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ABSTRACT. Let «, b, and T be positive numbers, D = (0,00), D = [0,00), and Q@ = D x (0,T].
This article studies the first initial-boundary value problem with a concentrated nonlinear source
situated at b,

Ut — Ugx = 046(‘% - b)f (U(Z,t)) in Qa
u(x,0) =0 on D,
u(0,t) =0 and u(x,t) - 0asz — oo for 0 <t < T,
where 0 (z) is the Dirac delta function and f is a given function such that lim,_,.- f (u) = oo for

some positive constant ¢, and f(u) and its derivatives f’(u) and f” (u) are positive for 0 < u < c.

The problem has a unique continuous solution u before sup {u (z,t) : 0 < z < oo} reaches ¢,

and u is a strictly increasing function of ¢ in €. It is shown that if
sup{u(z,t): 0 <z < o0}

reaches ¢, then u attains the value ¢ in a finite time only at the point b. A criterion for u to exist
globally and a criterion for u to quench in a finite time are given. It is also shown that there exists a
critical position b* for the nonlinear source to be placed such that for b < b*, u exists for 0 < ¢ < oo,
and for b > b*, u quenches in a finite time. This also implies that u does not quench in infinite time.

The formula for computing b* is also derived.

AMS (MOS) Subject Classification. 35K60, 35K57

1. INTRODUCTION

Let a, b, and T' be positive numbers, D = (0,00), D = [0,00), Q = D x (0,7, and
Lu = u; — ug,,. We consider the following semilinear parabolic first initial-boundary

value problem,
Lu = ad(x —b)f (u(x,t)) in £,

(1.1) u(z,0) =0 on D,
u(0,t) =0 and u(z,t) - 0 asxz — oo for 0 <t < T,
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where 0(x) is the Dirac delta function, and f is a given function such that

lim, ..~ f (u) = oo for some positive constant c¢. We assume that f(u) and its deriv-
atives f'(u) and f” (u) are positive for 0 < u < ¢. A solution u of the problem (1.1)
is a continuous function satisfying (1.1). A solution u of the problem (1.1) is said to
quench if there exists some ¢, such that sup {u (z,t) : 0 <z < oo} — ¢ ast —t,. If
t, is finite, then u is said to quench in a finite time. On the other hand, if ¢, = oo,
then w is said to quench in infinite time. The position b* is called the critical position
of the nonlinear source if a unique global solution u exists for b < b*, and if the

solution u quenches in a finite time for b > b*.

Green’s function G(z,t; &, 7) corresponding to the problem (1.1) is given by

(@97 (z+8)°
e Alt-7) — ¢ A(t-T)
Gz, t;¢,7) = fort > 7
A (t —7)

(cf. Duffy [2, p. 183]). To derive the integral equation from the problem (1.1), we
consider the adjoint operator L*, which is given by L*u = —u; — u,,. Using Green’s

second identity, we obtain
t
(1.2) u(z,t) = a/ G(z,t;0,7)f (u(b, 7)) dr.
0

Blow-up is a phenomenon related to quenching. Olmstead and Roberts [4] studied
the blow-up phenomenon for the following semilinear problem with a concentrated

source at b on a bounded domain,

Lw = 6(x —b)g (w(z,t)) in (0,d) x (0,77,
w(z,0) = wy () on [0,d],
w(0,t) =0=w(d,t) for 0 <t <T,

where d is a positive number, and wq (z) and g (w) are given functions. They showed
that blow-up can always be prevented by placing the nonlinear source sufficiently
close to the edge x = 0 or x = d. Our main purpose here is to find the exact b* for
the problem (1.1) such that u never quenches for b < b* and u always quenches in a
finite time for b > b*. The fact that u does not quench for b = b* implies that u does
not quench in infinite time. We also note that the proof does not depend on existence
of a solution for the steady-state problem corresponding to the problem (1.1). The

formula for computing b* is derived. For illustration, an example is given.

By modifying the techniques used in proving Theorems 1 and 2 of Chan and
Jiang [1] for a bounded domain to a semi-infinite interval, we obtain the following

result.

Theorem 1.1. There ezists some t, (< 00) such that the integral equation (1.2) has a

unique nonnegative continuous solution u for 0 <t < t,, and u is a strictly increasing
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function of t. If t, is finite, then u quenches in [0,t,). Furthermore, u is the solution

of the problem (1.1).

2. SINGLE-POINT QUENCHING, AND CRITICAL POSITION FOR
THE NONLINEAR SOURCE

We modify the technique used in proving Theorem 3 of Chan and Jiang [1] for a

bounded domain to obtain the following result for an unbounded domain.

Theorem 2.1. The solution u (z,t) attains its absolute maximum value at (b,0) for

0<t<0<t, If in addition, u quenches, then b is the single quenching point.

Proof. Since u (b,t) is known, let it be denoted by 7n(t). We can rewrite (1.1) as

follows:

(2.1) Lu=01in (0,b) x (0,t,), u(z,0) =0 for 0 <z <b,
' u(0,t) =0 and u(b,t) =n(t) for 0 <t <t,,
(2.2) Lu=01in (b,00) x (0,¢,), u(x,0) =0 for z > b,

' w(b,t) =n(t) and u(x,t) - 0asx — oo for 0 <t <t,.

It follows from the strong maximum principle (cf. Friedman [3, p. 34]) and Theorem
1.1 that the solution u (x,t) of the problem (2.1) attains its maximum value at (b, )
for 0 <t <6 < t, Since u(z,t) — 0 as x — oo, it follows from the Phragmen-
Lindel6f Principle and the Remark (ii) (cf. Protter and Weinberger [5, pp. 183-185])
that v must attain its maximum at b for the problem (2.2). We claim that the
solution w (z,t) of the problem (2.2) attains its absolute maximum value at (b,0)
for 0 <t < 6 < t,. To show this, let us assume that u (z,t) attains its absolute
maximum value at (r,¢) for some positive number r > b and ¢t € (0,0]. Let [ be a
positive number such that [ > r. By Theorem 1.1, u ([, %) is known. Let us denote it

by v (t). We then consider the following problem:

Lu=01in (b,1) x (0,t,), u(x,0) =0for b <z </,
w(b,t) =n(t) and u(l,t) =~ (t) for 0 <t < t,.
Since u (z,t) attains its absolute maximum value at (r,t), we have by the strong
maximum principle that u(x,t) = wu(r,t) for all (z,t) € (b,1) x (0,¢], for which
we have a contradiction. Since r is an arbitrary point in (b, 00), we conclude that
u(z,t) of the problem (2.2) attains its absolute maximum value only at (b,0) for
0 <t <6 <t, Therefore, the solution u (x,t) attains its absolute maximum value
at (b,0) for 0 < t < 6 < t, for each of the problems (2.1) and (2.2). Hence, if u

quenches, then it quenches at x = b.

To show that b is the only quenching point, let us consider the problem (2.1).
By the parabolic version of Hopf’s lemma (cf. Friedman [3, p. 49]), u, (0,t) > 0 for
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any arbitrarily fixed ¢ € (0,¢,). For any = € (0,b), u,, = u;, which is nonnegative by
Theorem 1.1. Hence, u is concave up. Similarly, for the problem (2.2), we have that
for any arbitrarily fixed ¢t € (0,¢,), u, (b,t) < 0. For any z € (b, 00), Uz, = uy > 0, and

hence wu is concave up. Thus, if u quenches, then b is the single quenching point. [

By using Mathematica Version 6.0, we have

t —b2 /¢ t b
G, t:b,7)dr =b+ (1—¢ "’ Vt—bEfC—),
/o ( m)dr ( c ) T ' Vit

1—e_b2/t
2.3 — G(b,t; b, > 0.
(2.3) / nar = 10—

By the L’Hopital rule,

t 2b?
lim (1 — e_bQ/t> \/j — lim ——e ¥/t = .
t—o0 e t—00 A /7Tt

Since limtqooErf(b/\/f) =0, we have

t

(2.4) lim [ G(b,t;b,7)dT =b.

t—o0 0

Given any positive constant M (< ¢), we would like to choose b such that u (b,t) < M
for all £ > 0. From (1.2), (2.3) and (2.4), we have u (b,t) < aof (M)b. Thus, if

(2.5) af (M)b< M,

then u exists globally. The above discussion gives us the following sufficient condition

for global existence of w.

Theorem 2.2. Given any positive number M (< ¢), if (2.5) holds, then u exists for
all t > 0.

We now give a sufficient condition for u to quench in a finite time.

Theorem 2.3. Ifb > ¢/f (0), then u quenches in a finite time.
Proof. From Theorem 1.1, there exists some t; such that
u(b,t) = /t G(b,t;b,7)f (u(b, 7)) dr < c for t € (0,t].
0
Since f is an increasing function and w (b,t) > 0 for t € (0,¢1], we have for ¢t € (0, ],

(2.6) L/thbTmui/szbT (b, 7)) dr < c,

which gives

t
/ G(b,t;b,7)dT < for t € (0,4].
0

/(0)
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If there exists some ty € (t1,00) such that

2.7) /0 Glbtaib. T)ir > o

then (2.6) is contradicted for ¢t = 5, and hence the continuous solution w (b, t), which
is a strictly increasing function of ¢, cannot be continued to the interval (0,¢3). Thus,
there exists some ¢ € (t1,t5) such that u(b,t) — ¢~ as t — t. Therefore, u (b,t)

quenches at .

Since b > ¢/ f (0), it follows from (2.3) and (2.4) that (2.7) can always be satisfied.
The theorem is then proved. 0

Theorem 2.4. Iflim; o u (b,t) < ¢, then

(2.8) U(b) = abf (U (b)),
where U (b) denotes limy_.o, u (b,t). Furthermore, u (b,t) < U (b) fort € (0,00).
Proof. From (1.2),
t
U(b) = tlim u(b,t) = tlim oz/ G(b,t;b,7)f (u (b, 7)) dr.
—00 —00 0

We want to show that

lim oz/O G(b,t;0,7)f (u(b,7))dr = abf (U (D)) .

t—o0

By using Mathematica version 6.0,

[t 2 2
G(b,t;b,7)dT = b+ [ — (1 —e ¢ ) — bErf (b\/i> ,
2T t
t b 2 1 &
20° —e 't
Y S o O YV ) | )
b+\/27r( ¢ ) b<b\/;>] N

By the L'Hopital rule,

t 22 21/ 2h2e b/t
lim —(1—e_t):1im—:O
t—oo 2w t—00 \/ﬁ

Since limtﬂooErf<b\/2/t) = 0, we have

w\w\»
o~

d

dt

t
lim [ G(b,t;b,7)dT =b.

t—oo [t
2

It follows from the continuity of f that

Jim 7 (b,1)) = f (Jim u (0.1)) = £ (U (0)).
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Thus given any positive number ¢, there exists some positive number ¢ such that for
t>t,

(2.9) 0<b —l G(bt:b,7)dr < 5 (; o
(2.10) 0< f(U®) = f(ulbt) < 2%
Thus,

bf(U(b))—/O Glb,t:b,7)f (u (b, 7)) dr
o ) - F ) [ G0, )

+ / G(b,1:b,7) (f (U (8)) = f (u(b,7))) dr

— b U )~ f (U ) / "Gt b )T — £ (U (8)

0

G(b,t;b,7)dT

m\w\
o~

t

+ / CGb,:,7) (F (U (1) — f (u (b)) dr

+ Glb,t:0,7) (F (U () = f (u(b,7))) dr
=0bf (U (b)) — f (U (b)) ;G(b, t; b, 7)dT — /05 G(b,t;0,7)f (u (b, 7)) dr
o G0, 15,7) (F (U 8) = f (u (0,7))) dr
< f(U (b)) (b - [tG(b,t; b, T)d7'>
o G, 158,7) ( (U (0) = F (wlb, 7)) dr.
It follows from (2.9), f being an increasing function of 7, and (2.10) that for ¢ > 2¢,
bf (U (b)) — /OtG(b,t;b, ) f (u(b,T))dr

< FU®) Qf(;,(b)) 4 (f(U(b)) _y (u (b%))) /;G(b,t;b,r)dr
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On the other hand,
bf (U (b)) — /tG(b,t;b, 7)f (u(b,T))dr
0

b)) (b—/ot G(b,t; b, T)dT) +/0t G(b,t;0,7) (f (U (b))—f (u(b,7)))dr.

By (2.3) and (2.4), 0 < b— fot G(b,t;b,7)dr. By (2.10), f (U (b)) — f(u(b,7)) > 0. It
follows that the right-hand side is positive. Hence for ¢ > 2¢,

0<bf (U /thbT u (b, 7)) dr < e.

Since € is arbitrary, we have (2.8). It follows from w (b,t) being a strictly increasing
function of ¢ that u (b,t) < U (b) for t > 0. O

Let ¢ (s) = s/f(s) for 0 < s < ¢. Since ¢/ (s) = (f(s) —sf'(s))/f?(s), the
critical value s of ¢ (s) is given by s = f(s) /f' (s). Evaluating d?¢ (s) /ds® at this

critical value, we have

< 0.

£ (1) s
ds2 "\ f'(s))  F'(s) f2(s)
Therefore, ¢ (s) attains its relative (namely in this case, absolute) maximum at this
critical value. From (2.8), b= U (b) / (af (U ())), where 0 < U (b) < ¢. Let
L1 U (b)
. b T
For b > b*, it follows from Theorem 2.4 that U (b) does not exist. Since
sp 2O

0<U(b) <cf( ( ))

is attained at U (b) = f (U (b)) /f' (U (b)), we have
L_fW) 1 1

212 P TWe)ar U ) e 0oy

Theorem 2.5. If b < b*, then U (b) increases as b increases.

Proof. Differentiating (2.8) with respect to b yields

U'(b) = a(f (U (b)) +0f" (U (b)) U" (b)),
which, by (2.12) and b < b*, gives

v af (U()))
U'(b) = = b/ (U (D)) > 0.
Hence, U’ (b) > 0. The theorem is proved. O

To obtain the following result, we modify the technique used in proving Theorem

7 of Chan and Jiang [1] for the critical length for a bounded domain.
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Theorem 2.6. For b < b*, u exists for allt > 0. For b > b*, u quenches in a finite

time.

Proof. For b < b*, it follows from Theorem 2.5 that U (b) exists, and hence u exists
for 0 <t < oco. Since ¢ (s) > 0 for s € (0,¢), and ¢ (0) = 0, and lim, .- ¢ (s) = 0,
it follows that ¢ (s) attains its maximum with s € (0,c¢). This implies U (b) exists
when b = b*. Hence for b < b*, u exists globally. For b > b*, U (b) does not exist. By

Theorem 1.1, u quenches in a finite time for b > b*. U

The next result follows from Theorem 2.6.

Corollary 2.7. The solution u of the problem (1.1) does not quench in infinite time.

Example. Let us consider the problem (1.1) with f(u) = (1 —u)™?, where p is a

positive number. Since

%(ﬁ) =(1-s) ' (1—s—ps),

the critical value is given by s = 1/ (p+ 1). From (2.11),

oo P
a(p+1)"
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