QUENCHING FOR A PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE ON A SEMI-INFINITE INTERVAL

C. Y. CHAN AND T. TREEYAPRASERT

Department of Mathematics, University of Louisiana at Lafayette Lafayette, Louisiana 70504-1010, USA Department of Mathematics and Statistics, Thammasat University Rangsit Center, Pathumthani 12121, Thailand

ABSTRACT. Let α , b, and T be positive numbers, $D = (0, \infty)$, $\overline{D} = [0, \infty)$, and $\Omega = D \times (0, T]$. This article studies the first initial-boundary value problem with a concentrated nonlinear source situated at b,

$$\begin{split} u_t - u_{xx} &= \alpha \delta(x-b) f\left(u(x,t)\right) \text{ in } \Omega, \\ u(x,0) &= 0 \text{ on } \bar{D}, \\ u(0,t) &= 0 \text{ and } u(x,t) \to 0 \text{ as } x \to \infty \text{ for } 0 < t \leq T, \end{split}$$

where $\delta(x)$ is the Dirac delta function and f is a given function such that $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c, and f(u) and its derivatives f'(u) and f''(u) are positive for $0 \le u < c$.

The problem has a unique continuous solution u before $\sup \{u(x,t) : 0 \le x < \infty\}$ reaches c^- , and u is a strictly increasing function of t in Ω . It is shown that if

$$\sup\left\{u\left(x,t\right):0\leq x<\infty\right\}$$

reaches c^- , then u attains the value c in a finite time only at the point b. A criterion for u to exist globally and a criterion for u to quench in a finite time are given. It is also shown that there exists a critical position b^* for the nonlinear source to be placed such that for $b \leq b^*$, u exists for $0 \leq t < \infty$, and for $b > b^*$, u quenches in a finite time. This also implies that u does not quench in infinite time. The formula for computing b^* is also derived.

AMS (MOS) Subject Classification. 35K60, 35K57

1. INTRODUCTION

Let α , b, and T be positive numbers, $D = (0, \infty)$, $\overline{D} = [0, \infty)$, $\Omega = D \times (0, T]$, and $Lu = u_t - u_{xx}$. We consider the following semilinear parabolic first initial-boundary value problem,

(1.1)
$$\begin{cases} Lu = \alpha \delta(x - b) f(u(x, t)) \text{ in } \Omega, \\ u(x, 0) = 0 \text{ on } \overline{D}, \\ u(0, t) = 0 \text{ and } u(x, t) \to 0 \text{ as } x \to \infty \text{ for } 0 < t \le T, \end{cases}$$

where $\delta(x)$ is the Dirac delta function, and f is a given function such that $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c. We assume that f(u) and its derivatives f'(u) and f''(u) are positive for $0 \leq u < c$. A solution u of the problem (1.1) is a continuous function satisfying (1.1). A solution u of the problem (1.1) is said to quench if there exists some t_q such that $\sup \{u(x,t): 0 \leq x < \infty\} \to c^-$ as $t \to t_q$. If t_q is finite, then u is said to quench in a finite time. On the other hand, if $t_q = \infty$, then u is said to quench in infinite time. The position b^* is called the critical position of the nonlinear source if a unique global solution u exists for $b < b^*$, and if the solution u quenches in a finite time for $b > b^*$.

Green's function $G(x, t; \xi, \tau)$ corresponding to the problem (1.1) is given by

$$G(x,t;\xi,\tau) = \frac{e^{-\frac{(x-\xi)^2}{4(t-\tau)}} - e^{-\frac{(x+\xi)^2}{4(t-\tau)}}}{\sqrt{4\pi (t-\tau)}} \text{ for } t > \tau$$

(cf. Duffy [2, p. 183]). To derive the integral equation from the problem (1.1), we consider the adjoint operator L^* , which is given by $L^*u = -u_t - u_{xx}$. Using Green's second identity, we obtain

(1.2)
$$u(x,t) = \alpha \int_0^t G(x,t;b,\tau) f(u(b,\tau)) d\tau$$

Blow-up is a phenomenon related to quenching. Olmstead and Roberts [4] studied the blow-up phenomenon for the following semilinear problem with a concentrated source at b on a bounded domain,

$$Lw = \delta(x - b)g(w(x, t)) \text{ in } (0, d) \times (0, T],$$

$$w(x, 0) = w_0(x) \text{ on } [0, d],$$

$$w(0, t) = 0 = w(d, t) \text{ for } 0 < t \le T,$$

where d is a positive number, and $w_0(x)$ and g(w) are given functions. They showed that blow-up can always be prevented by placing the nonlinear source sufficiently close to the edge x = 0 or x = d. Our main purpose here is to find the exact b^* for the problem (1.1) such that u never quenches for $b \leq b^*$ and u always quenches in a finite time for $b > b^*$. The fact that u does not quench for $b = b^*$ implies that u does not quench in infinite time. We also note that the proof does not depend on existence of a solution for the steady-state problem corresponding to the problem (1.1). The formula for computing b^* is derived. For illustration, an example is given.

By modifying the techniques used in proving Theorems 1 and 2 of Chan and Jiang [1] for a bounded domain to a semi-infinite interval, we obtain the following result.

Theorem 1.1. There exists some $t_q (\leq \infty)$ such that the integral equation (1.2) has a unique nonnegative continuous solution u for $0 \leq t < t_q$, and u is a strictly increasing

function of t. If t_q is finite, then u quenches in $[0, t_q)$. Furthermore, u is the solution of the problem (1.1).

2. SINGLE-POINT QUENCHING, AND CRITICAL POSITION FOR THE NONLINEAR SOURCE

We modify the technique used in proving Theorem 3 of Chan and Jiang [1] for a bounded domain to obtain the following result for an unbounded domain.

Theorem 2.1. The solution u(x,t) attains its absolute maximum value at (b,θ) for $0 \le t \le \theta < t_q$. If in addition, u quenches, then b is the single quenching point.

Proof. Since u(b,t) is known, let it be denoted by $\eta(t)$. We can rewrite (1.1) as follows:

(2.1)
$$\begin{cases} Lu = 0 \text{ in } (0,b) \times (0,t_q), \ u(x,0) = 0 \text{ for } 0 \le x \le b, \\ u(0,t) = 0 \text{ and } u(b,t) = \eta(t) \text{ for } 0 < t < t_q, \end{cases}$$

(2.2)
$$\begin{cases} Lu = 0 \text{ in } (b, \infty) \times (0, t_q), \ u(x, 0) = 0 \text{ for } x \ge b, \\ u(b, t) = \eta(t) \text{ and } u(x, t) \to 0 \text{ as } x \to \infty \text{ for } 0 < t < t_q. \end{cases}$$

It follows from the strong maximum principle (cf. Friedman [3, p. 34]) and Theorem 1.1 that the solution u(x,t) of the problem (2.1) attains its maximum value at (b,θ) for $0 < t \leq \theta < t_q$. Since $u(x,t) \to 0$ as $x \to \infty$, it follows from the Phragmèn-Lindelöf Principle and the Remark (ii) (cf. Protter and Weinberger [5, pp. 183–185]) that u must attain its maximum at b for the problem (2.2). We claim that the solution u(x,t) of the problem (2.2) attains its absolute maximum value at (b,θ) for $0 < t \leq \theta < t_q$. To show this, let us assume that u(x,t) attains its absolute maximum value at (r,t) for some positive number r > b and $t \in (0,\theta]$. Let l be a positive number such that l > r. By Theorem 1.1, u(l,t) is known. Let us denote it by $\gamma(t)$. We then consider the following problem:

$$Lu = 0 \text{ in } (b, l) \times (0, t_q), \ u(x, 0) = 0 \text{ for } b \le x \le l, u(b, t) = \eta(t) \text{ and } u(l, t) = \gamma(t) \text{ for } 0 < t < t_q.$$

Since u(x,t) attains its absolute maximum value at (r,t), we have by the strong maximum principle that $u(x,t) \equiv u(r,t)$ for all $(x,t) \in (b,l) \times (0,t]$, for which we have a contradiction. Since r is an arbitrary point in (b,∞) , we conclude that u(x,t) of the problem (2.2) attains its absolute maximum value only at (b,θ) for $0 < t \leq \theta < t_q$. Therefore, the solution u(x,t) attains its absolute maximum value at (b,θ) for $0 < t \leq \theta < t_q$ for each of the problems (2.1) and (2.2). Hence, if uquenches, then it quenches at x = b.

To show that b is the only quenching point, let us consider the problem (2.1). By the parabolic version of Hopf's lemma (cf. Friedman [3, p. 49]), $u_x(0,t) > 0$ for any arbitrarily fixed $t \in (0, t_q)$. For any $x \in (0, b)$, $u_{xx} = u_t$, which is nonnegative by Theorem 1.1. Hence, u is concave up. Similarly, for the problem (2.2), we have that for any arbitrarily fixed $t \in (0, t_q)$, $u_x(b, t) < 0$. For any $x \in (b, \infty)$, $u_{xx} = u_t \ge 0$, and hence u is concave up. Thus, if u quenches, then b is the single quenching point. \Box

By using Mathematica Version 6.0, we have

(2.3)
$$\int_{0}^{t} G(b,t;b,\tau)d\tau = b + \left(1 - e^{-b^{2}/t}\right)\sqrt{\frac{t}{\pi}} - b\mathrm{Erf}\left(\frac{b}{\sqrt{t}}\right),$$
$$\frac{d}{dt}\int_{0}^{t} G(b,t;b,\tau)d\tau = \frac{1 - e^{-b^{2}/t}}{2\sqrt{\pi t}} > 0.$$

By the L'Hôpital rule,

$$\lim_{t \to \infty} \left(1 - e^{-b^2/t} \right) \sqrt{\frac{t}{\pi}} = \lim_{t \to \infty} \frac{2b^2}{\sqrt{\pi t}} e^{-b^2/t} = 0.$$

Since $\lim_{t\to\infty} \operatorname{Erf}(b/\sqrt{t}) = 0$, we have

(2.4)
$$\lim_{t \to \infty} \int_0^t G(b,t;b,\tau) d\tau = b.$$

Given any positive constant $M(\langle c \rangle)$, we would like to choose b such that $u(b,t) \leq M$ for all t > 0. From (1.2), (2.3) and (2.4), we have $u(b,t) \leq \alpha f(M) b$. Thus, if

(2.5)
$$\alpha f(M) b \le M,$$

then u exists globally. The above discussion gives us the following sufficient condition for global existence of u.

Theorem 2.2. Given any positive number $M(\langle c \rangle)$, if (2.5) holds, then u exists for all t > 0.

We now give a sufficient condition for u to quench in a finite time.

Theorem 2.3. If b > c/f(0), then u quenches in a finite time.

Proof. From Theorem 1.1, there exists some t_1 such that

$$u(b,t) = \int_0^t G(b,t;b,\tau) f(u(b,\tau)) d\tau < c \text{ for } t \in (0,t_1]$$

Since f is an increasing function and u(b,t) > 0 for $t \in (0, t_1]$, we have for $t \in (0, t_1]$,

(2.6)
$$f(0) \int_0^t G(b,t;b,\tau) d\tau < \int_0^t G(b,t;b,\tau) f(u(b,\tau)) d\tau < c,$$

which gives

$$\int_0^t G(b,t;b,\tau)d\tau < \frac{c}{f(0)} \text{ for } t \in (0,t_1].$$

If there exists some $t_2 \in (t_1, \infty)$ such that

(2.7)
$$\int_{0}^{t_2} G(b, t_2; b, \tau) d\tau \ge \frac{c}{f(0)},$$

then (2.6) is contradicted for $t = t_2$, and hence the continuous solution u(b, t), which is a strictly increasing function of t, cannot be continued to the interval $(0, t_2)$. Thus, there exists some $\hat{t} \in (t_1, t_2)$ such that $u(b, t) \to c^-$ as $t \to \hat{t}$. Therefore, u(b, t)quenches at \hat{t} .

Since b > c/f(0), it follows from (2.3) and (2.4) that (2.7) can always be satisfied. The theorem is then proved.

Theorem 2.4. If $\lim_{t\to\infty} u(b,t) < c$, then

(2.8)
$$U(b) = \alpha b f(U(b)),$$

where U(b) denotes $\lim_{t\to\infty} u(b,t)$. Furthermore, u(b,t) < U(b) for $t \in (0,\infty)$.

Proof. From (1.2),

$$U(b) = \lim_{t \to \infty} u(b,t) = \lim_{t \to \infty} \alpha \int_0^t G(b,t;b,\tau) f(u(b,\tau)) d\tau.$$

We want to show that

$$\lim_{t \to \infty} \alpha \int_0^t G(b,t;b,\tau) f(u(b,\tau)) d\tau = \alpha b f(U(b)) d\tau$$

By using Mathematica version 6.0,

$$\int_{\frac{t}{2}}^{t} G(b,t;b,\tau)d\tau = b + \sqrt{\frac{t}{2\pi}} \left(1 - e^{-\frac{2b^2}{t}}\right) - b\mathrm{Erf}\left(b\sqrt{\frac{2}{t}}\right),$$
$$\frac{d}{dt} \left[b + \sqrt{\frac{t}{2\pi}} \left(1 - e^{-\frac{2b^2}{t}}\right) - b\mathrm{Erf}\left(b\sqrt{\frac{2}{t}}\right)\right] = \frac{1 - e^{-\frac{2b^2}{t}}}{2\sqrt{2\pi t}} > 0.$$

By the L'Hôpital rule,

$$\lim_{t \to \infty} \sqrt{\frac{t}{2\pi}} \left(1 - e^{-\frac{2b^2}{t}} \right) = \lim_{t \to \infty} \frac{2\sqrt{2}b^2 e^{-b^2/t}}{\sqrt{\pi t}} = 0$$

Since $\lim_{t\to\infty} \operatorname{Erf}\left(b\sqrt{2/t}\right) = 0$, we have

$$\lim_{t \to \infty} \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau = b$$

It follows from the continuity of f that

$$\lim_{t \to \infty} f(u(b,t)) = f\left(\lim_{t \to \infty} u(b,t)\right) = f(U(b)).$$

Thus given any positive number ε , there exists some positive number \tilde{t} such that for $t > \tilde{t}$,

(2.9)
$$0 < b - \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau < \frac{\varepsilon}{2f\left(U\left(b\right)\right)},$$

(2.10)
$$0 < f\left(U\left(b\right)\right) - f\left(u\left(b,t\right)\right) < \frac{\varepsilon}{2b}.$$

Thus,

$$\begin{split} bf\left(U\left(b\right)\right) &- \int_{0}^{t} G(b,t;b,\tau) f\left(u\left(b,\tau\right)\right) d\tau \\ &= bf\left(U\left(b\right)\right) - f\left(U\left(b\right)\right) \int_{0}^{t} G(b,t;b,\tau) d\tau \\ &+ \int_{0}^{t} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau \\ &= bf\left(U\left(b\right)\right) - f\left(U\left(b\right)\right) \int_{0}^{\frac{t}{2}} G(b,t;b,\tau) d\tau - f\left(U\left(b\right)\right) \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau \\ &+ \int_{0}^{\frac{t}{2}} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau \\ &+ \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau \\ &= bf\left(U\left(b\right)\right) - f\left(U\left(b\right)\right) \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau - \int_{0}^{\frac{t}{2}} G(b,t;b,\tau) f\left(u\left(b,\tau\right)\right) d\tau \\ &+ \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau \\ &\leq f\left(U\left(b\right)\right) \left(b - \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau \right) \\ &+ \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau . \end{split}$$

It follows from (2.9), f being an increasing function of τ , and (2.10) that for $t > 2\tilde{t}$,

$$\begin{split} bf\left(U\left(b\right)\right) &- \int_{0}^{t} G(b,t;b,\tau) f\left(u\left(b,\tau\right)\right) d\tau \\ &< f\left(U\left(b\right)\right) \frac{\varepsilon}{2f\left(U\left(b\right)\right)} + \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\frac{t}{2}\right)\right)\right) \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2b} \int_{\frac{t}{2}}^{t} G(b,t;b,\tau) d\tau \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2b} b = \varepsilon. \end{split}$$

On the other hand,

$$\begin{split} bf\left(U\left(b\right)\right) &- \int_{0}^{t} G(b,t;b,\tau) f\left(u\left(b,\tau\right)\right) d\tau \\ &= f\left(U\left(b\right)\right) \left(b - \int_{0}^{t} G(b,t;b,\tau) d\tau\right) + \int_{0}^{t} G(b,t;b,\tau) \left(f\left(U\left(b\right)\right) - f\left(u\left(b,\tau\right)\right)\right) d\tau. \end{split}$$

By (2.3) and (2.4), $0 < b - \int_0^t G(b,t;b,\tau)d\tau$. By (2.10), $f(U(b)) - f(u(b,\tau)) > 0$. It follows that the right-hand side is positive. Hence for $t > 2\tilde{t}$,

$$0 < bf(U(b)) - \int_0^t G(b,t;b,\tau)f(u(b,\tau)) d\tau < \varepsilon.$$

Since ε is arbitrary, we have (2.8). It follows from u(b,t) being a strictly increasing function of t that u(b,t) < U(b) for $t \ge 0$.

Let $\phi(s) = s/f(s)$ for $0 \le s < c$. Since $\phi'(s) = (f(s) - sf'(s))/f^2(s)$, the critical value s of $\phi(s)$ is given by s = f(s)/f'(s). Evaluating $d^2\phi(s)/ds^2$ at this critical value, we have

$$\frac{d^2}{ds^2}\phi\left(\frac{f\left(s\right)}{f'\left(s\right)}\right) = -\frac{f\left(s\right)f''\left(s\right)}{f'\left(s\right)f^2\left(s\right)} < 0$$

Therefore, $\phi(s)$ attains its relative (namely in this case, absolute) maximum at this critical value. From (2.8), $b = U(b) / (\alpha f(U(b)))$, where $0 \le U(b) < c$. Let

(2.11)
$$b^* = \frac{1}{\alpha} \sup_{0 \le U(b) < c} \frac{U(b)}{f(U(b))}$$

For $b > b^*$, it follows from Theorem 2.4 that U(b) does not exist. Since

$$\sup_{0 \le U(b) < c} \frac{U(b)}{f(U(b))}$$

is attained at U(b) = f(U(b)) / f'(U(b)), we have

(2.12)
$$b^* = \frac{f(U(b))}{f'(U(b))} \frac{1}{\alpha f(U(b))} = \frac{1}{\alpha f'(U(b))}$$

Theorem 2.5. If $b < b^*$, then U(b) increases as b increases.

Proof. Differentiating (2.8) with respect to b yields

$$U'(b) = \alpha \left(f\left(U\left(b \right) \right) + bf'\left(U\left(b \right) \right)U'\left(b \right) \right),$$

which, by (2.12) and $b < b^*$, gives

$$U'(b) = \frac{\alpha f(U(b))}{1 - \alpha b f'(U(b))} > 0$$

Hence, U'(b) > 0. The theorem is proved.

To obtain the following result, we modify the technique used in proving Theorem 7 of Chan and Jiang [1] for the critical length for a bounded domain.

Theorem 2.6. For $b \le b^*$, u exists for all t > 0. For $b > b^*$, u quenches in a finite time.

Proof. For $b < b^*$, it follows from Theorem 2.5 that U(b) exists, and hence u exists for $0 \le t < \infty$. Since $\phi(s) > 0$ for $s \in (0, c)$, and $\phi(0) = 0$, and $\lim_{s \to c^-} \phi(s) = 0$, it follows that $\phi(s)$ attains its maximum with $s \in (0, c)$. This implies U(b) exists when $b = b^*$. Hence for $b \le b^*$, u exists globally. For $b > b^*$, U(b) does not exist. By Theorem 1.1, u quenches in a finite time for $b > b^*$.

The next result follows from Theorem 2.6.

Corollary 2.7. The solution u of the problem (1.1) does not quench in infinite time.

Example. Let us consider the problem (1.1) with $f(u) = (1-u)^{-p}$, where p is a positive number. Since

$$\frac{d}{ds}\left(\frac{s}{(1-s)^{-p}}\right) = (1-s)^{p-1}(1-s-ps),$$

the critical value is given by s = 1/(p+1). From (2.11),

$$b^* = \frac{p^p}{\alpha \left(p+1\right)^{1+p}}.$$

REFERENCES

- C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, *Quart. Appl. Math.* 62: 553–568, 2004.
- [2] D. G. Duffy, Green's Functions with Applications, Chapman & Hall/CRG, 2001, p. 183.
- [3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 34 and 49.
- [4] W. E. Olmstead and C. A. Roberts, Explosion in a diffusive strip due to a concentrated nonlinear source, *Methods Appl. Anal.* 1: 434–445, 1994.
- [5] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967, pp. 183–185.