and we may write symbolically

(2.11) u(t) = B(t)ξ(t − τ) + AC,

where “AC” means “an absolutely continuous function”. As a consequence, the

singularities of the solution on [0, τ ] are also singularities of B

2. In particular, let t∗ ∈ (0, τ), 0 < α < 1, let m be continuous on [0, τ ] and let

(2.12) B(t) =
a

|t − t∗|α
+ m(t),

If the initial function ξ satisfies ξ(t∗ − τ) 6= 0, then t∗ is also a singularity of u

and

(2.13) u(t) ≃
a

|t − t∗|α
ξ(t∗ − τ), as t → t∗,

is an asymptotic expansion of u near t∗.

3. If |ξ(t∗ − τ − t)| ≤ C |t∗ − τ − t|α near t∗, then u is bounded near t∗.
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2.3. Solutions without Singularities. Following on point 3 of the previous theo-

rem, let us concentrate again on the single-singularity case as above:

(2.14) B(t) =
a

|t − t∗|α
+ m(t), t ∈ [0, τ ],

with t∗ ∈ (−τ, 0), α ∈ (0, 1) and m continuous. For any γ > α let us consider the

following class of initial values:

Eγ = {ξ ∈W 1,q(−τ, 0) : There exists C > 0 such that(2.15)

|ξ(t∗ − τ − θ)| ≤ C |t∗ − τ − θ|γ for all θ ∈ [−τ, 0]}.

Because of the Sobolev embedding W 1,q(−τ, 0) ⊂ C[−τ, 0], Eγ is a closed subspace

of W 1,q(−τ, 0). We have thus the following immediate consequence of representation

(2.10):

Proposition 2.2. If ξ ∈ Eγ, the solution u of (2.8) is absolutely continuous on

[−τ, 0].

Remark 2.3. If we restrict ourselves to C1 initial functions (a very standard pro-

cedure in neutral delay-differential equations), the hypothesis that the exponent γ

be strictly larger than α means that the condition |ξ(t∗ − τ − t)| ≤ C |t∗ − τ − t|γ is

automatically satisfied if t∗− τ is simply a zero of ξ, and the definition of Eγ is much

easier:

Eγ ∩ C1([−τ, 0]) = {ξ ∈ C1([−τ, 0]) : ξ(t∗ − τ) = 0},

and its geometrical structure is clearer too: E∩C1([−τ, 0]) is just a closed hyperplane

in C1([−τ, 0]). These are the initial functions which generate solutions without discon-

tinuities in [0, τ ], and any other ξ ∈ C1([−τ, 0]) may be written as ξ(t∗)+[ξ(t) − ξ(t∗)],

which means that the asymptotic expansion of u near t∗ can be further simplified to

u(t) ≃ ξ(t∗)/ |t − t∗| + AC.

2.4. Continuation beyond τ . Assume that B is defined on a larger interval [0, T ),

where T > τ . As can be easily seen from the explicit formula (2.9)

(2.16) u(t) = ξ(0) + B(t)ξ(t − τ) −

∫ t

0

B(s)u′(s − τ)ds, 0 ≤ t ≤ τ,

even for very smooth ξ, if B also contains singularities on the interval [τ, 2τ ] (for

instance, if B is τ -periodic, a very important case), the function B(s)u′(s − τ) may

not be integrable beyond τ .

Take, for instance, ξ ≡ constant, 1/2 ≤ α < 1, B(t) = 1/ |t − τ/2|α on [0, τ ] and

extended periodically to all of R. Then u(t) = ξ(1 + B(t)) = ξ on [0, τ ], on [τ, 3τ/2)
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the equality u′(t) = B′(t)u(t − τ) does hold and then

(2.17)

u(t) = ξ(1 + B(τ)) + ξ
∫ t

τ
B(s)B′(s − τ)ds

= ξ

(

1 + B(τ) +
1

2
[B(t)2 − B(τ)]

)

, τ ≤ t <
3τ

2
,

because of the periodicity of B. Since B2 is not integrable, the solution cannot be

extended beyond 3τ/2 in a meaningful way.

On the other hand, standard results of the general theory of functional differential

equations imply that if B is differentiable on [0, T ) except at a unique singularity t∗,

the solution can be extended to all [0, T ). The following theorem is stated in a

simplified situation which enables us to give a direct proof.

Theorem 2.4. Let T > τ (including +∞), 0 < α < 1, let B1 be given by (2.12) and

let m : [0, T ) → R be continuously differentiable and let

(2.18) B(t) = B1(t) + m(t), 0 ≤ t < T.

Let ξ ∈ C1([−τ, 0]). Then the initial value problem

(2.19)











d

dt
[u(t) − B(t)u(t − τ)] = −B(t)u′(t − τ),

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

has a unique solution on [0, T ) belonging to Lp for every p < 1/α, continuous on

[0, T ) except at t∗ and continuously differentiable at every t ∈ [0, T ) except t∗ and

τ + t∗.

Proof. We already know that the expression (2.9) gives us an Lp solution [0, τ ]. Since

ξ ∈ C1, it is also continuously differentiable except at t∗. In order to extend it beyond

τ , we go back to the original retarded presentation

u′(t) = B′(t)u(t − τ),

which does not give any trouble for values t ≥ τ , since the ”coefficient” B′(t) is

continuous on [τ, T ). On [τ, 2τ ] we can write

u(t) = u(τ) +

∫ t

τ

B′(s)u(s − τ)ds, τ ≤ t ≤ 2τ,

which is absolutely continuous on (τ, 2τ) and continuously differentiable except at

t = τ + t∗.

Remark 2.5. Since linear retarded functional differential equations are well-posed on

Lp spaces (see [21]) and these equations have a well-known “smoothing effect” ([11]),

the above result can be extended in a number of ways. For instance, if B : [0, T ) → R

is Lp on [0, τ ] and continuously differentiable on [τ, T ), then the solution belongs to

Lp
loc(0, T ), belongs to W 1,p(τ, 2τ), to W 2,p(2τ, 3τ) and so on.
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2.5. Linear perturbations. The above analysis is easily adapted to the case

(2.20)







u′(t) = λu(t) + B′(t)u(t − τ), t > 0

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

by first applying the Euler change of variables v(t) = e−λtu(t), which gives

(2.21)
v′(t) = −λe−λtu(t) + e−λt [λu(t) + B′(t)u(t− τ)]

= e−λτB′(t)v(t − τ),

and successively obtaining the equivalent neutral formulation

(2.22)











d

dt

[

v(t) − e−λτB(t)v(t − τ)
]

= −e−λτB(t)v′(t − τ), t > 0,

v(θ) = e−λθξ(θ), τ ≤ θ ≤ 0,

the representation for v(t)

(2.23)

v(t) = e−λτB(t)e−λ(t−τ)ξ(t − τ) + ξ(0)

−
∫ t

0
e−λτB(s)e−λ(s−τ) [−λξ(s − τ) + ξ′(s − τ)] ds

= ξ(0) + e−λtB(t)ξ(t − τ) −
∫ t

0
e−λsB(s) [−λξ(s − τ) + ξ′(s − τ)] ds,

and the representation for u(t) = eλtv(t)

(2.24)







u(t) = eλtξ(0) + B(t)ξ(t − τ)

+
∫ t

0
eλ(t−s)B(s) [−λξ(s − τ) + ξ′(s − τ)] ds,

which is very similar to (2.9). The qualitative statements of theorem 1 and the

asymptotic expansion near t∗ are translated to this case without change.

Similar results can be written for non-autonomous versions of the above equation

(2.25)







u′(t) = λ(t)u(t) + B′(t)u(t − τ), t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

obtaining the representation

(2.26)







u(t) = B(t)ξ(t − τ)

+
∫ t

0
eΛ(t)−Λ(s)B(s) [−λ(s)ξ(s − τ) + ξ′(s − τ)] ds,

where Λ(t) is a primitive of λ(t) on [0, τ ]. It suffices that λ ∈ L1(−τ, 0), thus allowing

for singularities on the coefficient λ which give rise to very interesting interactions

with the singularities of B.

2.6. The nonlinear case. Using Alekseev’s variation-of-constants formula.
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2.6.1. A first nonlinear case. We now generalize the results presented above to the

“partially nonlinear” case, that is

(2.27)







u′(t) = B′(t)g(t, u(t− τ)), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

where g is C1. By formally writing

(2.28) B′(t)g(t, u(t− τ)) =
d

dt
[B(t)g(t, u(t − τ))] − B(t)

d

dt
[g(t, u(t− τ))] ,

we see that the equivalent neutral equation is completely similar to those obtained in

the previous section, that is

(2.29)











d

dt
[u(t) − B(t)g(t, u(t − τ))] = −B(t)

d

dt
[g(t, u(t− τ))] , t > 0,

u(t) = ξ(t), τ ≤ t ≤ 0.

On [0, τ ] we have (formally)

(2.30)











u(t) = B(t)g(t, ξ(t− τ)) + ξ(0)

−
∫ t

0
B(s)

d

ds
[g(s, ξ(s− τ))] ds, 0 ≤ t ≤ τ.

But if ξ ∈ W 1,q(−τ, 0) and g is C1, s 7→ g(s, ξ(s − τ)) is also in W 1,q(−τ, 0) and the

integral actually is an absolutely continuous function. Therefore, the representation

or “asymptotic expansion” u(t) = B(t)g(t, ξ(t− τ)) + AC is still valid.

If an additive term λu(t) appears in the right-hand side, a similar analysis can

be performed by means of the change of variable v(t) = e−λtu(t), although the non-

linearity g(t, u(t−τ)) makes the integral representation much more complicated than

(2.30).

2.7. The fully nonlinear case. Let us now analyze the “fully nonlinear” case, that

is

(2.31)







u′(t) = f(t, u(t)) + B′(t)g(t, u(t− τ)), 0 < t < τ

u(θ) = ξ(θ), τ ≤ θ ≤ 0

where f is C2 and g is C1. Its reduction to a “neutral form” is still possible:

(2.32)



























d

dt
[u(t) − B(t)g(t, u(t− τ))]

= f(t, u(t)) − B(t)
d

dt
[g(t, u(t− τ))] , t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0.

However, the presence of the term f(t, u(t)) makes the (formal) integration of both

sides of the equation hard to deal with: instead of an explicit expression of u, it

becomes an integral equation with u as the unknown, and it would be necessary to
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choose the right function space in which the equation not only made sense but had a

unique fixed point as well. In any case, the neutral formulation can be used to give

a precise meaning to the equation, but we will not follow this approach here.

Instead, we will change our strategy and make use of a very useful, but little-

known mathematical device: Alekseev’s nonlinear variation of constants formula.

We now briefly recall this result in a very simple setting, which will suffice for our

purposes. For more general statements and the proofs, see [12]:

Proposition 2.6 (Alekseev’s formula). Let f : R
2 → R be C2 and G : R → R be

L1
loc

. Let y = φ(t, t0, ξ) represent the unique solution of the ODE

(2.33)







y′ = f(t, y(t)),

y(t0) = ξ,

and let Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial differentiation. Then φ is

C2, Φ is C1 and the solution u(t) of the so-called “perturbed problem”

(2.34)







u′ = f(t, u(t)) + G(t),

u(t0) = ξ,

has the integral representation

(2.35) u(t) = y(t) +

∫ t

t0

Φ(t, s, y(s))G(s)ds,

where y(t) = φ(t, t0, ξ) is the “unperturbed” or “reference” solution.

Remark 2.7. Φ(t, t0, ξ) satisfies Φ(t, t, ξ) = 1.

Remark 2.8. Alekseev’s formula is usually stated under stronger regularity condi-

tions on G. However, it is very simple to check by direct differentiation that the func-

tion u(t) defined by (2.35) is an absolutely continuous solution of the (Carathéodory)

equation (2.34). Alekseev’s formula is usually applied to the more ambitious setting

of having G depending on t and u, which is typical of control theory. (2.35) then

becomes an integral equation and a more delicate analysis is required.

Fortunately, we can consider the retarded term as an external “forcing”

(2.36) G(t) = B′(t)g(t, ξ(t− τ)),

and by setting t0 = 0, ξ = u(0) = ξ(0), y(t) = φ(t, 0, ξ), write (formally):

(2.37) u(t) = y(t) +

∫ t

0

Φ(t, s, y(s))B′(s)g(s, ξ(s− τ))ds,
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and integrate by parts:

(2.38)

u(t) = y(t) + [Φ(t, s, y(s))B(s)g(s, ξ(s− τ))]s=t
s=0

−
∫ t

0
B(s)

d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds

= y(t) + Φ(t, t, y(t))B(t)g(t, ξ(t− τ))

−
∫ t

0
B(s)

d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds.

By the remark above, Φ(t, t, y(t)) = 1. On the other hand, as we saw before, for ξ ∈

W 1,q(−τ, 0) and g ∈ C1 the composite function s 7→ g(s, ξ(s− τ)) is also W 1,q(−τ, 0)

and so is its product by the C1 function Φ(t, s, y(s)). Therefore, its derivative belongs

to Lq(−τ, 0) and the indefinite integral, as in all the previous cases, is an absolutely

continuous function. This means that the integration by parts is legitimate and we

may state the following result, which is an extension of the previous ones. We may

summarize the previous comments in the following way:

The initial value problem

(2.39)







u′(t) = f(t, u(t)) + B′(t)g(t, u(t− τ)), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

with F ∈ C2(R2), g ∈ C1(R2) and initial function ξ in W 1,q(−τ, 0) can be given a

precise integral sense in [0, τ ] by means of the neutral equivalent equation (2.32) and

its unique solution u admits the integral representation

(2.40) u(t) = y(t) + B(t)g(t, ξ(t− τ)) −

∫ t

0

B(s)
d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds,

(where y(t) = φ(t, 0, ξ(0))) as well as the “asymptotic expansion”

(2.41) u(t) = B(t)g(t, ξ(t − τ)) + AC,

which gives the qualitative picture of the behavior of the solution near singularities

of B.

3. THE PDE CASE

In order to avoid technicalities, let us consider the delayed linear heat equation

with Neumann boundary conditions

(3.1) (PN)



















∂u
∂t

− ∆u = B′(t)u(t − τ ,x), for (t, x) ∈ (0, +∞) × Ω,

∂u
∂n

(t, x) = 0, for (t, x) ∈ (0, +∞) × ∂Ω,

u(θ, x) = ξ(θ, x), for (θ, x) ∈ (−τ, 0) × Ω,
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where Ω is a connected domain of R
N , N ≥ 1, with smooth boundary, and concentrate

on a simplified version of the single-singularity case

(3.2) B(t) =
a

|t − t∗|α
+ m(t),

with m ∈ C1([0, τ ]), α ∈ (0, 1) and t∗ ∈ (0, τ). It is well known (see, for instance,

[10] or [22]) that on [0, t∗) the initial value problem is well defined for continuous

initial functions ξ and has a unique solution. The possibility of extending the solution

beyond t∗ will be discussed later. Also, other function spaces and boundary conditions

are easily treated by these methods.

We will also assume that B′(t) ≥ 0 (so that a > 0) on [0, t∗). The reason for this

restriction will be explained below.

3.1. Separable solutions. Assume that the initial function is separable: u(x, t) =

ξ(t)φ0(x) for t ∈ [−τ, 0] and x ∈ Ω. It is then natural to look for solutions of the

same type u = w(t)φ(x), thus obtaining

w′(t)φ(x) = w(t)∆φ(x) + B′(t)w(t − τ)φ(x).

In order to have a separable solution we divide by w(t)φ(x) and observe that the

assumed identity
w′(t)

w(t)
=

∆φ(x)

φ(x)
+ B′(t)

w(t − τ)

w(t)
,

can only hold if there exists a real constant λ such that

∆φ = λφ,

(that is, φ is an eigenfunction of ∆ with the given boundary conditions, with associ-

ated eigenvalue λ) and w satisfies the delay-differential equation

(3.3)







w′(t) = λw(t) + B′(t)w(t − τ), for t ≥ 0,

w(θ) = w0(θ), for t ∈ [−τ, 0],

which is of the type studied in Section 3.

This obviously requires that φ0(x) = φ(x) be already an eigenfunction. Assuming

this is the case, we have an explicit representation of these separable solutions from

Section 3, namely (2.24):

(3.4)

u(t, x) = w(t)φ(x)

= B(t)ξ(t − τ)φ(x)

+ φ(x)
∫ t

0
eλ(t−s)B(s) [−λξ(s − τ) + ξ′(s − τ)] ds, t ∈ [0, τ ].

If ξ(t∗ − t) > 0 then w(t) = B(t)ξ(t − τ) → ∞ as t → t∗, and the same will happen

for the separable solution on the region {φ > 0}, while u(t, x) = w(t)φ(x) → −∞ as

t → t∗ when φ(x) < 0. Clearly, the opposite behavior takes place when ξ(t∗ − t) < 0.
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In any case, we have instantaneous blow-up outside the nodal region {x ∈ Ω : φ(x) =

0}, meaning that the explosion time is the same for all the points involved. The most

important case from the practical viewpoint is that of φ(x) ≡ 1, the first eigenfunction

of ∆ with Neumann boundary conditions.

3.2. More general delay-PDEs with blowing-up solutions via comparison

arguments. Now enters the sign condition B′(t) ≥ 0 on [0, t∗), whose importance

comes from the fact that some comparison arguments can be applied in this case, thus

enlarging considerably the set of equations for which we get blowing-up solutions.

Although our arguments also apply to the case of (NLDDE) here we merely state

a simple version of more general results for (NLPN), which will be enough for our

purposes

Proposition 3.1. For i = 1, 2, consider the delayed reaction-diffusion equations

(NLPN)























∂ui

∂t
− ∆ui = f i(t, ui(t, x), ui(t − τ ,x)), (t, x) ∈ (0, +∞) × Ω,

∂ui

∂n
(t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω,

ui(θ, x) = ξi(θ, x), (θ, x) ∈ (−τ, 0) × Ω,

where f i are locally Lipschitz in all its arguments and nondecreasing in its third vari-

able, i.e.

(3.5)
p1 ≤ p2 =⇒ f 1(t, u1, p1) ≤ f 2(t, u2, p2),

for a.e. t ≥ 0, for any ui, pi ∈ R.

Let ξ1 and ξ2 be two initial functions, in C([−τ, 0] : Lp(Ω)) for some p ∈ [1, +∞],

ordered as follows:

(3.6) 0 ≤ ξ1(θ, x) ≤ ξ2(θ, x), for any θ ∈ [−τ, 0] and a.e. x ∈ Ω.

Then there exists the corresponding weak solutions u1(t, x), u2(t, x), in C([−τ, T i
max) :

Lp(Ω)), for some T i
max ∈ (0, +∞], and they satisfy

0 ≤ u1(t, x) ≤ u2(t, x), for all t ∈
[

−τ, T i
max

)

, a.e. x ∈ Ω.

Proof. The existence of solutions is consequence of well-known results (see, e.g.,

the monographs [14], [10] and [22]). Most of the comparison results in the indicated

literature are presented for the simper case in which f 1 ≡ f 2 (see also other general

references such as [20]). The case of (3.5) with f 1 6= f 2 is well known in the literature

without delay (see, e.g. [6], [7] (Theorem 4.3) and the references indicated there) and

can be easily adapted to the case of delayed equations (see, e.g. [13] Proposition 1). �

Other boundary conditions are possible. The condition to be taken into account

is that −∆ with the given boundary condition generates a positive semigroup on the

usual function spaces.
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Applying this result to our case, we have the following

Theorem 3.2. Assume that the initial function satisfies

(3.7) ξ(θ, x) ≥ ξ0(θ)φ(x), for θ ∈ [−τ, 0], x ∈ Ω,

where φ is an eigenfunction of ∆ with the Neumann boundary condition, ξ0 ∈ W 1,q

(−τ, 0) and ξ0(t
∗ − τ) > 0. Assume (3.2) and let f(t, u, p) be locally Lipschitz in all

its arguments, nondecreasing in its third variable, and such that

(3.8)
p1 ≤ p2 =⇒ B′(t)p1 ≤ f(t, u, p2),

for a.e. t ≥ 0, for any u, p1, p2 ∈ R.

Then, if u(x, t) is the solution of

(NLPN )























∂u
∂t

− ∆u = f(t, u(t, x), u(t − τ ,x)), (t, x) ∈ (0, +∞) × Ω,

∂u
∂n

(t, x) = 0, (t, x) ∈ (0, +∞) × ∂Ω,

u(θ, x) = ξ(θ, x), (θ, x) ∈ (−τ, 0) × Ω,

we have

(3.9) u(x, t) ≥

[

a

|t − t∗|α
ξ0(t − τ) + n(t)

]

φ(x),

where n is an absolutely continuous function on [−τ, 0]. In particular, u blows up at

some finite time Tmax ≤ t∗ in the sense that

(3.10) lim
t→t∗

u(t, x) = ∞, a.e.x ∈ {x ∈ Ω : φ(x) > 0}.

Proof. Let w(t) denote the solution of the initial value problem (3.3):






w′(t) = λw(t) + B′(t)w(t − τ), for t ≥ 0,

w(θ) = ξ0(θ), for θ ∈ [−τ, 0],

where λ is the eigenvalue associated to the eigenfunction φ. As before, the hypotheses

on ξ0 imply that w(t) admits the asymptotic expansion

w(t) = B(t)ξ(t − τ) + n(t),

where n(t) is absolutely continuous. On the other hand, the comparison result stated

above implies that u(t, x) ≥ w(t)φ(x), and the result is proved.

Remark 3.3. The theorem holds for the Dirichlet boundary condition without any

change. For (possibly nonlinear) Robin boundary condition ∂u/∂n+k(t, x, u) = 0, for

some nondecreasing function k(·, ·, u) of u (a requirement imposed for the applicability

of comparison arguments: see, for instance, [6]).
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Remark 3.4. For both Dirichlet and Neumann boundary conditions, if the initial

function satisfies ξ(t, x) ≥ µ > 0 in Ω, we can always choose φ to be the first eigen-

function, which does not change sign by the Krein-Milman theorem. We have then

instantaneous blow-up on the whole domain Ω.

Remark 3.5. In the region {x ∈ Ω : φ(x) < 0} the comparison argument does not

give us any useful information, unless some symmetric condition u(θ, x) ≤ ξ̃0(θ)φ(x),

ξ̃0(t
∗ − τ) < 0 holds.

3.3. Continuation beyond t∗. The question of existence of solutions on the whole

interval [0, τ ] is more delicate since it involves performing some kind of integration by

parts in order to define a suitable notion of generalized solution, as in Sections 2 and

3. The special structure of the right hand side of our equation, however, simplifies

the situation, since the method of steps is directly applicable. Using the standard

notation of abstract evolution equations in Banach spaces X, our basic equation is

written as follows

(3.11)







u′(t) = Au(t) + B′(t)u(t − τ), in X, for t ≥ 0,

u(θ) = ξ(θ), for θ ∈ [−τ, 0],

where u(t) is the function u(t)(x) = u(t, x), the same for ξ and A is the abstract

operator on X associated to −∆ with Neumann boundary conditions. On the basic

interval [0, τ ] we may express the solution by means of the variation of constants

formula:

u(t) = eAtξ(0) +

∫ t

0

eA(t−s)B′(s)ξ(s − τ)ds, 0 ≤ t ≤ τ.

Assume, again, (3.2). The fact that B′ is not a function (and so u′ /∈ L1(0, τ : X))

requires integration by parts, as in Section 3. By proceeding formally we arrive to a

direct extension of equation (2.24), by substituting λ by A :

(3.12)







u(t) = eAtξ(0) + B(t)ξ(t − τ)

+
∫ t

0
eA(t−s)B(s) [−Aξ(s − τ) + ξ′(s − τ)] ds,

which we may use as definition of “generalized solution in W−1,p′(0, τ : X)” for some

p = p(α) > 1 small enough. As an illustration, let us state a simple sufficient condition

for a “generalized solution in W−1,p′(0, τ : L2(Ω))” to exist:

Theorem 3.6. Let ξ ∈ C2([−τ, 0]×Ω̄) satisfying ∂ξ/∂n = 0 on ∂Ω for all θ ∈ [−τ, 0].

Assume (3.2). Then the integral in (3.12) is well defined and the equation (3.11) has

a “generalized solution in W−1,p′(0, τ : L2(Ω))” for some p = p(α) > 1 small enough,

and, so defined, at least, on [0, τ ].

Proof. The hypotheses imply that ξ(t, .) belongs to the domain of A and the function

s 7→ ∆ξ(s − τ, ·) + ∂tξ(s − τ, ·) is continuous from [0, τ ] into C(Ω̄). Therefore, its
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product by the L2 function B is in L2, and the integral is well defined (see Vrabie

[19]).

Remark 3.7. As mentioned at the beginning of this paragraph, a complete treatment

of the existence, uniqueness and continuation of generalized solutions of the PDE

problem is complicated and it is currently under study by the authors. Our goal

in this paper is to present the basic results concerning blow-up results for the main

equation and to suggest some of the difficulties involved in its treatment, avoiding

the technicalities as much as possible. This is the reason why we have excluded the

explicit use of the theory of distributions, although it obviously lies behind many of

the arguments we have employed in a more loose way in the text.

Acknowledgments. Research partially supported by the projects MTM2005-

03463 of the DGISGPI (Spain) and CCG06-UCM/ESP-1110 of the DGUIC of the

CAM and the UCM. The authors thank the anonymous referee for some useful com-

ments.

REFERENCES

[1] S. Antontsev, J. I. Dı́az, S. Shmarev, Energy methods for free boundary problems. Applications

to nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002.
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